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Abstract. We prove that the only non-trivial finite subgroups of birational

automorphism group of non-trivial Severi–Brauer surfaces over the field of ra-
tional numbers are Z/3Z and (Z/3Z)2. Moreover, we show that (Z/3Z)2 is

contained in Bir(V ) for any Severi–Brauer surface V over a field of character-

istic zero, and (Z/3Z)3 is contained in Bir(V ) for any Severi–Brauer surface V
over a field of characteristic zero which contains a non-trivial cube root of

unity.

1. Introduction

The Cremona group Crn(F) is a group of birational automorphisms of Pn over
a field F. It is difficult to describe this group, except the case n = 1, when we
have Cr1(F) ≃ PGL2(F). Even the classification of finite subgroups seems extremely
hard. Nowadays, we know the description of conjugacy classes of finite subgroups
only for Cr2(C) (see [6]).

It is natural to ask how birational automorphisms of forms of projective spaces
behave.

Definition 1.1. An n-dimensional variety V over a field F is called a Severi–
Brauer variety if

V ×Spec(F) Spec(F) ≃ Pn
F
,

where F is an algebraic closure of F. Such a variety V is called non-trivial if it is
not isomorphic to Pn

F.

Like Crn(F), the group Bir(V ) of birational automorphisms of a Severi–Brauer
variety V also has complicated structure (cf. [8] and [19]). A classification of finite
groups that appear as subgroups of Bir(V ) for non-trivial Severi–Brauer surfaces
over various fields of characteristic zero was given in [15, Theorem 1.3]. On the other
hand, there is no simple way to decide which of them are realized for a given field,
or for a given Severi–Brauer surface. Meanwhile, we have a very simple description
of finite subgroups of Bir(V ) over the field Q of rational numbers.

Theorem 1.2 ([15, Corollary 1.4]). Let V be a non-trivial Severi–Brauer surface
over Q and let G ⊂ Bir(V ) be a finite subgroup. Then we have G ⊂ (Z/3Z)3.

The goal of this paper is to prove the following result which is a strengthening
of Theorem 1.2.

Theorem 1.3. Let V be a non-trivial Severi–Brauer surface over the field Q and
let G be a finite group. Then G is isomorphic to a subgroup of Bir(V ) if and
only if G ⊂ (Z/3Z)2, and G is isomorphic to a subgroup of Aut(V ) if and only
if G ⊂ Z/3Z.
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Recall the following result of A.Beauville which is a particular case of [1, Theorem]
and [1, Lemma 3.1].

Theorem 1.4. Let F be an algebraically closed field of characteristic zero. Then
we have

(i) Bir(P2
F) ⊃ (Z/3Z)3;

(ii) Bir(P2
F) ̸⊃ (Z/3Z)4;

(iii) Aut(P2
F) ̸⊃ (Z/3Z)3.

In the process of proving Theorem 1.3 we obtain the following result which can
be considered as an analogue of Theorem 1.4 for arbitrary Severi–Brauer surfaces.

Proposition 1.5. Let V be a Severi–Brauer surface over a field F of characteristic
zero. Then

(i) Bir(V ) ⊃ (Z/3Z)2;
(ii) Bir(V ) ⊃ (Z/3Z)3 if and only if F contains a non-trivial cube root of unity;
(iii) Bir(V ) ̸⊃ (Z/3Z)4;
(iv) Aut(V ) ⊃ Z/3Z;
(v) Aut(V ) ⊃ (Z/3Z)2 if and only if F contains a non-trivial cube root of unity;
(vi) Aut(V ) ̸⊃ (Z/3Z)3.

Remark 1.6. The existence of birational actions of the group (Z/3Z)3 on cer-
tain non-trivial Severi–Brauer surfaces was proved in [16, Theorem 1.2] (see also
[16, Section 3] for construction of an example of such an action). Proposition 1.5(ii)
strengthens this result by showing that such an action exists on every Severi–Brauer
surface over a field of characteristic zero containing a non-trivial cube root of unity.

Let us briefly explain the idea of the proof of Proposition 1.5(i) and (ii) as long
as Theorem 1.3 immediately follows from it. We show that Z/3Z acts biregularly
on V. But (Z/3Z)2 does not if F does not contain a non-trivial cube root of unity.
However, the group (Z/3Z)2 acts birationally on every Severi–Brauer surface. To
this end we blow up the Severi–Brauer surface Z/3Z-equivariantly, obtain a smooth
cubic surface and observe that it is isomorphic to the Fermat cubic surface over
an algebraic closure of F. Studying 3-subgroups in the automorphism group of
the Fermat cubic surface, which commute with the Galois group Gal(F/F) we get
that (Z/3Z)2 acts biregularly on this cubic surface. The remaining assertions in
Proposition 1.5 are easy.

The plan of the paper is as follows. In Section 2 we prove some supplementary
lemmas. In Section 3 we collect some basic facts about Severi–Brauer surfaces and
study finite subgroups of their automorphism groups. In Section 4 we collect some
auxiliary facts about cubic surfaces and construct a birational action of (Z/3Z)2 on
Severi–Brauer surfaces. In Section 5 we study 3-groups in the birational automor-
phism groups of Severi–Brauer surfaces an we prove Proposition 1.5. In Section 6
we prove Theorem 1.3.

Notation. Let X be a variety defined over F. If F ⊂ L is an extension of F,
then we will denote by XL the variety

XL = X ×Spec(F) Spec(L).

By F we denote an algebraic closure of F. A geometric point of X is a point of XF.
A geometric line on X is a line on XF.
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2. Preliminaries

In this section we collect some auxiliary facts.

Lemma 2.1. Let F be a field of zero characteristic which does not contain non-
trivial cube roots of unity. Then (Z/3Z)3 ̸⊂ GL4(F).

Proof. Assume that there is a linear action of (Z/3Z)3 on the vector space F4. As
this group is abelian we get that the matrices, which represent the elements of the
group, are diagonalizable simultaneously over F. Thus, the elements of the group
are conjugate to 

ωa 0 0 0
0 ωb 0 0
0 0 ωc 0
0 0 0 ωd

 ,

where ω is a non-trivial cube root of unity and a, b, c, d ∈ {0, 1, 2}. Note that the
determinant and the trace of these matrices belong to F. Therefore, such matrices
have to satisfy the following:

a+ b+ c+ d ≡ 0 mod 3;(2.1)

ωa + ωb + ωc + ωd ∈ F.(2.2)

The condition (2.1) gives us only 27 matrices. The condition (2.2) decreases this
number because, for example, the matrix with the eigenvalues ω, ω, ω, 1 does no
satisfy the condition (2.2), but satisfies the condition (2.1).

