
Commutative Lambek Grammars

Tikhon Pshenitsyn

*Department of Mathematical Logic and Theory of Algorithms,
Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow,

119991, Russian Federation.
*Department of Mathematical Logic, Steklov Mathematical Institute of
Russian Academy of Sciences, 8 Gubkina St., Moscow, 119991, Russian

Federation.

Corresponding author(s). E-mail(s): ptihon@yandex.ru;

Abstract

Lambek categorial grammars is a class of formal grammars based on the Lambek
calculus. Pentus proved in 1993 that they generate exactly the class of context-free
languages without the empty word. In this paper, we study categorial gram-
mars based on the Lambek calculus with the permutation rule LP. Of particular
interest is the product-free fragment of LP called the Lambek-van Benthem cal-
culus LBC. Buszkowski in his 1984 paper conjectured that grammars based on
the Lambek-van Benthem calculus (LBC-grammars for short) generate exactly
permutation closures of context-free languages. In this paper, we disprove this
conjecture by presenting a language generated by an LBC-grammar that is not
a permutation closure of any context-free language. Firstly, we introduce an ad-
hoc modification of vector addition systems called linearly-restricted branching
vector addition systems with states and additional memory (LRBVASSAMs for
short) and prove that the latter are equivalent to LBC-grammars. Then we con-
struct an LRBVASSAM that generates a non-semilinear set and thus disprove
Buszkowski’s conjecture.
Since Buszkowski’s conjecture is false, not so much is known about the languages
generated by LBC-grammars or by LP-grammars. The equivalence of LRBVAS-
SAMs and LBC-grammars allows us to establish a number of their properties. We
show that LP-grammars generate the same class of languages as LBC-grammars;
that is, removing product from LP does not decrease expressive power of corre-
sponding categorial grammars. We also prove that this class of languages is closed
under union, intersection, concatenation, and Kleene plus.

Keywords: Lambek calculus, categorial grammar, formal language, vector addition
system, branching vector addition system with states, semilinear set

1

1 Introduction

Lambek categorial grammars is a class of formal grammars based on the Lambek
calculus L, which is a logic designed to model syntax of natural languages [1]. It is a
substructural logic of the intuitionistic logic, namely, it is obtained from the latter by
dropping the structural rules such as weakening, contraction, and permutation. In the
Lambek calculus, formulas are built from variables (called primitive formulas) using
left division \, right division /, and product •; divisions are directed versions of linear
logic implication. A Lambek categorial grammar consists of an assignment of a finite
number of formulas to each symbol of the alphabet and of a distinguished formula
S. Then, a word a1 . . . an belongs to the language generated by this grammar if and
only if each symbol ai can be replaced by a corresponding formula Ti in such a way
that the sequent T1, . . . , Tn ⇒ S is derivable in the Lambek calculus. Therefore the
grammar derivation mechanism relies on the notion of provability in L.

The famous result proved in [2, 3] states that Lambek categorial grammars generate
exactly context-free languages without the empty word. This establishes a non-trivial
equivalence of the type-logical approach and of the rule-based one. The statement
has two directions. The first one proved by Gaifman in [2] says that any context-free
grammar that does not generate the empty word can be converted into an equiva-
lent Lambek categorial grammar. Gaifman’s proof uses the Greibach normal form for
context-free grammars, and it is quite straightforward. Conversely, Pentus proved in [3]
that Lambek categorial grammars generate only context-free languages. Namely, Pen-
tus showed how to transform a given Lambek categorial grammar into an equivalent
context-free grammar. Although Pentus’ construction is based on an intuitively simple
idea, the proof of its correctness is non-trivial, it involves several delicate techniques
including the free-group interpretation and the binary reduction lemma.

