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Abstract

In this paper we develop a new technique for dealing with the geometric irreducibility of a
variety in the algebraic torus (k\0)n given by a general system of equations with fixed monomials
and linear relations on coefficients.

We illustrate the technique via two examples. First we generalize the Khovanskii Irre-
ducibility Theorem (criterion for a system f1 = · · · = fm = 0 to give an irreducible variety if
the monomials of f1, . . . , fm are fixed and their coefficients are generic enough) from C to an
arbitrary field. Then we establish a sufficient combinatorial condition for a set of monomials A,
so that the system f = f ′

x = 0 yields a geometricallly irreducible variety in (k\0)n for a general
f with monomials from A.
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Introduction

1. Introduction

1.1. Setup

Background Let k be an arbitrary field, Tn := Spec k
[
x±1
1 , . . . , x±1

n

]
be the algebraic n-dimensional

torus over k, f ∈ k
[
x±1
1 , . . . , x±1

n

]
a Laurent polynomial in n variables. Then we call the finite set

Supp f :=
{
xd1
1 · . . . · xdn

n

∣∣∣ cd ̸= 0
}
, where f =

∑
d∈Zn

cdx
d1
1 · . . . · xdn

n

the support of the Laurent polynomial f . If we embed Zn into Rn, we could view Supp f as
a subset of the n-dimensional euclidean space, so we could consider its convex hull ∆(f), which is
called the Newton Polytope of f . The aim of the Newton Polytope Theory is to determine the
geometric properties of the variety cut out by the system f1 = · · · = fm = 0 in Tn in terms of the
geometric properties of the support sets of f1, . . . , fm and in terms of their Newton polytopes (hence
the name). In this paper we address the property of (geometric) irreducibility.

Evidently, if we allow the coefficients of the system f1 = · · · = fm = 0 to be arbitrary, then
we could not hope to predict any properties just knowing the support sets. Though if we view the
system as a point in the vector space kA• := kA1 × · · · × kAm , where

kAi :=
{
f ∈ k

[
x±1
1 , . . . , x±1

n

] ∣∣∣ Supp f ⊂ Ai

}
,

then one could study the properties of the general system f = (f1, . . . , fm) ∈ kA• . The case when
k = C is well-studied, for example the irreducibility question is thoroughly researched in [KH16] —
we partially generalize this result to an arbitrary field, see Theorem 4.1.

However, if one studies the varieties given by the systems f1 = · · · = fm = 0 with some additional
relations on coefficients, then all such systems may be contained in a closed subset of kA• , so the
results about general systems from kA• do not apply. Such special systems could be of much interest,
for example we may study the systems of the form f(x, y, z) = f(y, x, z) = 0 — this case is researched
in details in [EL22], or we could study the critical loci (introduced in [E17]), i.e. systems of the form
f = f ′

x = 0 or f ′
x = f ′

y = g1 = g2 = 0, etc.

The Goal We aim to develop an approach to solve the following kind of problem. Let V ⊂ kA• be
a vector subspace that correspond to a ”reasonable” form of a system supported at A1, . . . , Am. We
want to find a condition on A1, . . . , Am so that for the general f ∈ V the system f1 = · · · = fm = 0
cuts out a geometrically irreducible variety in (k\0)n.

In this paper we take a step towards this goal by working out the necessary technical equipment.
We illustrate the applicability of the approach by generalizing the Khovanskii Irreducibility Theorem
to an arbitrary field and by establishing a combinatorial sufficient condition on the support set A
so that for the general f ∈ kA the variety f = f ′

x = 0 is geometrically irreducible.

1.2. The structure of the paper

In the following section 2 we fix the notation, prove a few technical propositions, and introduce
Definition 2.1 that will be important in section 5.

In section 3 we prove all the necessary statements for our technique: Theorem 3.1 and Corol-
lary 3.1. We give a detailed explanation of our approach in paragraphs ”Idea” and ”Filling in the
gaps” of subsection 3.2. Shortly, the idea is that in order to prove that the general fibre of a mor-
phism is geometrically irreducible it is sufficient to show that the fibred square of the morphism
is irreducible. It turns out, that after throwing out a small1 subvariety (that does not affect the

1i.e. at each closed point its dimension is strictly smaller than the dimension of the ambient variety.
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Introduction The structure of the paper

irreducibility) we could easily show that the fibred square is irreducible as it turns out to be the
total space of a vector bundle over an open subset of Tn × Tn.

Sections 4 and 5 could be read independently. Following very similar paths in section 4 we
generalize the Khovanskii Irreducibility Theorem — Theorem 4.1 and in section 5 we find a combi-
natorial condition on A so that for the general f ∈ kA the variety defined in the (n+2)-dimensional
algebraic torus by f = f ′

x = 0 is geometrically irreducible — Theorem 5.1. These two statements,
of course, may represent interest on their own, but also they show the two key ingredients of the
method. In section 4 it is shown to what limit and how one could carefully refine the sufficient
condition produced by our technique so that it basically becomes a criterion. In section 5 we show
how studying the subspace V ⊂ kA• gives us the condition so that for the general f ∈ V the variety
f = 0 is geometrically irreducible.