□

Let X ⊂ Pn be a projective variety over a field F. Denote by Ir(XF) the set of

irreducible components of XF. For an element ϕ ∈ PGLn+1(F) let

ϕIr : Ir(XF) → Ir(ϕ(XF))

be the induced map between the sets of irreducible components.

Lemma 2.2. Let F be an arbitrary field of characteristic zero. Let X ⊂ Pn

be a projective variety defined over F. Let ϕ ∈ PGLn+1(F) be an element such
that X ′ = ϕ(X) is defined over F. Assume also that ϕIr commutes with the action
of the Galois group Gal(F/F) on Ir(XF) and Ir(X ′

F
). Assume that any irreducible

component of XF is a linear subspace in Pn
F
. Then there is ψ ∈ PGLn+1(F) such

that ψ(X) = X ′ and ψIr = ϕIr.

Proof. Both XF and X ′
F
decompose into unions of linear subspaces over F, i.e.

XF = L1 ∪ . . . ∪ Lm, X ′
F
= L′

1 ∪ . . . ∪ L′
m.
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Since ϕIr commutes with the Galois group, we can renumber Li and L′
i so that

ϕ(Li) = L′
i

and the Galois group Gal(F/F) acts on Ir(XF) and Ir(X ′
F
) as follows:

g(Li) = Lg(i) and g(L′
i) = L′

g(i)

for all g ∈ Gal(F/F). For all 1 ⩽ i ⩽ m denote by Fi the set of linear homogeneous
polynomials

f ∈ F[x0, . . . , xn]

such that f |L′
i
= 0. Denote by

M ⊂ P
(
Matn+1(F)

)
≃ P(n+1)2−1

F

the set of all non-degenerate matrices ψ such that ψ(Li) = L′
i for all 1 ⩽ i ⩽ m.

For every i, P ∈ Li and f ∈ Fi denote by Ri
Pf the linear relation

f(ψ(P )) = 0

on the entries of the matrix ψ. Let R be the set of all such Ri
Pf for all

i ∈ {1, . . . ,m}, P ∈ Li, f ∈ Fi.

So M is an intersection of PGLn+1(F) ⊂ P(n+1)2−1

F
with a linear subspace M̃ which

is defined by the equations Ri
Pf . Take an element g of the Galois group. We obtain

g(Ri
Pf ) = R

g(i)
g(P )g(f).

Let us prove that R
g(i)
g(P )g(f) ∈ R. Indeed, we have

g(Li) = Lg(i), g(P ) ∈ Lg(i) and g(f)|L′
g(i)

= 0,

where the last equality holds because ψIr commutes with the Galois group. There-

fore, M̃ is Galois-invariant. Thus, M̃ is defined over F and there is a dense set

of F-points on M̃. The intersection M = M̃ ∩ PGLn+1(F) is non-empty because
it contains ϕ. Therefore, it contains an F-point.

□

3. Severi–Brauer surfaces

In this section we study finite subgroups of the automorphism groups of Severi–
Brauer surfaces. Let us mention some properties of Severi–Brauer varieties (for
more details see, for instance, [7] and [10]). If V is a Severi–Brauer variety over
a field F, then V is non-trivial if and only if V (F) = ∅ (see [7, Theorem 5.1.3]).
There is a bijection between Severi–Brauer varieties of dimension n over a field F
and central simple algebras of dimension (n+ 1)2 over F (see e.g. [7, §5.2]).

Theorem 3.1 ([7, Theorems 2.1.3 and 5.2.1]). Let V be a non-trivial Severi–Brauer
variety of dimension n such that n+1 is a prime number. Then the central simple
algebra A which is associated to V is a division algebra.

The following theorem describes automorphism groups of Severi–Brauer vari-
eties.
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Theorem 3.2 (see, for example, [4, p. 266] or [17, Lemma 4.1]). If a central
simple algebra A corresponds to a Severi–Brauer variety V over a field F then we
have Aut(V ) ≃ A∗/F∗.

Theorem 3.2 allows to obtain restrictions on the orders of automorphisms of
Severi–Brauer varieties.

Example 3.3 (cf. [15, Lemma 5.2]). Let F be a field of characteristic zero. Let V
be a non-trivial Severi–Brauer surface and let x ∈ Aut(V ) be an element of prime
order p ̸= 3. We claim that p ≡ 1 (mod 3). Indeed, let A be a central simple
algebra which corresponds to V. Then A is a division algebra by Theorem 3.1. By
Theorem 3.2 we have Aut(V ) ≃ A∗/F∗.

Let x̄ be any element in the preimage of x under the homomorphismA∗ → A∗/F∗.
Then we have x̄p = a ∈ F∗. Let B ⊂ A be a field which is generated by x̄. Since

dimFA = dimB A · dimFB,

we obtain dimFB = 3, because dimFB = 9 is impossible as B is a commutative
algebra while A is not.

Let f(t) be a minimal polynomial of x̄ over F. Its degree is equal to 3. Moreover,
the polynomial f(t) divides tp − a. In particular, the polynomial tp − a is reducible
over F. So by [11, Theorem VI.9.1] we get a = cp for some c ∈ F∗. This means that
the roots of f(t) in F are cξ1, cξ2 and cξ3, where ξi are pairwise different p-th roots
of unity. Hence these ξi for 1 ⩽ i ⩽ 3 form a Gal(F/F)-orbit. Let Γ be the image
of Gal(F/F) in the automorphism group

Aut(Z/pZ) ≃ Z/(p− 1)Z,
where Z/pZ is considered as the multiplicative group of p-th roots of unity. Then
the group Γ has an orbit of order 3. Therefore, the order of Γ is divisible by 3.
Thus, 3 divides p− 1 and we are done.

The following lemma is a well-known fact about subgroups of the automorphism
group of Severi–Brauer surface. We reproduce its proof for the convenience of the
reader.

Lemma 3.4 (see e.g. [15, Example 4.1 and Remark 4.2]). Let V be a Severi–Brauer
surface over a field F of characteristic zero. Then Aut(V ) contains a subgroup
isomorphic to Z/3Z. If F contains a non-trivial cube root of unity then Aut(V )
contains a subgroup isomorphic to (Z/3Z)2.