After Lambek’s seminal work [1], numerous modifications and extensions of L have
been introduced for different purposes. One of such modifications is the Lambek cal-
culus with the permutation rule, which we also call the commutative Lambek calculus.
It is obtained from the Lambek calculus by adding the commutativity postulate for
product: A • B ⇔ B • A. The Lambek calculus with the permutation rule LP was
initially studied by van Benthem in [4], and it has many applications in linguistics. In
van Benthem’s paper, the calculus is defined in the sequent form using only the undi-
rected division operation (which is in fact the same operation as intuitionistic linear
logic implication A ⊸ B). In [5], this calculus is called the Lambek-van Benthem cal-
culus LBC. Note that division is denoted by (A,B) in [4], but, in this paper, we shall
always denote division as A\B following the notation of the Lambek calculus.

In [6], the following axiomatization for LBC is presented1:

A⇒ A

Γ, A,B,∆⇒ C

Γ, B,A,∆⇒ C

Π, A⇒ B

Π⇒ A\B
Γ, B ⇒ C Π⇒ A

Γ,Π, A\B ⇒ C

Here A,B,C are formulas and Π,Γ,∆ are sequences of formulas. It is required that
Π is non-empty; this requirement is called Lambek’s restriction, and it is motivated

1Here, however, we use a slightly different notation.

2

by linguistic applications [7, Section 2.5]. The Lambek calculus with the permutation
rule, which also includes product, is denoted by LP; it is introduced in Section 2.2.
Note that LBC is simply the product-free fragment of LP, and LP conservatively
extends LBC.

Given the Lambek calculus with the permutation rule (or its fragment LBC),
one can define the class of categorial grammars based on LP in the same way as
Lambek grammars are defined on the basis of L. Then one could ask what class
of languages such grammars generate. We call grammars based on the commutative
Lambek calculus LP-grammars.

In [5, 6], it is proved that categorial grammars based on the Lambek-van Benthem
calculus generate all permutation closures of context-free languages. However, the
question whether the converse holds or not has remained open. Buszkowski in his 1984
paper conjectures the following:

Conjecture 1 Grammars based on the Lambek van-Benthem calculus LBC generate exactly
permutation closures of context-free languages.

Moreover, Buszkowski proves in [5] that grammars of order2 less than or equal to
1 based on LBC generate exactly permutation closures of context-free languages. This
might seem to be a partial solution to the problem justifying the conjecture.

To my best knowledge, the question whether Buszkowski’s conjecture is true has
remained open. For instance, in [8, p. 230] the question of existence of a Pentus-
like proof for LP-grammars is mentioned as being open. Stepan L. Kuznetsov [9]
introduced this problem to me conjecturing that an example of an LP-grammar can
be constructed such that it generates a language being not a permutation closure of
a context-free language. Hence he claimed that Buszkowski’s conjecture is false.

In this paper, we disprove Buszkowski’s conjecture by showing that there is a gram-
mar based on the Lambek-van Benthem calculus generating a language that is not
the permutation closure of any context-free language. This confirms Kuznetsov’s con-
jecture. We do this by introducing a formalism equivalent to LP-grammars, which is
called linearly-restricted branching vector addition systems with states and additional
memory (LRBVASSAM)3. We prove that LRBVASSAMs generate exactly Parikh
images of languages generated by LP-grammars. The definition of LRBVASSAM and
the proof are inspired by our study of the relation between double-pushout hyper-
graph grammars and hypergraph Lambek grammars [10]. In the cited article, we deal
with a general formalism extending the Lambek calculus to hypergraph structures
and investigate expressivity of the corresponding class of categorial grammars. Nicely,
the methods used for studying hypergraph Lambek grammars gave us useful enough
insights for solving the problem concerning the expressive power of LP-grammars.

This paper is organized as follows:

• In Section 2, we introduce preliminary definitions, in particular, we define all the
calculi of interest and recall their basic properties.

2An LBC-grammar ⟨S, ▷⟩ is of order less than or equal to 1 if and only if a ▷ T implies that T is of the
form p1\ (. . . \ (pk−1\ (pk\q)) . . .) for some k ∈ N and some primitive formulas pi, q.

3We apologize to the reader for such long abbreviations.

3

• In Section 3, we describe the results of this paper (the main one is Theorem 4,
because it is the one that disproves the conjecture of Buszkowski).

• In Section 4, we define the notion of LRBVASSAM and prove that LBC-grammars
are equivalent to LRBVASSAMs.