Finally, in section 6 we formulate three directions in which the further research could be con-
ducted.
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Preparatory Work

2. Preparatory Work

Notation Let M ≃ Zn be the character lattice of the algebraic torus Tn = Spec k
[
x±1
1 , . . . , x±1

n

]
,

A1, . . . , Am be the maximal support sets, and V ⊂ kA• be a vector subspace. Consider the following
family of varieties parameterized by V :

X := {(f , x) ∈ V × Tn| f1(x) = · · · = fm(x) = 0}

If we are to study the properties of the general system f ∈ V , then we need to study the general
fibre of the projection X → V .

Obvious though useful observations Here we gather some simple remarks that apply equally
to the case V = kA• and to the case V =

{
(f, g) ∈ kA × kA | g = x1f

′
x1

}
.

Definition 2.1. A subset P ⊂ M is called x1-dense if there are xa1
1 · . . . · xan

n , xb1
1 · . . . · xbn

n ∈ P
such that a1 − b1 is not divisible by char k.

Remark 2.1. We could also give an invariant definition: let h ∈ M∗ := HomZ(M,Z) be an element
of the dual lattice. Then P ⊂ M is called h-dense iff there are p1, p2 ∈ P such that

h(p1) ̸≡ h(p2) mod char k.

In the above definition we implicitly identify the basis of the lattice M with the dual basis of the
dual lattice M∗. In particular, it makes sense to call a subset t-dense for some t ∈ M iff there is a
distinguished basis of M (in our case such basis is x1, . . . , xn).

Claim 2.1. X → V is the kernel of the vector bundle morphism

V × Tn → Am
k × Tn, (f , x) 7→ (f(x), x).

If V = kA• or V =
{
(f, g) ∈ kA × kA | g = xf ′

x

}
and A is x1-dense, then X → Tn is a vector

subbundle of the trivial bundle V × Tn → Tn. In the first case the corank of the vector subbundle
is m, in the second case the corank is 2.

Proof. To prove that X is a vector bundle it is sufficient to show that the rank of the morhpism
V × Tn → Am

k × Tn is constant.
First we deal with the case when V = kA• . Then the matrix of V × Tn → Am

k × Tn over the
point x ∈ Tn is

t11(x) t12(x) · · · t1s1(x) 0 · · · 0 · · · 0 · · · 0
0 0 · · · 0 t21(x) · · · t2s2(x) · · · 0 · · · 0
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

0 0 · · · 0 0 · · · 0 · · · tm1(x) · · · tmsm(x)

 ,

where Ai = {ti1, . . . tisi} and tij(x) ∈ k(x). For all i, j we have tij(x) ̸= 0 because x ∈ Tn, so the
rank of the matrix is m for all x ∈ Tn. Hence, the rank of V × Tn → Am

k × Tn is constant and
equals m, so its kernel X is a vector subbundle and its corank is equal to n−m.

Now we deal with the case V =
{
(f, g) ∈ kA × kA | g = x1f

′
x1

}
. Let A = {t1, . . . , ts}. We

introduce the following coordinates on V : to the row (c1, . . . , cs) ∈ ks we associate the point
(
∑s

i=1 citi,
∑s

i=1 diciti) ∈ V , where di := degx1
ti. Now the matrix of the vector bundle morphism

V × Tn → A2
k × Tn over the point x ∈ Tn with respect to the chosen coordinates is(

t1(x) t2(x) · · · ts(x)
d1t1(x) d2t2(x) · · · dsts(x)

)
.
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Since A is x1-dense, we have that for some 1 ≤ i, j ≤ s the difference di − dj is not divisible by
char k. Without loss of generality d1 − d2 is not divisible by char k. Now, for any x ∈ Tn we have
char k(x) = char k, so d1 − d2 is not divisible by char k(x) for all x ∈ Tn. Then the matrix above
contains the submatrix(

t1(x) t2(x)
d1t1(x) d2t2(x)

)
, det

(
t1(x) t2(x)
d1t1(x) d2t2(x)

)
= (d1 − d2)t1(x)t2(x) ̸= 0.

Therefore, the rank of V × Tn → A2
k × Tn is constant and equals 2, so its kernel X is a vector

subbundle and its corank is equal to 2. ■

Corollary 2.1. In the above two cases we have that X is an irreducible variety. In the case
V = kA• we have dimX = dimV + n−m, in the other case we have dimX = dimV + n− 2.

Claim 2.2. Either the general fibre of X → V is of dimension dimX − dimV or the general fibre
is empty.