Proof. If V ≃ P2, then Aut(V ) ≃ PGL3(F), and there is a group of order 3
in PGL3(F) which is generated by the element cyclically permuting the coordi-
nates. If F contains a non-trivial cube root ω of unity then the elements

α =

1 0 0
0 ω 0
0 0 ω

 ∈ PGL3(F) and β =

1 0 0
0 ω 0
0 0 ω2

 ∈ PGL3(F)

generate a group (Z/3Z)2 ⊂ PGL3(F).
Now assume that V is a non-trivial Severi–Brauer surface. Then the Severi–

Brauer surface V corresponds to a division algebra A by Theorem 3.1, and this
algebra is a cyclic algebra by [7, Chapter 7, Exercise 9]. By [7, Proposition 2.5.2]
the algebra A is generated by a Galois extension F ⊂ L of degree 3 and an el-
ement α ∈ A such that α /∈ F∗ and α3 ∈ F∗. Furthermore, one has αλ = σ(λ)α
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for all λ ∈ L, where σ is a generator of the Galois group of the extension. The
element α gives us an automorphism of order 3. Therefore, one has Z/3Z ⊂ Aut(V ).

Finally, if F contains a non-trivial cube root ω of unity then by Kummer theory
(see, for example, [2, Chapter III, §2, Lemma 2]) we obtain L = F(β) for some β /∈ F
such that β3 ∈ F∗ and for a generator σ ∈ Gal(L/F) one has σ(β) = ωβ. We have
the following relations

α3 ∈ F∗, β3 ∈ F∗, αβ = ωβα.

Therefore, the image of α and β under the homomorphism A∗ → A∗/F∗ generate
the group (Z/3Z)2 ⊂ A∗/F∗ ≃ Aut(V ).

□

Now we are going to study 3-subgroups in the automorphism groups of Severi–
Brauer surfaces. First of all, let us prove the following lemma about central simple
algebras of dimension 9.

Lemma 3.5. Let A be a central simple algebra of dimension 9 over a field F

of characteristic zero. Assume that T̂ = (Z/3Z)2 ⊂ A∗/F∗, and let x and y be

generators of T̂ . If x̄ and ȳ are any elements in the preimages of x and y under the
natural homomorphism A∗ → A∗/F∗, respectively, then

x̄ȳx̄−1 = ωȳ,

where ω is a non-trivial cube root of unity.

Proof. We have xyx−1y−1 = 1 in A∗/F∗, because x and y commute with each
other. Therefore, we obtain

x̄ȳx̄−1 = aȳ

for some a ∈ F∗. As x̄3 ∈ F∗, we get

ȳ = x̄3ȳx̄−3 = a3ȳ.

Thus, we have a3 = 1.
Assume that a = 1. So the elements x̄ and ȳ commute with each other. Consider

the subalgebra B of A generated by the elements

(3.1) 1, x̄, ȳ, x̄2, ȳ2, x̄ȳ, x̄2ȳ, x̄ȳ2, x̄2ȳ2.

Let us prove that these elements are linearly independent over F. Let z ̸= 1 be an
element from the set (3.1). Thus, by definition the trace of the matrix corresponding
to the multiplication by z in B is zero. Indeed, it is not hard to see if we take as
basis of B the linear independent elements from (3.1) which generate the basis.

If the elements in (3.1) are linearly dependent we have a relation

(3.2) α0 + α1x̄+ α2ȳ + α3x̄
2 + α4ȳ

2 + α5x̄ȳ + α6x̄
2ȳ + α7x̄ȳ

2 + α8x̄
2ȳ2 = 0

over F. We can assume that α0 ̸= 0. Indeed, at least one of the coefficients in (3.2),
say αj , is non-zero. Let αj t̄ be the corresponding summand in (3.2). Multiply-
ing (3.2) by t̄2, we obtain a non-zero free term αj t̄

3. On the one hand, the trace of
the multiplication by the left hand side of (3.2) is equal to the trace of α0 which
is non-zero. On the other hand, it is equal to zero. Therefore, the elements (3.1)
are linearly independent. This give us dimFB = 9 = dimFA. But A is a central
simple algebra and B is a commutative algebra. This contradiction gives us that a
is a non-trivial cube root of unity.

□
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Lemma 3.6. Let F be a field of zero characteristic which does not contain non-
trivial cube roots of unity. Let V be a Severi–Brauer surface over F. Then (Z/3Z)2
is not a subgroup of Aut(V ).

Proof. Let A be a central simple algebra corresponding to the Severi–Brauer sur-
face V. Then by Theorem 3.2 we obtain Aut(V ) ≃ A∗/F∗. Assume that

(Z/3Z)2 ⊂ A∗/F∗.

Let x and y be generators of (Z/3Z)2. Let x̄ and ȳ be any elements in the preim-
ages of x and y under the natural homomorphism A∗ → A∗/F∗, respectively. By
Lemma 3.5 we obtain

x̄ȳx̄−1 = ωȳ

where ω is a non-trivial cube root of unity. However, the field F does not contain
non-trivial cube root of unity. This contradiction gives us that

(Z/3Z)2 ̸⊂ Aut(V ).

□

Corollary 3.7 (cf. [15, Corollary 6.3]). Let V be a non-trivial Severi–Brauer sur-

face over a field F of characteristic zero. Let T̂ = (Z/3Z)2 be a subgroup in the
automorphism group of V generated by the elements x and y. Then the sets of fixed
points of x and y are disjoint.

Proof. According to Lemma 3.6 the field F contains a non-trivial cube root of
unity. Let A be a central simple algebra corresponding to V. Then by Theorem 3.2

we have T̂ ⊂ A∗/F∗. Therefore, by Lemma 3.5 for any elements x̄ and ȳ in the
preimages of x and y under the natural homomorphism A∗ → A∗/F∗, respectively
we get

(3.3) x̄ȳ = ωȳx̄,

where ω is a non-trivial cube root of unity. Let us consider the elements x̄ and ȳ
as automorphisms of VF ≃ P2

F
. Then these automorphisms correspond to 3 × 3

matrices over F and satisfy relation (3.3). Thus, x̄ and ȳ cannot have a common
eigenvector and hence, the elements x and y have no common fixed points.

□

It appears that the action of the group Z/3Z on a non-trivial Severi–Brauer
surface V, which exists by Lemma 3.4, can be lifted to a smooth cubic surface
obtained as a blowup of V.