• In Section 5, we present a non-semilinear set generated by an LRBVASSAM.
• In Section 6, we use the results of Sections 4 and 5 to prove that there is a language
generated by an LBC-grammar that is not a permutation closure of any context-free
language. We prove the main theorems of the work in this section.

• In Section 7, we establish closure properties for the class of languages generated by
LBC-grammars.

• In Section 8, we conclude.

2 Preliminaries

In this section, we clarify the notation used throughout the paper and define the calculi
of interest along with corresponding categorial grammars.

2.1 Basic Notions

• We shall use the notion of a multiset in this paper. We are not going to provide
a formal definition of this notion assuming that it is well known (see, e.g., [11]).
Intuitively, it is “a collection of objects (called elements) in which elements may
occur more than once” [11]. For example, {a, a, a, b, b, c} is a multiset. Given two
multisets A and B, their disjoint union A ⊔ B is obtained as follows: if a occurs
m times in A and n times in B, then a occurs (n + m) times in A ⊔ B. E.g.,
{a, b, c} ⊔ {a, a, b} = {a, a, a, b, b, c}.

• Let Σ be a finite set called an alphabet. We assume that hereinafter the letter Σ is
reserved for the alphabet. Let |Σ| = κ ∈ N be the size of the alphabet; the letter
κ is also “global”, it is reserved for the cardinality of Σ throughout the remainder
of the paper. The set Σ∗ is the set of words over Σ including the empty word Λ;
besides, Σ⊕ = Σ∗ \ {Λ}. If w ∈ Σ∗ and a ∈ Σ, then let |w|a equal the number of
occurrences of the symbol a in w (for example, |aab|a = 2, |aab|b = 1, |aab|c = 0).
The length |w| of the word w is the total number of symbols in it.

• If w = a1 . . . an, then the same word can be represented using commas as separators
between symbols, namely, w = a1, . . . , an.

• A language is any subset of Σ∗.
• By ak we denote either the word a . . . a or the multiset {a, . . . , a} with a repeated
k times (the meaning is always clear from the context).

• A context-free grammar is a triple Gr = ⟨N,P, S⟩, where N is a finite alphabet
of nonterminal symbols (N ∩ Σ = ∅), P is a set of productions, and S ∈ N . Each
production is of the form A → α where A ∈ N is a nonterminal symbol and
α ∈ (N ∪ Σ)∗ is a word. An application of the production A → α is of the form
ηAθ ⇒ ηαθ for η, θ ∈ (N ∪ Σ)∗ being some words. A word w ∈ Σ∗ is generated
by Gr if and only if there is a sequence of applications of productions of the form
S ⇒ w1 ⇒ . . . ⇒ wk = w. The language generated by Gr is the set of all words
generated by Gr. Such a language is called a context-free language.

4

• If w = a1 . . . an and σ ∈ Sn is a permutation, then σ(w) = aσ(1) . . . aσ(n).
• If L is a language, then its permutation closure Lperm consists of words of the form
σ(w) where w ∈ L and σ ∈ Sn is a permutation for n = |w|. Informally, we consider
all possible words that can be obtained from those from L by permuting symbols
in them.

• A language L is called commutative if Lperm = L.
• Hereinafter, let us fix an enumeration of symbols of the alphabet Σ, namely, let
Σ = {a1, . . . , aκ}. Then the Parikh image of w ∈ Σ∗ is defined as Ψ(w) =
(|w|a1 , . . . , |w|aκ). Thus Ψ is a function that maps Σ∗ to Nκ. This definition is gen-
eralized to languages in an obvious way: Ψ(L) = {Ψ(w) | w ∈ L}. We shall also
consider the inverse Parikh image:

Ψ−1(V) = {w ∈ Σ∗ | Ψ(w) ∈ V }.

• A subset of Nκ is semilinear if and only if it is a finite union of linear sets, i.e. of
sets of the form {v0 + n1v1 + . . . + nlvl | n1, . . . , nl ∈ N} where v0, . . . , vl are fixed
vectors from Nκ.