Proof. If X → V is dominant, then the dimension of the general fibre is equal to the relative
dimension of the morphism: X → V is clearly closed, thus restricting to an appropriate irreducible
component and applying [Stacks, Tag 05F7], [Stacks, Tag 02JX] we get what we want. If X → V
is not dominant, then the general fiber is empty. ■

Remark 2.2. It follows, that we always have to study just the following two cases: the degenerate
case when the general system f ∈ V is not consistent, i.e. f = 0 has no solutions and the case
when the general system f = 0 cuts out the variety of expected dimension. Note, that in the same
fashion as in the above proof one could show that if there is just one system f ∈ V such that
dim{x ∈ Tn | f1(x) = · · · = fm(x)} ≤ D, then the same inequality holds for the general system.

Remark 2.3. Consider any field extensions K/k. From [EGA, IV.3, 9.7.8] it follows that the general
fibre of X → V is geometrically irreducible iff the general fibre of XK → VK is2, so we could from
now on that k is algebraically closed (though it will not be necessary).

2by XK → VK we denote the base change of X → V w.r.t. SpecK → Spec k

Andrey Zhizhin 5
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General Technique

3. General Technique

In this section we setup the technical tools to prove the irreducibility of varieties cut out in the
algebraic k-torus by general systems of equations of specific form and of prescribed support sets.

3.1. Main theorem

Theorem 3.1. If X → Y is a finitely presented morphism of integral schemes and the fibre square
X ×Y X is irreducible, then the general fibre of X → Y is geometrically irreducible, i.e. there is a
non-empty open subset U ⊂ Y such that for any y ∈ U the fibre Xy is geometrically irreducible.

Proof. We will assume without loss of generality that Y is affine. Let η ∈ Y be the generic point of
Y . By [EGA, IV.3, 9.7.8], we only need to show that the generic fibre Xη is geometrically irreducible.

In fact, we could also assume that X is affine. Indeed, let X = U1 ∪ · · · ∪Un be an open covering
such that Ui are affine and non-empty. Since the generic point of X lies in each Ui, we get that the
fibres Uiη give an affine open covering of Xη such that for all indicies i, j the intersection Uiη ∩ Ujη

is non-empty. Then if we prove that all Uiη are geometrically irreducible, we will also get that Xη

is geometrically irreducible. So, we assume without loss of generality that X is affine.
Since X ×Y X is irreducible, we get that (X ×Y X)η = Xη ×η Xη is also irreducible. Now we are

left with an algebraic statement to prove: if A is a K-algebra (K := k(η)) with no zero divisors and
A⊗K A has no zero divisors except nilpotents, then SpecA is geometrically irreducible. By [Stacks,
Tag 037N] and [Stacks, Tag 0G33] we could just prove that K is separably closed in A. Assume
the contrary: There is α ∈ A that is separably algebraic over K and α ̸∈ K. Then K(α)⊗K K(α)
contains non-nilpotent (because α is separable) zero divisors. Since K(α)⊗K K(α) is a subalgebra
of A⊗K A, we get that A⊗K A also has non-nilpotent zero divisors, which is a contradiction. Hence,
K is algebraically closed in A and SpecA is geometrically irreducible. ■

3.2. Excision Toolkit

Idea Now it is time to elaborate on what our technique is all about. Whenever we are to study
the properties of the general system of specific kind with given support, we get a closed subscheme
X in the space V × Tn, where V ⊂ kA• is a closed subvariety. In this setting the properties of the
general system f ∈ V are exactly the properties of the general fiber of the projection X → V . In
the examples that are of primary interest V is a vector space. Usually, the projection X → Tn is
a vector bundle which, for example, gives us that X is irreducible. The theorem above shows that
studying the projection X ×V X → V can give us the irreducibility of the general fiber. Also just
like before we get the projection X ×V X → Tn × Tn that should help us in studying the former
projection. Of course, one could not show in the same fashion as before that the latter projection
X ×V X → Tn×Tn is a vector bundle, because it is not even flat. However, the following discussion
provide a way around.

Lemma 3.1. Let X be a Jacobson scheme, Z ⊂ X be a subset with the induced subspace topology
and assume that for any point p ∈ Z that is closed in X we have dimp Z < dimp X. Then X\Z is
dense in X.

Proof. Assume the contrary: then there is an open subset U ⊂ X such that U ∩ (X\Z) = ∅, i.e.
U ⊂ Z. Since X is Jacobson, there is a point p ∈ U that is closed in X. We have dimp X =
dimp U = dimp Z, which is a contradiction. ■

6 Andrey Zhizhin
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General Technique Excision Toolkit

Corollary 3.1 (Irrelevant fibres). Let X → Y be a morphism of k-schemes locally of finite type.
Let Z ⊂ Y be an immersed subscheme such that for all closed p ∈ Z and all closed x ∈ Xp we have

dimx Xp < dimx X − dimp Z ∀x ∈ Xp(k)

Then3 X\XZ is dense in X.

Proof. The question is local on Y , so we may assume that Z is closed in Y . Now, XZ is a closed
subscheme of X, hence points of XZ that are closed in X are just closed points of XZ . Restricting to
appropriate irreducible comoponents of XZ , Z and applying [Stacks, Tag 02JT], [Stacks, Tag 0D4H]
we get

dimx Xp = dimx(XZ)p ≥ dimx XZ − dimp Z

Regrouping the terms and applying the inequality from the assumption we get

dimx XZ ≤ dimx Xp − dimp Z < dimx X.