Lemma 3.8. Let F be a field of characteristic zero, and let V be a non-trivial
Severi–Brauer surface over F. Let T ≃ Z/3Z be a subgroup of Aut(V ). Then

(i) there is a unique triple of geometric points p1, p2, p3 on V which are fixed
by the group T (in particular, the triple p1, p2 and p3 is defined over F);

(ii) there is an orbit of T consisting of a triple of geometric points p4, p5, p6,
which is defined over the field F;

(iii) for any choice of p4, p5, p6 as in (ii) the blowup of V at p1, . . . , p6 is a
smooth cubic surface.
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Proof. First of all, let us prove (i). By [18, Lemma 4], we have that the set of
T -fixed points consists of 3 geometric points of V. Denote them by p1, p2, p3.
Observe that such three geometric points do not lie on one line in VF ≃ P2

F
. Indeed,

otherwise we get that the action of T on the line has exactly 3 fixed points, but
that is impossible. The triple p1, p2 and p3 is defined over F because the Galois
group Gal(F/F) commutes with T.

Now let us prove (ii). By [18, Theorem 2], the quotient V/T is F-rational. As
F-points in V/T is a dense subset, so the preimage of a general point p ∈ V/T
consists of 3 geometric points. Denote them by p4, p5 and p6. Note that they do
not lie on one line l in VF, because otherwise the group T fixes this line and thus,
by [18, Proposition 3] the quotient l/T does not contain F-points, which contradicts
the fact that p ∈ l/T is an F-rational point.

Let us prove (iii). We have to show that the blow up of the points p1, . . . , p6 is a
smooth cubic surface. For this it is enough to prove that any 3 points among these
points do not lie on a line and all 6 points do not lie on a conic. First of all, let us
prove that any triple of the set p1, . . . , p6 does not lie on one line. Indeed, first of
all, assume that p1, p2 and p4 lie on the line l over F. Then as T permutes p4, p5
and p6, these points also lie on l. But this is impossible by the above argument.

Now assume that p4, p5 and p1 lie on one line over F. Then under the action of a
non-trivial element α of the group T this line maps to the line passing through p1, p6
and one of the points p4 and p5, which means that p4, p5 and p6 lie on one line,
which contradicts the above arguments.

Finally, note that no non-trivial automorphism fixes 3 points on a conic. There-
fore, the points p1, p2, p3, p4, p5, p6 do not lie on one conic. So the blowup of
these 6 points gives us a smooth cubic surface.

□

Remark 3.9. Let V ≃ P2. There is a biregular action of T ≃ Z/3Z on V which
is generated by the element cyclically permuting the coordinates. The geometric
points

(3.4) p1 = [1 : 1 : 1], p2 = [ω : 1 : ω2], p3 = [ω2 : 1 : ω],

where ω is a non-trivial cube of unity, are fixed by T. Note that the union p1∪p2∪p3
is Galois-invariant. The geometric points

(3.5) p4 = [1 : 0 : 0], p5 = [0 : 1 : 0], p6 = [0 : 0 : 1]

form an orbit of T. It is not hard to see that any 3 points among these 6 ones
do not lie on a line and all 6 points do not lie on a conic. Therefore, the blowup
of p1, p2, p3, p4, p5, p6 is a smooth cubic surface.

If the field F contains a non-trivial cube root of unity then by Lemma 3.4 on
any Severi–Brauer surface over F there is a biregular action of (Z/3Z)2. It turns
out that this action can be lifted to a smooth cubic surface which is a blowup of V
provided that V is a non-trivial Severi–Brauer surface.

Lemma 3.10. Let F be a field of characteristic zero and let V be a non-trivial

Severi–Brauer surface over F. Assume that the group T̂ ≃ (Z/3Z)2 is contained

in Aut(V ). Let b and c be generators of T̂ . Then
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(i) there is a unique triple of geometric points p1, p2, p3 on V which are fixed
by the subgroup generated by b (in particular, the triple p1, p2 and p3 is
defined over F);

(ii) there is a unique triple of geometric points p4, p5, p6 on V which are fixed
by the subgroup generated by c (in particular, the triple p4, p5 and p6 is
defined over F);

(iii) the two triples p1, p2, p3 and p4, p5, p6 have no common points;
(iv) the element b cyclically permutes p4, p5, p6;
(v) the element c cyclically permutes p1, p2, p3;
(vi) the blowup of V at p1, . . . , p6 is a smooth cubic surface.

Proof. Assertions (i) and (ii) follow directly from Lemma 3.8(i). Assertion (iii)
follows from Corollary 3.7. Assertions (iv) and (v) follow from the fact that b and c
commute with each other which means that the element b fixes the set of fixed
points of c and vice versa. Assertion (vi) follows from Lemma 3.8(iii).

□

Remark 3.11. Assume that V ≃ P2 over a field F which contains a non-trivial
cube root ω of unity. Then there is a biregular action of Z/3Z on V which was
constructed in Remark 3.9. Let b be a generator of this group. Consider the element

c =

ω 0 0
0 1 0
0 0 ω2

 ∈ PGL3(F).

Together with b it generates the subgroup T̂ = (Z/3Z)2 in Aut(V ). While the ele-
ment b fixes p1, p2 and p3 from (3.4) and cyclically permutes p4, p5 and p6 from (3.5),
the element c on the contrary fixes p4, p5 and p6 and cyclically permutes p1, p2
and p3. In particular, the set {p1, . . . , p6} is T̂ -invariant. It is straightforward to
check that the blowup of V at these 6 points is a smooth cubic surface.

4. Cubic surfaces

In this section we study cubic surfaces over a field of characteristic zero. First
of all, we make the following observation.

Lemma 4.1. Let F be a field of zero characteristic which does not contain the
non-trivial cube root of unity. Let S be a smooth cubic surface over F. Then the
group (Z/3Z)3 does not act biregularly on S.

Proof. Assume that there is an action of (Z/3Z)3 on S. Then we get an induced
action of this group on P3. Also the action of (Z/3Z)3 induces a linear action on

H0(S,−KS) ≃ F4.

However, by Lemma 2.1 the group (Z/3Z)3 does not act linearly on F4.
□

The following lemma states that the map between smooth cubic surfaces is de-
fined uniquely by the image of pairwise skew lines E1, . . . , E6.