• The size |v| of a vector v = (x1, . . . , xκ) ∈ Nκ equals x1 + . . .+ xκ. By ei we denote
the standard-basis vector (0, . . . , 0, 1, 0, . . . , 0) where 1 stands at the i-th position.

The following obvious properties of the Parikh image shall be used later:

• Ψ−1(Ψ(L)) equals the permutation closure Lperm of L.
• Ψ(L) = Ψ(Lperm).

The fundamental result relating context-free languages and semilinear sets is
Parikh’s theorem [12, 13], which states that, if L is a context-free language, then its
Parikh image Ψ(L) is a semilinear set, and vice versa, each semilinear set is a Parikh
image of some context-free language. The following proposition easily follows from
Parikh’s theorem:

Proposition 1 For any language L, its permutation closure Lperm is the permutation closure
of a context-free language if and only if Ψ(L) is semilinear.

Proof If Lperm = Lperm
0 for some context-free language L0, then Ψ(L) = Ψ(Lperm) =

Ψ(Lperm
0) = Ψ(L0) is semilinear according to Parikh’s theorem. Conversely, if Ψ(L) is semi-

linear, then there exists a context-free language L0 such that Ψ(L0) = Ψ(L). This implies
that Lperm

0 = Ψ−1(Ψ(L0)) = Ψ−1(Ψ(L)) = Lperm , hence Lperm is the permutation closure
of the context-free language L0. □

2.2 The Lambek Calculus With Permutation

In this section, we define the Lambek calculus with the permutation rule (or simply
the commutative Lambek calculus) and its several variants in the Gentzen style.

• Let us fix a countable set of primitive formulas Pr. The set of formulas is defined
as follows: FmLP := Pr | FmLP\FmLP | FmLP • FmLP.

5

• A sequent is a structure of the form Π⇒ A where Π is a finite non-empty multiset
consisting of formulas and A ∈ FmLP. The non-emptiness requirement for Π is
called Lambek’s restriction. The multiset of formulas Π is called the antecedent of
the sequent, and A is called the succedent of the sequent.

• If Γ and ∆ are two multisets of formulas, then their union Γ ⊔∆ shall be denoted
using the comma: Γ ⊔∆ = Γ,∆. Besides, the notation Γ, A means Γ ⊔ {A} for any
multiset of formulas Γ and any formula A.

• The axioms and rules of LP are as follows:

A⇒ A
(ax)

Γ, B ⇒ C Π⇒ A

Γ,Π, A\B ⇒ C
(\L)

Π, A⇒ B

Π⇒ A\B
(\R)

Γ, A,B ⇒ C

Γ, A •B ⇒ C
(•L) Π⇒ A Φ⇒ B

Π,Φ⇒ A •B (•R)

Hereinafter capital Latin letters A,B,C, . . . stand for formulas; capital Greek letters
Γ,∆,Π,Φ, . . . stand for words of formulas. Besides, Π,Φ in the rules above must be
non-empty according to Lambek’s restriction4.

This completes the definition of the commutative Lambek calculus LP. The Lambek-
van Benthem calculus is the product-free fragment of LP, i.e. its formulas are defined
as follows: FmLBC := Pr | FmLBC\FmLBC.

Remark 1 This definition differs from the presentation of LBC in Section 1. In Section 1,
antecedents of sequents are defined as words of formulas rather than multisets. The following
permutation rule introduced there says that the order of formulas in the antecedent can be
freely changed:

Γ, A,B,∆⇒ C

Γ, B,A,∆⇒ C

By defining an antecedent of a sequent as a multiset we make the permutation rule
implicit; this is more convenient for further reasonings. Clearly, the two ways of defining LP
(using multisets and using words along with the permutation rule) are equivalent.

If Lambek’s restriction is removed from the definition of LP, then we come up with
the definition of the commutative Lambek calculus allowing empty antecedents denoted
by L∗P. Besides, one can also add the constant symbol I to the language of L∗P and
the following axiomatization for it:

Π⇒ A
Π, I⇒ A

(IL) ⇒ I
(IR)

This calculus is called the tensor-implication logic in [14]. We call it the commutative
Lambek calculus with the unit and denote it as L∗

IP.
From now on, the set of formulas of a calculus K of interest is denoted by FmK.