As schemes locally of finite type over a field are Jacobson, we are done. ■

Filling in the gaps Finally, we could formulate the whole idea of the technique: to establish
the geometric irreducibility of the variety cut out by the general f ∈ V , we are going to prove
that X ×V X is irreducible. We will do it by studying the projection X ×V X → Tn × Tn.
Specifically, we are going to show that outside of a closed subscheme S ⊂ Tn × Tn the projection
X ×V X → Tn × Tn is a vector bundle and that S satisfy corollary Corollary 3.1, i.e. throwing
out its preimage does not affect the irreducibility of X ×V X .

3by XZ we denote the pre-image of Z under the morphism X → Y
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Khovanskii Irreducibility Theorem
over an Arbitrary Field

4. Khovanskii Irreducibility Theorem
over an Arbitrary Field

We use the same notation as in section 2. In particular, we denote by A1, . . . , Am ⊂ M some finite
subsets that should be thought of as maximal support sets, we also assume that m < n. By ∆i we
denote the corresponding polytopes, i.e. the convex hulls of Ai w.r.t. the embedding M ↪−→ M ⊗R.
For a subset J ⊂ {1, . . . ,m} we define the number NJ := dim

∑
j∈J ∆j − |J |, where by the sum we

mean the Minkowski sum. i.e. B + C := {b+ c | b ∈ B, c ∈ C}.
In this section we prove the following theorem.

Theorem 4.1. If for all non-empty subsets J ⊂ {1, . . . ,m} we have NJ > 0, then for the general
f ∈ kA• the variety defined in Tn by the system f1 = · · · = fm = 0 is geometrically irreducible.

The formulation of the theorem and the proof for the case k = C is due to Khovanskii, cf. [KH16].

Remark 4.1. The condition that ∀J ⊂ {1, . . . ,m}, J ̸= ∅ we have NJ > 0 is absolutely nat-
ural. In fact, NJ determines the actual number of independent variables of the subsystem of
fJ — the subsystem of f that corresponds to J . Indeed, if NJ ≤ 0, then after a proper mono-
mial change of coordinates and regrouping the equations we could assume that J = {1, . . . , r} and
fi = fi(x1, . . . , xr) for i ≤ r. By the Kouchnirenko-Bernstein-Khovanskii Theorem the system fJ
then has MV olZ(∆1, . . . ,∆r) solutions in T r. If MV olZ(∆1, . . . ,∆r) > 1, then clearly the expected
number of irreducible components is greater than one.

Definition 4.1. We define the subvariety of singularities S ⊂ Tn × Tn of all the points such that
the projection X ×kA• X → Tn × Tn is degenerate over them, i.e.

S := {p ∈ Tn × Tn | rkp Φ < 2m},

where Φ is the morphism kA• × Tn × Tn → A2m × Tn × Tn, (f , x, y) 7→ (f(x), f(y), x, y).

4.1. Preparations

Claim 4.1. X ×kA• X → Tn × Tn is the kernel of Φ. If S satisfies the condition of Corollary 3.1,
then X ×kA• X is irreducible.

Proof. It is obvious that X ×A•
k X → Tn ×Tn = KerΦ. We denote by (X ×A•

k X )S the preimage

of S. Clearly the morphism (X ×A•
k X )\(X ×A•

k X )S → (Tn × Tn)\S is a vector bundle, in

particular, X ×A•
k X (X ×A•

k X )S is irreducible as it is the total space of a vector bundle over an
irreducible base. Therefore, if S satisfies the condition of Corollary 3.1, then X ×kA• X must also
be irreducible. ■

Remark 4.2. Until the end of this section we will denote Ai = {ti1, . . . , tisi}. Then we have that
the matrix of Φ over the point p ∈ Tn × Tn is

t11(up) t12(up) · · · t1s1(up) 0 · · · 0 · · · 0 · · · 0
0 0 · · · 0 t21(up) · · · t2s2(up) · · · 0 · · · 0
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

0 0 · · · 0 0 · · · 0 · · · tm1(wp) · · · tmsm(wp)
t11(wp) t12(wp) · · · t1s1(wp) 0 · · · 0 · · · 0 · · · 0

0 0 · · · 0 t21(wp) · · · t2s2(wp) · · · 0 · · · 0
...

...
. . .

...
...

. . .
...

. . .
...

. . .
...

0 0 · · · 0 0 · · · 0 · · · tm1(wp) · · · tmsm(wp)


,
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Khovanskii Irreducibility Theorem
over an Arbitrary Field Stratification of singularities

where up, wp ∈ k(p)n are the values of the coordinate functions x1, . . . , xn and y1, . . . , yn that come
from one same system of coordinated on Tn. Then p ∈ S iff i-th and (i +m)-th row of the above
matrix are proprotional for some i.