Lemma 4.2. Let F be an algebraically closed field. Let S ⊂ P3 be a smooth
cubic surface with pairwise skew lines E1, . . . , E6. Assume that there is an ele-
ment θ ∈ PGL4(F) such that θ(Ei) = Ei for all i. Then θ = id.
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Proof. First of all, assume that θ preserves S. Then we can blow down E1, . . . , E6

and get the induced automorphism θ on P2 with 6 fixed points in general position.
Therefore, θ acts trivially on P2 and so on S and P3.

Now assume that θ(S) ̸= S. Denote by S′ the image of cubic surface θ(S). The
intersection S · S′ of these two cubic surfaces in P3 is a possibly non-reduced curve
of degree 9. Our 6 lines E1, . . . , E6 are contained in this curve. It is well-known that
for any 5 lines among E1, . . . , E6 there is a unique line on S which intersects all
these 5 lines. This line is a strict transform of the conic through 5 points in general
position which is unique. Any of these lines lies in S′ because it has at least 5
common points with S′. And so we get that the curve of degree 9 contains 12 lines,
which is a contradiction.

□

Let S be a smooth cubic surface over a field F. Then there is a natural ac-
tion of the Weyl group W (E6) on the Picard group Pic(SF) of SF (see, for exam-
ple, [12, Corollary 25.1.1]). Namely, the groupW (E6) consists of all automorphisms
of the lattice Pic(SF) ≃ Z7 preserving the intersection form and fixing the canonical
class KS . In particular, for every choice of 6 pairwise skew lines E1, . . . , E6 on SF

there is an action of the symmetric group S6 on the Picard group Pic(SF) which
permutes the classes of these 6 lines. It is well-known that the automorphism group
of S is embedded in the Weyl group W (E6) (see [5, Corollary 8.2.40]). Note also
that the Galois group Gal(F/F) maps to W (E6).

Lemma 4.3. Let S be a smooth cubic surface over a field F of characteristic zero.
Let ϕ ∈ Aut(SF) be an automorphism of SF which commutes with the image of

the Galois group Gal(F/F) in W (E6). Then the automorphism ϕ is defined over F,
i.e. ϕ ∈ Aut(S).

Proof. Denote by Ei for 1 ⩽ i ⩽ 27 all lines lying on SF. Then the curve

E = E1 + . . .+ E27

is Galois-invariant, thus, is defined over F. Applying Lemma 2.2 to the curve E and
the element ϕ ∈ PGL4(F) we obtain ψ ∈ PGL4(F) such that ϕ(Ei) = ψ(Ei) for
all 1 ⩽ i ⩽ 27. Hence, applying Lemma 4.2 to the element ϕ ◦ ψ−1 we get ϕ = ψ.
Thus, we have ϕ ∈ Aut(S).

□

We are mostly interested in two conjugacy classes of elements in W (E6), which
are conjugacy classes of type A2 and A2

2 in the notation of [3]. They consist of the
elements whose eigenvalues on the vector space corresponding to the root system E6

are

ω, ω2, 1, 1, 1, 1

and

ω, ω, ω2, ω2, 1, 1,

respectively; here ω is a non-trivial cube root of unity. We will say that an auto-
morphism of a smooth cubic surface is of type A2 (of type A2

2), if its image in the
Picard group is an element in the conjugacy class of type A2 (of type A2

2).
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Example 4.4. Let S be a smooth cubic surface over a field of characteristic zero.
Let E1, . . . , E6 be pairwise skew geometric lines on S. Let us consider the ele-
ment (456) in W (E6) which cyclically permutes E4, E5 and E6 and fixes E1, E2

and E3. Then by [13, Table 1] this element is of type A2.

Now let us discuss the automorphism group of the Fermat cubic surface, i.e. the
cubic surface which is defined by the equation x3 + y3 + z3 + t3 = 0.

Example 4.5. Let S be the Fermat cubic surface over algebraically closed field F of
characteristic zero. Then by [13, Lemma 2.4 and Table 1] an element in Aut(S) is of
type A2 if and only if its quadruple of eigenvalues in PGL4(F) up to multiplication
by a non-zero element in the field F is of the form 1, 1, ω, ω, where ω is a non-trivial
cube root of unity. An element in Aut(S) is of type A2

2 if and only if its quadruple
of eigenvalues in PGL4(F) up to multiplication by a non-zero element in the field F
is of the form 1, 1, ω, ω2.

Theorem 4.6 ([6, Theorem 6.10]). Let S be a smooth cubic surface over an alge-
braically closed field of characteristic zero admitting an automorphism of type A2.
Then S is isomorphic to the Fermat cubic.

Corollary 4.7. Let S be a smooth cubic surface over an algebraically closed field of
characteristic zero. Let E1, . . . , E6 be pairwise skew lines on S. Assume that there
is a biregular action of the group T ≃ Z/3Z on S which fixes E1, E2 and E3 and
cyclically permutes E4, E5 and E6. Then S is isomorphic to the Fermat cubic.

Proof. Consider the subgroup S6 ⊂ W (E6) acting on E1, . . . , E6 by permutations.
Then the image of the group T in W (E6) is generated by the element (456) ∈ S6.
By Example 4.4 the conjugacy class of the element (456) has type A2. Therefore,
by Theorem 4.6 the cubic surface S is isomorphic to the Fermat cubic.

□

Lemma 4.8. Let S be the Fermat cubic surface over an algebraically closed field
of characteristic zero. Then there are exactly 6 elements in Aut(S) of type A2 and
they commute with each other. Moreover, the centralizer of any element of type A2

in Aut(S) is isomorphic to (Z/3Z)3 ⋊ (Z/2Z)2.

Proof. The Fermat cubic surface S is defined by the equation x3 + y3 + z3 + t3 = 0
in P3. The automorphism group of S is isomorphic to (Z/3Z)3 ⋊ S4 (see, for in-
stance, [5, Theorem 9.5.6]). The group S4 acts by the permutations of the coordi-
nates x, y, z, and t. The group (Z/3Z)3 acts by the multiplication of the coordinates
by cube roots of unity. Any element in (Z/3Z)3 can be written as

(4.1)


1 0 0 0
0 ωa 0 0
0 0 ωb 0
0 0 0 ωc

 ∈ PGL4(F),

where ω is a non-trivial cube root of unity and a, b, c ∈ {0, 1, 2}. From Example 4.5
we get that the element of type A2 has the form (4.1) if and only if

a = b, c = 0; or a = c, b = 0; or b = c, a = 0.