Note that FmLP = FmL∗P since these two logics differ in structure of sequents but
not in the set of formulas. Clearly, FmLBC ⊊ FmLP = FmL∗P ⊊ FmL∗

I P
.

4Actually, it suffices to require that Π is non-empty in the rule (\R); then, one can prove that all
antecedents of derivable sequents are non-empty.

6

2.3 Categorial Grammars

Now, let us define the notion of categorial grammars based on the calculi of interest.

Definition 1 Let K be one of the calculi LP, LBC, L∗P, L∗
IP.

• A K-grammar is a pair G = ⟨S, ▷⟩ where S ∈ FmK is a distinguished formula,
and ▷ ⊆ Σ × FmK is a finite binary relation between symbols of the alphabet and
formulas. In other words, the relation ▷ assigns a finite number of formulas to each
symbol of Σ.

• The language L(G) generated by G is the set of words a1 . . . an ∈ Σ∗ such that there
exist formulas T1, . . . , Tn ∈ FmK, for which the following holds:

1. ai ▷ Ti (i = 1, . . . , n);
2. K ⊢ T1, . . . , Tn ⇒ S.

In particular, the empty word Λ belongs to L(G) if and only if the sequent ⇒ S
with the emtpy antecedent is derivable in K.

Note that the title of this paper Commutative Lambek Grammars does not refer to
any particular kind of grammars defined above. The term commutative Lambek gram-
mar is a generic notion that means a grammar based on any of the calculi considered
in this paper.

Remark 2 Lambek’s restriction implies that the empty word Λ does not belong to the lan-
guage generated by an LP-grammar. However, it may belong to the language generated by
an L∗P-grammar or by an L∗

IP-grammar.

Example 1 Given that Σ = {a, b}, consider the LP-grammar G0 = ⟨S0, ▷0⟩ where

• S0 = p\p;
• a ▷0 Ea = q\(p\p); b ▷0 E

1
b = q; b ▷0 E

2
b = q • q.

Then L(G0) = {anbl | 0 < l ≤ n ≤ 2l}perm . We leave the proof of this fact as an exercise.
As a particular case, let us show, for example, that aba ∈ L(G0). To do this, replace the
occurrences of a in aba by the formula Ea and the only occurrence of b by E2

b . Then the
sequent Ea, E

2
b , Ea ⇒ S0 is derivable in LP:

p⇒ p p⇒ p

p\p, p⇒ p
(\L)

p⇒ p

p\p, p\p, p⇒ p
(\L)

q ⇒ q

q\(p\p), q, p\p, p⇒ p
(\L)

q ⇒ q

q\(p\p), q, q, q\(p\p), p⇒ p
(\L)

q\(p\p), q, q, q\(p\p)⇒ p\p
(\R)

q\(p\p), q • q, q\(p\p)⇒ p\p
(•L)

7

The grammar G0 can be considered as an L∗P-grammar; let us denote the L∗P-grammar
⟨S0, ▷0⟩ by G∗

0. Then Λ ∈ L(G∗
0) since L∗P ⊢⇒ p\p:

p⇒ p

⇒ p\p
(\R)

As we mentioned in Section 1, in [5, 6], it is proved that LBC-grammars (and, con-
sequently, LP-grammars) generate all permutation closures of context-free languages.
Moreover, in [5], it is proved that LBC-grammars of order less than or equal to 1
generate exactly permutation closures of context-free languages.

2.4 Auxiliary Notions

Below we define notions and notation that shall be used from this moment forth.

• In the formula C\(B\A), brackets shall be omitted: C\B\A. In general, a formula
of the form A1\ (. . . \ (Ak−1\ (Ak\B)) . . .) shall be written as A1\ . . . \Ak−1\Ak\B.

• Since product is associative, we shall omit brackets in the formulas like A • (B •C)
or (A •B) • C and write A •B • C instead.