Note that we could shift any subset Ai by any monomial as it corresponds to multiplying the i-th
equation of the system by the same monomial. Therefore we will assume without loss of generality
that ti1 = 1 ∀i. Now we have that the i-th and the (i + m)-th rows of the above matrix are
proportional iff they coincide. Hence we see that p ∈ S iff there is i such that tij(xp) = tij(yp) ∀j.
We keep all the said assumption until the end of the section.

4.2. Stratification of singularities

Definition 4.2. Let J ⊂ {1, . . . ,m} be a non-empty subset. We define the constructible subset

SJ :=
{
p ∈ Tn × Tn | ∀i ∈ J,∀t ∈ Ai t(xp) = t(yp) and ∀i ̸∈ J∃t ∈ Ai : t(xp) ̸= t(yp)

}
.

In other words, SJ consists of all the points p ∈ Tn×Tn such that i ∈ J iff the i-th and the (i+m)-th
rows of the matrix of Φ over p coincide.

Remark 4.3. SJ form a stratification of S, i.e. S =
⊔

J SJ , where J runs over all non-empty subsets
of {1, . . . ,m}. In particular, S satisfies the condition of Corollary 3.1 iff SJ does for all non-empty
J ⊂ {1, . . . ,m}.

Lemma 4.1. The following inequality holds: codimTn×Tn SJ ≥ dim
∑
j∈J

∆j .

Proof. SJ is an open subset in the closed subset SJ defined by the equations

t(x) = (y) ∀i ∈ J ∀t ∈ Ai

Recall that by M we denote the character lattice. Let L ⊂ M ×M be the sublattice generated by
tij(x)t

−1
ij (y), i ∈ J . Clearly SJ is defined by the equations l(x, y) = 1 ∀l ∈ L. We have that L is

the image of L′ ⊂ M under the antidiagonal embedding M → M × M, t 7→ (t, t−1) = t(x)t−1(y),
where L′ is generated by all t ∈ Ai for i ∈ J . Let d = dim

∑
j∈J ∆j . We have d = rkL′ = rkL.

Hence, by the Smith Normal Form Theorem after a proper monomial change of coordinates we could
assume that L′ is generated by the monomials xr1

1 , . . . , xrd
d , ri > 0. Then SJ is defined by equations

xri
i = yrii . Therefore:

codimSJ ≥ codimSj = d = dim
∑
i∈J

∆I .

■

Lemma 4.2. For all p ∈ SJ we have dim(X ×kA• X )p = dim kA• − 2m+ |J |.

Proof. Obviously the rank of Φ over p ∈ SJ is exactly 2m− |J |. Hence, the fibre (X ×kA• X )p =
KerΦp is nothing but a vector subspace in k(p)A• of codimension 2m− |J |. ■

Lemma 4.3. For all closed x ∈ X ×kA• X we have dimx X ×kA• X ≥ dim kA• + 2n− 2m.

Proof. All closed points of X ×kA• X are closed points of kA• ×Tn×Tn as well. At all of its closed
points the dimension of kA• × Tn × Tn is dim kA• + 2n. The subvariety X ×kA• X is cut out by
2m equations, so the dimension at each point may drop at most by 2m. ■

Andrey Zhizhin 9



Khovanskii Irreducibility Theorem
over an Arbitrary Field Stratification of singularities

Proof of Theorem 4.1 Now we see that for any closed p ∈ SJ and any closed x ∈ (X ×kA• X )p
we have

dimx X ×kA• X − dimx(X ×kA• X )p − dimp SJ ≥
≥ dim kA• + 2n− 2m− dim kA• + 2m− |J | − (2n− codimTn×Tn SJ) ≥ NJ ,

which shows that SJ satisfies the condition of Corollary 3.1 for all non-empty J ⊂ {1, . . . ,m}, i.e.
S satisfies the condition of Corollary 3.1 (see Remark 4.3), so X ×kA• X is irreducible. Hence, by
Theorem 3.1 we proved Theorem 4.1.
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5. Critical Loci

In the previous section we showed that our approach could be helpful in generalizing to an arbitrary
characteristic the already existing results about the irreducibility. Now it is time to show that our
technique could also help in finding some new answers.

In this section we derive a sufficient combinatorial condition on A ⊂ M (we still use the notation
of section 2) so that for the general f ∈ kA the variety cut out by the equations f = f ′

x1
= 0 in Tn

is geometrically irreducible, see Theorem 5.1.

5.1. Preparations

Notation We slightly change the notation, so it is more convenient in the context of our specific
problem of critical loci. First we change our coordinates from x1, . . . , xn, n > 2 to x, y1, . . . , yn−1

and from now on we will take the partial derivative with respect to x instead of x1. Also to make our
notation less complicated we change n−1 to n, i.e. now we have the coordinates x, y1, . . . , yn, n > 1.
We identify V ∼= kA via kA → V, f 7→ (f, xf ′

x).
We follow the path similar to what we did in section 4.