Therefore, these are 6 elements of type A2.
By Example 4.5 all elements of order 3 in the group S4 are of type A2

2, because
the eigenvalues of the corresponding matrices are ω, ω2, 1, 1. Let us consider all
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elements in Aut(S) of order 3 of the form gh, where g ∈ (Z/3Z)3 and h is a non-
trivial element in S4. By direct computation one can see that the eigenvalues of
such elements are 1, ω, ω2, ωt, where t ∈ {0, 1, 2}. Therefore, by Example 4.5 such
elements are of type A2

2. So there are exactly 6 elements of type A2 in Aut(S), and
they commute with each other.

Let us prove that the centralizer of any element of type A2 in Aut(S) is iso-
morphic to (Z/3Z)3 ⋊ (Z/2Z)2. Indeed, as we showed above all such elements lie
in the normal subgroup (Z/3Z)3 ⊂ Aut(S). Let us fix the element t ∈ Aut(S) of
type A2 and consider the elements in S4 which commute with t. These are the ele-
ments which permute the eigenvectors of t with the same eigenvalues. Recall from
Example 4.5 that eigenvalues in PGL4(F) up to multiplication by non-zero element
of t are 1, 1, ω, ω. Thus, the centraliser is isomorphic to (Z/3Z)3 ⋊ (Z/2Z)2.

□

Lemma 4.9. Let S be a smooth cubic surface over a field F of characteristic
zero. Let E1, . . . , E6 be pairwise skew lines on SF such that their union is Galois-
invariant. Suppose that there is an element b ∈ Aut(S) of order 3 such that it
fixes E1, E2 and E3 and cyclically permutes E4, E5 and E6. Then 3-Sylow subgroups
in the centralizers of the element b in both Aut(SF) and W (E6) are unique and
isomorphic to (Z/3Z)3.

Proof. By Corollary 4.7 we get that SF is a Fermat cubic surface. Therefore, we
have Aut(SF) ≃ (Z/3Z)3 ⋊ S4. By Lemma 4.8 the centralizer C of the element b
in Aut(SF) is isomorphic to (Z/3Z)3⋊(Z/2Z)2. Obviously, the Sylow 3-subgroup Z
in the group C is unique. In particular, it is normal in C and is preserved by the
automorphism group of C.

Let us find the order of the centralizer G for the element b in W (E6). By Ex-
ample 4.4 the element b is of type A2. By the classification of conjugacy classes of
elements in W (E6) (see [3, Table 9]) the number of elements in the conjugacy class
of the element b is equal to 240. Therefore, the order of centralizer is equal to

51840

240
= 216 = 23 · 33.

Let us prove that G contains a unique Sylow 3-subgroup. Indeed, we have G ⊃ C,
because Aut(SF) ⊂W (E6). The subgroup C is normal in G because its index is 2.
In particular, it is preserved by conjugations. Thus, the group Z is preserved by
conjugation in G. So Z is normal in G as well. As it is a Sylow subgroup in G we
get that it is a unique Sylow 3-subgroup. Hence, a Sylow 3-subgroup in G and C is
isomorphic to (Z/3Z)3.

□

Let us prove the auxiliary proposition about endomorphisms of the Picard group
of a smooth cubic surface which is needed for the lemmas below.

Proposition 4.10. Let S be a smooth cubic surface over an algebraically closed
field F of characteristic zero and set Pic(S)Q = Pic(S)⊗Q. Let α be an endomor-
phism of a Q-vector space Pic(S)Q such that α fixes the canonical class KS and
maps pairwise skew lines E1, . . . , E6 to other pairwise skew lines α(E1), . . . , α(E6).
Then α is an automorphism of Pic(S)Q which restricts to an automorphism of Pic(S)
and preserves the intersection form on Pic(S). In particular, it lies in W (E6).
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Proof. The divisors KS , E1, . . . , E6 and KS , α(E1), . . . , α(E6) are two bases of the
vector space Pic(S)Q, so α is an automorphism of Pic(S)Q. Also by definition of
the automorphism α it preserves the intersection form on Pic(S)Q. The Picard
group Pic(S) is a lattice generated by E1, . . . , E6 and the divisor

L =
1

3
(−KS + E1 + . . .+ E6) ,

which is a pull-back of a line via the morphism π : S → P2 contracting E1, . . . , E6.
The automorphism α maps L to

α(L) =
1

3
(−KS + α(E1) + . . .+ α(E6)).

We can blow down the skew lines α(E1), . . . , α(E6) and obtain a map π̃ : S → P2

such that α(L) = π̃∗l, where l is a line on P2. Therefore, the Picard group of S
is generated by α(L), α(E1), . . . , α(E6). Hence, the element α ∈ Aut (Pic(S)Q) re-
stricts to an automorphism of Pic(S) and, thus, lies in W (E6).

□

Now we are going to prove two lemmas which are the main ingredients of the
proof of Proposition 1.5.

Lemma 4.11. Let S be a smooth cubic surface over a field F of characteristic
zero. Let E1, . . . , E6 be pairwise skew lines on SF such that their union is Galois-
invariant. Suppose that there is an element b ∈ W (E6) such that it fixes E1, E2

and E3, cyclically permutes E4, E5 and E6, and commutes with the image of the
Galois group Gal(F/F) in W (E6). Then there is an element r ∈W (E6) such that it
commutes with the image of the Galois group in W (E6), and the elements r and b
generate the group (Z/3Z)2. Moreover, suppose that c is an element in W (E6) such
that it fixes E4, E5 and E6 and cyclically permutes E1, E2 and E3. Then r can be
chosen in such a way that r, b and c generate the group (Z/3Z)3.

Proof. On SF we denote by Qi for all i = 1, . . . , 6 the pairwise skew lines such that

Ei ·Qi = 0 and Ei ·Qj = 1 for i ̸= j.

For i, j ∈ {1, . . . , 6} and i < j we denote by Lij the remaining 15 lines on SF such
that

Lij · Ek = 0 if k /∈ {i, j} and Lij · Ek = 1 if k ∈ {i, j};
Lij ·Qk = 0 if k /∈ {i, j} and Lij ·Qk = 1 if k ∈ {i, j};

Lij · Lkl = 0 if {i, j} ∩ {k, l} ≠ ∅ and Lij · Lkl = 1 if {i, j} ∩ {k, l} = ∅.