• The formula A\B occurring in the rule applications of (\L) and (\R) is called major
in these rule applications. Similarly, the formula A • B is called major in the rule
applications of (•L) and (•R).

• Let A•k be a shorthand notation for A • . . . •A︸ ︷︷ ︸
k times

. Formally, A•1 = A, and A•(k+1) =

(A•k •A). (Recall that Ak is a shorthand notation for A, . . . , A︸ ︷︷ ︸
k times

.)

• The length of formulas is defined as follows:

1. |p| = 1 for p ∈ Pr;
2. |A ◦B| = |A|+ |B|+ 1, ◦ ∈ {•, \}.

Informally, the length is the number of symbols in a formula or in a sequent.

Definition 2 Given a K-grammar G, we denote by Fm(G) the set of all formulas occurring
in G (including S). Formally,

Fm(G) = {T ∈ FmK | ∃a ∈ Σ (a ▷ T)} ∪ {S}.

Clearly, Fm(G) is finite since so is ▷.
The set SFm+(G) of positive subformulas of G and the set SFm−(G) of negative

subformulas of G are defined as the least pair of sets satisfying the following requirements:

• If there exists a ∈ Σ such that a ▷ T , then T ∈ SFm−(G);
• S ∈ SFm+(G);
• If B\A ∈ SFm+(G), then A ∈ SFm+(G) and B ∈ SFm−(G);
• If B\A ∈ SFm−(G), then A ∈ SFm−(G) and B ∈ SFm+(G);
• If A •B ∈ SFm+(G), then both A and B are in SFm+(G);
• If A •B ∈ SFm−(G), then both A and B are in SFm−(G).

The set SFm(G) of all subformulas of G is the union SFm+(G) ∪ SFm−(G).

8

The intuition behind the definitions of positive and negative subformulas is the
following. If one wants to check that a word a1 . . . an is generated by a K-grammar
G, then replace each symbol ai by a formula Ti such that ai ▷ Ti and then check
that K ⊢ T1, . . . , Tn ⇒ S. If this sequent is derivable, fix its derivation and look at
formulas occurring in it. Then formulas in the antecedents of the sequents that are
present in this derivation are negative subformulas of G, while formulas occurring in
the succedents of the sequents are positive ones.

2.5 Properties

In the remainder of the paper, several properties of the calculi defined above are used.

• The cut rule is admissible in each of the calculi LP, LBC, L∗P, L∗
IP:

Π⇒ A Γ, A⇒ B

Γ,Π⇒ B
(cut)

This means that if the sequents Π ⇒ A and Γ, A ⇒ B are derivable in LP (or in
LBC / in L∗P / in L∗

IP), then so is Γ,Π⇒ B. This is proved in [6, Chapter 7].
• As a consequence, the following rules are also admissible in each of these logics:

Γ, A •B ⇒ C

Γ, A,B ⇒ C
(•−1

L)
Π⇒ A\B
Π, A⇒ B

(\−1
R)

Indeed, the first rule can be obtained as the application of the cut rule to the
sequents A,B ⇒ A •B and Γ, A •B ⇒ C; the second rule is the application of the
cut rule to the sequents Π⇒ A\B and A\B,A⇒ B.

• Let us say that formulas A and B are equivalent in a calculus K (denoted by
K ⊢ A ⇔ B) if K ⊢ A ⇒ B and K ⊢ B ⇒ A. For K being one of the calculi LP,
LBC, L∗P, L∗

IP, if two formulas are equivalent, then they are interchangeable in
any context. Interchangeability means the following:

– Let C be a formula with a unique primitive subformula x ∈ Pr. By C[x/D] we
denote the substitution of D for x. If K ⊢ A ⇔ B, then K ⊢ C[x/A] ⇔ C[x/B].
(The proof is by induction on the length of C.)

– Let C be a formula of K and let Γ be a multiset of formulas of K. If A ⇔ B is
derivable in K, then the sequent Γ, A,∆⇒ C is derivable in K if and only if so is
Γ, B,∆⇒ C. (This is proved by applying the cut rule.)