Definition 5.1. Let us define the subvariety of singularities S ⊂ Tn+1×Tn+1 of all the points such
that the projection X ×V X → Tn+1 × Tn+1 is degenerate over them, i.e.

S := {p ∈ Tn+1 × Tn+1 | rkp Φ < 4},

where Φ is the morphism V×Tn+1×Tn+1 → A4×Tn+1×Tn+1, (f, p, q) 7→ (f(p), f(q), f ′
x(p), f

′
x(q), p, q).

Claim 5.1. X ×V X → Tn+1×Tn+1 is the kernel of Φ. If S satisfies the condition of Corollary 3.1,
then X ×V X is irreducible.

Proof. The same as in Claim 4.1. ■

Remark 5.1. If A is x-dense (recall Definition 2.1), then for all p ∈ Tn × Tn we have rkΦp ≥ 2.
Indeed, the matrix of Φ w.r.t. the standard coordinates on4 kA is

t1(up) . . . ts(up)
t1(wp) . . . ts(wp)
d1t1(up) . . . d2ts(up)
d1t1(wp) . . . dsts(wp)

 ,

where A := {t1, . . . , ts}, di := degx ti and u1, . . . , un+1, w1, . . . , wn+1 are coordinates on Tn+1× Tn+1

that come from one same system of coordinates on Tn+1. We have that the first and the third rows
are not proportional because A is x-dense5, i.e. rkΦp ≥ 2. We keep the notation for the coordinates
until the end of the section.

Claim 5.2. If A is x-dense and dimS ≤ n+ 1, then S satisfies the condition of Corollary 3.1.

Proof. The above remark tells us that ∀p ∈ Tn×Tn we have dim(X ×V X )p ≤ dimV−2, because the
fibre over p is nothing but the kernel of the morphism Φp : V → A4, and the rank of Φp is at least 2.
For any closed x ∈ V ×Tn+1×Tn+1 we have dimx V ×Tn+1×Tn+1 = dimV +2(n+1). Since X ×V X
is cut out in V × Tn+1 × Tn+1 by 4 equations, we have that dimx X ×V X ≥ dimV +2(n+1)− 4
for any closed x ∈ X ×V X . Putting it all together we get that for any closed p ∈ S and any closed
x ∈ (X ×V X )p the following inequality holds:

dimx X ×V X − dimx(X ×V X )p − dimp S ≥
≥ dimV + 2(n+ 1)− 4− (dimV − 2)− dimS ≥ 2n− (n+ 1) = n− 1 > 0,

i.e. the condition of Corollary 3.1 is satisfied. ■
4recall that V ∼= kA
5as in the proof of Claim 2.1
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5.2. The sufficient condition

Theorem 5.1. If A ⊂ M contains6 two non-degenerate (n+1)-simplicies such that their equivalence
classes modulo the sublattice ⟨xchar k

1 , y1, . . . , yn⟩ are disjoint, then for the general f ∈ kA the variety
cut out in Tn+1 by f = f ′

x = 0 is geometrically irreducible.

Proof. Let l0, l1, . . . , ln+1, q1, . . . , qn+1 ∈ A be such that the sublatticies L := ⟨lil−1
j ⟩1≤i,j≤n+1 and

Q := ⟨qiq−1
j ⟩1≤i,j≤n+1 are of the rank n + 1 and ∀i, j we have liq

−1
j ̸∈ ⟨xchar k

1 , y1, . . . , yn⟩. Let

L and Q be the subvarieties of Tn+1 × Tn+1 defined by the equations7 t(u) = t(w)∀t ∈ L and
t(u) = t(w) ∀t ∈ Q respectively. dimL = dimQ = n + 1 because the codimensions of these
subvarieties are equal to the ranks8 of L,Q. Obviously A is x-dense, so if we show that S ⊂ L ∪Q,
then by the above claims X ×V X is irreducible and by Theorem 3.1 we will be done.

We need to show that for all p ∈ Tn+1 × Tn+1\(L ∪ Q) we have rkp Φ = 4. The key observa-
tion for us will be that ∀p ̸∈ L the rows9 (l1(up), . . . , ln+1(up)) and (l1(wp), . . . , ln+1(wp)) are not
proportional. Indeed, otherwise we have that for all 1 ≤ i, j ≤ n+ 1

li(up)

li(wp)
=

lj(up)

lj(wp)
⇐⇒ li(up)l

−1
j (up) = li(wp)l

−1
j (wp).

Since lil
−1
j generate the lattice L, it would imply that p ∈ L. The same way, if p ̸∈ Q, then

the rows (q1(up), . . . , qn+1(up)) and (q1(wp), . . . , qn+1(wp)) are not proportional as well. Now let
us fix p ̸∈ L ∪ Q. Without loss of generality the rows (l1(up), l2(up)) and (l1(wp), l2(wp)) are not
proportional, and the rows (q1(up), q2(up)) and (q1(wp), q2(wp)) are not proportional. We introduce
the following notation:

a1 = l1(up), a2 = l2(up), a3 = q1(up), a4 = q2(up),

b1 = l1(wp), b2 = l2(wp), b3 = q1(wp), b4 = q2(wp),

d1 = degx l1, d2 = degx l2, d3 = degx q1, d4 = degx q2.