By Proposition 4.10 there is an element r ∈ W (E6) which fixes the canonical
class KS and maps the skew lines E1, E2, E3, E4, E5, E6 to the other skew
lines Q1, Q2, Q3, L56, L46, L45, respectively. Furthermore, one can see that r
has order 3. Indeed, the element r2 maps the skew lines E1, E2, E3, E4, E5, E6

to other skew lines L23, L13, L12, Q4, Q5, Q6, respectively, and r3(Ei) = Ei for
all i ∈ {1, . . . , 6}.

Let us prove that the element r commutes with the image Γ of the Galois
group Gal(F/F) inW (E6). It is enough to check this on the curves E1, . . . , E6. As Γ
commutes with b, it permutes E1, E2 and E3 with each other and permutes E4, E5

and E6 with each other. Meanwhile, the (−1)-curve r(Ei) for 1 ⩽ i ⩽ 3 is defined
uniquely by the property that it intersects exactly two lines from the set E1, E2
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and E3 and intersects the lines E4, E5 and E6. Therefore, as Γ is an isometry
on W (E6), the element g ∈ Γ maps r(Ei) to r(Ej) such that g(Ei) = Ej . The same
holds for r(Ei) with 4 ⩽ i ⩽ 6. In this case r(Ei) is defined uniquely by the prop-
erty that it intersects exactly two lines from the set E4, E5 and E6 and does not
intersect the lines E1, E2 and E3. Thus, every element g ∈ Γ maps r(Ei) to r(Ej)
such that g(Ei) = Ej . So the element r commutes with the Galois group.

For the elements b and r one has br(KS) = KS = rb(KS) and

(4.2)

br(E1) = Q1 = rb(E1); br(E4) = L46 = rb(E4);

br(E2) = Q2 = rb(E2); br(E5) = L45 = rb(E5);

br(E3) = Q3 = rb(E3); br(E6) = L56 = rb(E6).

As KS , E1, . . . , E6 is a basis of Pic(SF)⊗Q, the elements b and r commute. More-
over, we obtain r ̸= b, b2, because b and b2 fix the set E1, . . . , E6, while r does not.
Thus, the elements b and r generate the group (Z/3Z)2.

Let c ∈ W (E6) be an element such that it fixes E4, E5 and E6 and cyclically
permutes E1, E2 and E3. The elements b and c commute because they correspond
to the elements (456) and (123) in S6 ⊂W (E6), respectively. The elements c and r
also commute, which can be seen from a computation similar to (4.2). Hence, the
elements r, b and c generate a group (Z/3Z)n, where n ⩽ 3. The elements b and c
generate a subgroup H ≃ (Z/3Z)2 which preserves the set E1, . . . , E6, while the ele-
ment r does not preserves this set. Thus, they generate a group (Z/3Z)3 ⊂W (E6).

□

Lemma 4.12. Let S be a smooth cubic surface over a field F of characteristic
zero. Let E1, . . . , E6 be pairwise skew lines on SF such that their union be Galois-
invariant. Suppose that there is an element b ∈ Aut(S) of order 3 such that it
fixes E1, E2 and E3 and cyclically permutes E4, E5 and E6. Then there is a biregular
action of (Z/3Z)2 on S. Moreover, assume that c is an element in Aut(S) such that
it fixes E4, E5 and E6 and cyclically permutes E1, E2 and E3. Then r can be chosen
in such a way that b, c and r generate a group (Z/3Z)3.

Proof. Let us consider the element r ∈ W (E6) from Lemma 4.11, so that b and r
generate the group (Z/3Z)2 inW (E6), and r commutes with the image of the Galois
group Gal(F/F) in W (E6). Moreover, if there is an element c ∈ Aut(S) such that
it fixes E4, E5 and E6 and cyclically permutes E1, E2 and E3, then the element r
can be chosen so that b, c and r are generate the group (Z/3Z)3 in W (E6).

It remains to check that r lies in Aut(S). The element r commutes with the ele-
ment b, and therefore, by Lemma 4.9 it lies in the centralizer of b in Aut(SF) ⊂W (E6).
Moreover, since the element r commutes with the image of the Galois group inW (E6),
by Lemma 4.3 it is contained in Aut(S).

□

5. 3-groups in the birational automorphism groups

In this section we prove Proposition 1.5. First of all, let us study the 3-groups
in the automorphism groups of del Pezzo surfaces and conic bundles. Recall that
the degree of a del Pezzo surface S is defined as d = (KS)

2. The following fact is
well-known.

Lemma 5.1 (see, for instance, [9, Chapter V, §2]). Let F be an algebraically closed
field of characteristic zero. Then PGL2(F) does not contain (Z/3Z)2.
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Let us study 3-subgroups in the automorphisms groups of del Pezzo surfaces of
degree d. Recall that 1 ⩽ d ⩽ 9.

Lemma 5.2. Let F be an algebraically closed field of characteristic zero. Let S be
a del Pezzo surface of degree d ̸= 3 over F. Then its automorphism group does not
contain (Z/3Z)3.

Proof. Suppose that d = 9, i.e. S ≃ P2. Then Aut(S) ≃ PGL3(F), and by Theo-
rem 1.4(iii) we obtain (Z/3Z)3 ̸⊂ Aut(S).

Suppose that d = 8 and S ≃ P1 × P1. We get that

Aut(P1 × P1) ≃ ((PGL2(F)× PGL2(F))⋊ Z/2Z

which does not contain (Z/3Z)3 because PGL2(F) does not contain (Z/3Z)2 by
Lemma 5.1.

Suppose that either d = 8 and S ̸≃ P1 × P1, or d = 7. Then we get an
Aut(S)-equivariant map S → P2. So we have Aut(S) ⊂ PGL3(F). Thus, the
group (Z/3Z)3 is not contained in Aut(S).

Suppose that d = 6. Then by [5, Theorem 8.4.2] we get

Aut(S) ≃ (F∗)2 ⋊D6.

The subgroup D6 ≃ S3 × Z/2Z in Aut(S) is the dihedral group of order 12 acting
on the graph of (−1)-curves, which is a hexagon, and (F∗)2 ⊂ Aut(S) acts trivially
on this graph. If there is a subgroup (Z/3Z)3 ⊂ Aut(S) then the projection of
this subgroup to D6 gives us either Z/3Z, or the trivial group. Hence there is
a (Z/3Z)3-invariant triple of pairwise skew (−1)-curves. Thus, we can blow them
down (Z/3Z)3-equivariantly and get P2 with the action of the group (Z/3Z)3 which
is impossible.

Suppose that d = 5 or d = 4. By [5, Corollary 8.2.40] the automorphism
group Aut(S) is contained in the Weyl group W (A4) or W (D5), respectively.
The order of W (A4) is equal to 120 = 23 · 3 · 5 and the order of W (D5) is
equal to 1920 = 27 · 3 · 5. Therefore, the automorphism group of S does not con-
tain (Z/3Z)3.

Suppose that d = 2. Then the anticanonical linear system gives us a double cover

ϕ|−KS | : S → P2.

Therefore, ϕ|−KS | induces the following exact sequence

1 → Z/2Z → Aut(S) → Aut(P2).

Hence, Aut(S) does not contain (Z/3Z)3.
Suppose that d = 1. Then the base locus of the linear system |−KS | is a point p.

Hence, the point p is fixed by Aut(S). Assume that (Z/3Z)3 ⊂ Aut(S). Therefore,
the group (Z/3Z)3 acts faithfully on the Zariski tangent space Tp(S) to S at p.
Thus, we obtain

(Z/3Z)3 ⊂ GL (Tp(S)) ≃ GL2(F),

which is impossible.
□

Lemma 5.3. Let F be a field of characteristic zero. Let ϕ : S → P1 be a conic bun-
dle over F. Let Γ be a subgroup in Aut(S) which consists of the elements mapping
every fiber of ϕ to a fiber of ϕ. Then Γ does not contain (Z/3Z)3.
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Proof. We have the following exact sequence

1 → Autϕ(S) → Γ → Aut(P1),

where Autϕ(S) is the group of all automorphisms of S which map every fiber
of ϕ to itself. The group Autϕ(S) is contained in the automorphism group of the
scheme-theoretic generic fiber C of ϕ, which is isomorphic to P1

F(t), where t is a

transcendental variable. One has

Aut(P1
F(t)) ≃ PGL2(F(t)).

So by Theorem 5.1 we get that neither Autϕ(S), nor Aut(P1) contains (Z/3Z)2.
Therefore, Aut(S) does not contain (Z/3Z)3.

□

Corollary 5.4. Let F be a field of characteristic zero which does not contain non-
trivial cube roots of unity. Let V be a Severi–Brauer surface over F. Then

Bir(V ) ̸⊃ (Z/3Z)3.

Proof. Assume that G ≃ (Z/3Z)3 is contained in Bir(V ). Then G acts biregularly
either on a del Pezzo surface, or on a conic bundle ϕ : S → B over a geometrically
rational curve B such that ϕ is equivariant with respect to G. By Lemma 5.3 the
latter case is impossible. By Lemma 5.2 the group G does not act biregularly on a
del Pezzo surface of degree d ̸= 3. Finally, by Lemma 4.1 the group G does not act
biregularly on a del Pezzo surface of degree d = 3.

□

Now we are ready to prove Proposition 1.5.

Proof of Proposition 1.5. Let us prove (i). We can blow up V and get a smooth cu-
bic surface S such that the group Z/3Z acts on S fixing 3 exceptional curves E1, E2

and E3 and cyclically permuting the other 3 exceptional curve E4, E5 and E6. This
follows from Lemmas 3.4 and 3.8 if V is a non-trivial Severi–Brauer surface, and
from Remark 3.9 for V ≃ P2. By Lemma 4.12 there is a biregular action of the
group (Z/3Z)2 on S. This gives a birational action of (Z/3Z)2 on V.

Now let us prove (ii). Assume that F contains a non-trivial cube root of
unity. Then we can blow up V and get a smooth cubic surface S such that the
group (Z/3Z)2 generated by the elements b and c acts on S as follows: the ele-
ment b fixes 3 exceptional curves E1, E2 and E3 and cyclically permutes E4, E5

and E6, while the element c fixes exceptional curves E4, E5 and E6 and cyclically
permutes E1, E2 and E3. This follows from Lemmas 3.4 and 3.10 if V is a non-
trivial Severi–Brauer surface, and from Remark 3.11 for V ≃ P2. By Lemma 4.12
there is a biregular action of the group (Z/3Z)3 on S. This gives a birational action
of (Z/3Z)3 on V. If F does not contain non-trivial cube roots of unity then by
Corollary 5.4 the group (Z/3Z)3 does not act birationally on V.

Assertion (iii) follows from Theorem 1.4(ii).
Recall from Lemma 3.4 that the group Aut(V ) contains Z/3Z. This gives (iv).

If F does not contain a non-trivial cube root of unity then by Lemma 3.6 the
group Aut(V ) does not contain (Z/3Z)2. Otherwise, if F contains a non-trivial
cube root of unity then by Lemma 3.4 we get that Aut(V ) contains (Z/3Z)2. This
gives (v). Finally, from Theorem 1.4(iii) we obtain (vi).

□
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6. Proof of Theorem 1.3

In this section we prove Theorem 1.3.

Proof of Theorem 1.3. Let G ⊂ Bir(V ) be a finite subgroup of birational automor-
phisms of V. By Theorem 1.2 one has G ⊂ (Z/3Z)3. By Proposition 1.5(ii) the
group G is contained in (Z/3Z)2 and by Proposition 1.5(i) the group (Z/3Z)2 is
contained in Bir(V ).

Let G ⊂ Aut(V ) be a finite subgroup of the automorphisms group of V. By
Theorem 1.2 one has G ⊂ (Z/3Z)3. By Proposition 1.5(v) the group G is contained
in Z/3Z and by Proposition 1.5(iv) the group Z/3Z is contained in Bir(V ).

□

Remark 6.1. One of the facts used in the proof of [15, Theorem 1.3] is the fol-
lowing assertion: the automorphism group of a Severi–Brauer surface V over Q
does not contain elements of prime order p ⩾ 5. This fact follows, for instance,
from [14, Theorem 6]. Also, there are two alternative proofs of this fact provided
in [15, Lemma 7.1]. Unfortunately, the first of these proofs contains a gap: it treats
identification VQ ≃ P2

Q as a Galois-invariant isomorphism, while it is obviously not

Galois-invariant if V is non-trivial. The same kind of gap is present in the proof
of [15, Lemma 5.2] (cf. [15, Lemma 5.3], where a similar trouble is luckily avoided).
One can find a corrected proof of [15, Lemma 5.2] in Example 3.3.
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