The following matrix is a submatrix of Φp:
a1 a2 a3 a4
b1 b2 b3 b4

d1a1 d2a2 d3a3 d4a4
d1b1 d2b2 d3b3 d4b4


we will show that this submatrix is of rank 4, thus Φp will also be of rank 4 and the theorem will
be proved. We show that the rank of the submatrix is 4 via straightforward Gaussian Elimination:

rk


a1 a2 a3 a4
b1 b2 b3 b4

d1a1 d2a2 d3a3 d4a4
d1b1 d2b2 d3b3 d4b4

 = rk


a1 a2 a3 a4
b1 b2 b3 b4
0 (d2 − d1)a2 (d3 − d1)a3 (d4 − d1)a4
0 (d2 − d1)b2 (d3 − d1)b3 (d4 − d1)b4

 =

[b′i := bi − (b1/a1)ai] = rk


a1 a2 a3 a4
0 b′2 b′3 b′4
0 (d2 − d1)a2 (d3 − d1)a3 (d4 − d1)a4
0 (d2 − d1)b

′
2 (d3 − d1)b

′
3 (d4 − d1)b

′
4

 =

6i.e. there are l0, l1, . . . , ln+1, q1, . . . , qn+1 ∈ A such that the sublatticies ⟨lil−1
j ⟩, ⟨qiq−1

j ⟩ are of the rank n+1 and

∀i, j we have liq
−1
j ̸∈ ⟨xchar k

1 , y1, . . . , yn⟩.
7recall that u1, . . . , un+1, w1, . . . , wn+1 are the coordinates on Tn+1 × Tn+1.
8in fact, they are equal to the ranks of the images of these sublattice under the anti-diagonal embedding

M ↪−→ M × M , t 7→ t(u)t−1(w), but these ranks are the same.
9recall that up is the vector (u1, . . . , un+1) that is evaluated at p and the same for wp.
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we need b′2 ̸= 0 for the following identity to be true. It is proved after the Gaussian Elimination.

[a′i := b′2ai/a2] = rk


a′1 b′2 a′3 a′4
0 b′2 b′3 b′4
0 (d2 − d1)b

′
2 (d3 − d1)a

′
3 (d4 − d1)a

′
4

0 (d2 − d1)b
′
2 (d3 − d1)b

′
3 (d4 − d1)b

′
4

 =

= rk


a′1 b′2 a′3 a′4
0 b′2 b′3 b′4
0 0 (d3 − d2)a

′
3 (d4 − d2)a

′
4

0 0 (d3 − d2)b
′
3 (d4 − d2)b

′
4

 = rk

(
a′1 b′2
0 b′2

)
+ rk

(
(d3 − d2)a

′
3 (d4 − d2)a

′
4

(d3 − d2)b
′
3 (d4 − d2)b

′
4

)
=

= rk

(
a′1 a′2
b′1 b′2

)
+ rk

((
a′3 a′4
b′3 b′4

)(
d3 − d2 0

0 d4 − d2

))
= (∗)

Now, the condition that liq
−1
j ̸∈ ⟨xchar k, y1, . . . , yn⟩ means exactly that degx li − degx qj is not

divisible by char k, i.e. degx li − degx qj ̸= 0 in k(p)∀p ∈ Tn+1 × Tn+1. Therefore, we have that
d2 − d3 ̸= 0 and d2 − d4 ̸= 0 in k(p). Thus

rk

((
a′3 a′4
b′3 b′4

)(
d3 − d2 0

0 d4 − d2

))
= rk

(
a′3 a′4
b′3 b′4

)
Furthermore, ai, bi 7→ a′i, b

′
i is a linear automorphism: to prove it we need to show that

b′2 = b2 − (b1/a1)a2 ̸= 0.

It is the case because the rows (a1 a2) and (b1 b2) are non-proportional. Hence, ai, bi 7→ a′i, b
′
i is

indeed a linear isomorphism, so

(∗) = rk

(
a′1 a′2
b′1 b′2

)
+ rk

(
a′3 a′4
b′3 b′4

)
=

(
a1 b2
b1 b2

)
+ rk

(
a3 a4
b3 b4

)
= 2 + 2 = 4.

■

Remark 5.2. In case char k = 0, there is a more geometric formulation of our condition: if there
are non-degenerate simplicies ∆,∆′ ⊂ A such that their projections onto ⟨x⟩ along the sublattice
⟨y1, . . . , yn⟩ are disjoint, then for the general f ∈ kA the variety f = f ′

x = 0 is geometrically
irreducible. In case char k > 0 we need to replace ⟨x⟩ with the quotient lattice ⟨x⟩/⟨xchar k⟩.

5.3. Examples

In this subsection we gather a few important examples. In particular, we show some limitations of
the found condition.

Example 5.1 (Sufficient though not necessary). The following example shows that the found con-
dition is indeed not a criterion. Consider a finite set of monomials:

∆d :=
{
xayb11 · . . . · ybnn

∣∣∣a+ b1 + . . .+ bn ≤ d; a, bi ≥ 0
}
.

For a polynomial f ∈ k[x, y1, . . . , yn] we have Supp f ⊂ ∆d ⇐⇒ deg f ≤ d. For d = 1 the variety
f = f ′

x = 0 is empty for the general f ∈ ∆1, because f ′
x is a non-zero constant. For d ≥ 3 the

set ∆d satisfies the condition of Theorem 5.1. The case d = 2 drops out: it does not satisfy the
condition of our theorem and one can manually check10, that for the general f ∈ k∆2 the solution
set of f = f ′

x = 0 is a non-empty geometrically irreducible variety.
10Indeed: f ′

x = 0 is a hyperplane and the restriction of f = 0 to the hyperplane gives a quadric. The general quadric
is geometrically irreducible.
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Example 5.2 (Actual counter-example). The following example shows a situation when for the
general f ∈ kA the system f = f ′

x = 0 defines a variety that is not irreducible. Let B ⊂ ⟨y1, . . . , yn⟩
be an arbitrary finite subset, L ⊂ ⟨x,y1, . . . , yn⟩ be a line segment disjoint from B. Then we could
consider A := B ⊂ L. For any polynomial f supported at A there is the decomposition of the
following form:

f(x, y) = g(y) + h(x, y), Supp g ⊂ B, Supph ⊂ L

Then f ′
x = h′

x. Since Supph is contained in a line segment, we see that there are monomials
v, z ∈ ⟨x, y1, . . . , yn⟩ such that h(x, y) = v · p(z), where p ∈ k[T ] is a polynomial in one variable.
Therefore f ′

x = 0 defines a finite number of shifted subtori and f = f ′
x = 0 is the intersection of the

hypersurface f = 0 with these subtori. In particular, if at least two intersection are non-empty, then
the variety f = f ′

x = 0 is not irreducible.
To give a concrete example let us consider the case when n = 2, B = {1, y1, y2}, L = {x, . . . , xm+1},

and k is algebraically closed. Then for the general f, Supp f ⊂ (B ∪ L) the equation f ′
x = 0 defines

m parallel hyperplanes x = ci, 1 ≤ i ≤ m and the system f = f ′
x = 0 defines m disjoint planes of

codimension 2.

Example 5.3 (Characteristic matters). Here we illustrate that the characteristic of the base field
is significant. Consider A = A0 ∪{x}∪x3A3 ∪{x5}, where A0, A3 ⊂ ⟨y1, . . . , yn⟩ are arbitrary finite
subsets that contain non-degenerate n-simplicies. Then any f ∈ kA is of the form

f = ax5 + x3h(y) + bx+ g(y), a, b ∈ k.

If char k > 3, then A0 ∪{x5} and {x}∪x3A3 each contain a non-degenerate (n+1)-simplex and the
projections of these sets onto ⟨x⟩ are disjont modulo xchar k, i.e. this case satisfies the condition of
Theorem 5.1. Though it is different for char k = 3. If char k = 3, then f ′

x = 5ax4+ b and the variety
f = f ′

x = 0 has 4 geometric irreducibility components for the general f ∈ kA.
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6. Further Work

A Unified Approach It is hard not to notice the great resemblance of the proofs of Theorem 4.1
and Theorem 5.1 — they are very similar in the geometric part, though they differ when it comes to
analyzing the fibres of the projection X ×V X → Tn × Tn which is completely determined by the
vector subspace V . In the same way as in these theorems, we could find a condition on the support
sets so that the general systems of the kind f ′

x = f ′
y = 0, f = f ′

x = g1 = · · · = gm = 0, etc. give a
geometrically irreducible variety. Clearly, we are not bound just to critical loci and we could study
other systems with fixed support sets and linear relations on coefficients. There must be a way to
do this in a unified manner, i.e. there must be a correspondence between some special properties of
V ⊂ kA• and the conditions on A• so that for the general f ∈ V the variety f = 0 is geometrically
irreducible.

Discriminant Conditions Suppose we already know that for the general f ∈ V the variety f = 0
is geometrically irreducible. Then it is natural to seek an explicit condition (like the non-degeneracy
conditions in [Ber75] and[KH78]) on f ∈ V so that f is general, i.e. f = 0 is geometrically irreducible.
The exact criterion may be hard to find, but adapting a common toric geometry technique11 one
should be able to find a sufficient condition.

Sufficient though not necessary The approach produces only sufficient conditions. In the case
of the Khovanskii Irreducibility Theorem the condition is virtually a criterion, but it is because the
general systems in kA• is a relatively nice setting. As we see things get more complicated if a slightly
more difficult problem is considered. Therefore, it would be useful to find a way to estimate the
roughness of the produced conditions.

11for example, see [EL22][Sec. 7, p.30]
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