• Let ⟨S, ▷⟩ be a grammar based on one of the calculi of interest. If a ▷ A and K ⊢
A ⇔ B, then replacing the pair a ▷ A in ▷ by the pair a ▷ B does not change the
language generated by this grammar. This follows from the previous statement.

• Let us agree on the following: if B = A1 • . . . • An is product of several formulas,
then B
 C denotes the formula A1\ . . . \An\C. It can be straightforwardly proved
that K ⊢ B\C ⇔ B
 C, hence these formulas are interchangeable.

9

3 The Results of the Work

We aim to disprove Buszkowski’s conjecture that LBC-grammars generate only permu-
tation closures of context-free languages. We shall do this is a constructive way, namely,
by presenting a language generated by an LBC-grammar that is not a permutation
closure of a context-free language.

Definition 3 Let Σ = {a, b}. Let us define QL = {albn | l, n ∈ N, 1 ≤ n, l ≤ n2}. It is the
language5 consisting of words composed of n symbols b and of l symbols a where the number
l is upper bounded by n2.

The permutation closure of the language QL is of the main interest for us.

Proposition 2 The language QLperm is not the permutation closure of a context-free
language.

Proof According to Proposition 1, QLperm is the permutation closure of a context-free lan-
guage if and only if Ψ(QL) = {(l, n) | 1 ≤ n, l ≤ n2} is semilinear. The proof of the fact that
this is not the case is ex falso. Assume that the set QS = {(l, n) | 1 ≤ n, l ≤ n2} is semi-
linear. It is proved in [15, Theorem 6.1, Theorem 6.2] that semilinear sets are closed under

intersection and complement. Consequently, the set QS′ =
(
N2 \QS

)
∩ {(l, n) | 1 ≤ n} is

semilinear. Note that
(
N2 \QS

)
∩ {(l, n) | 1 ≤ n} = {(l, n) | 1 ≤ n, l > n2}.

The set QS′′ = {(l, n) | 1 ≤ n, 1 ≤ l ≤ n2 + 1} is obtained from QS by adding the
vector (1, 0) to each its vector. Thus QS′′ is semilinear as well. This yields that the set
QS′∩QS′′ = {(l, n) | 1 ≤ n, l = n2+1} is semilinear. This implies that {n2+1 | n ∈ N, 1 ≤ n}
is semilinear (it is the projection of the former set), which is obviously false. □

Our goal now is to prove the following theorem:

Theorem 3 There exists an LBC-grammar QG such that:

1. QG generates the language QLperm .
2. If the grammar QG is considered as an L∗P-grammar, then it generates the same

language QLperm .

This theorem disproves Buszkowski’s conjecture and also shows us that Pentus’
theorem relating Lambek categorial grammars and context-free grammars cannot be
adapted for the case of LP. We shall prove Theorem 3 by constructing an LBC-
grammar generating QLperm ; the construction, however, shall be indirect. Firstly, we
shall introduce another formalism called linearly-restricted branching vector addition
systems with states and additional memory (LRBVASSAM); their definition is pre-
sented in Section 4. These systems form a modification of branching vector addition

5QL is an abbreviation for “quadratic language”.

10

systems with states defined in [16], which in turn extend vector addition systems [17].
We shall prove in a constructive way that, for a set V generated by some LRBVAS-
SAM H, there exists an LBC-grammar (which we denote by LBCG(H)) generating its
inverse Parikh image Ψ−1(V). Then we shall introduce the LRBVASSAM QH gener-
ating the set QS = {(l, n) | 1 ≤ n, l ≤ n2}, which is the Parikh image of QLperm ; hence
the LBC-grammar LBCG(QH) generates QLperm . This shall constitute the proof of
the main theorem of this paper:

Theorem 4 The set of languages generated by LBC-grammars properly contains the set of
permutation closures of context-free languages.

We shall generalize this statement as follows:

Theorem 5 For K being any of the calculi LBC, LP, L∗P, or L∗
IP, K-grammars can generate

languages that are not permutation closures of context-free languages.

The proof uses LRBVASSAMs and the grammar LBCG(H) (Construction 2). In
fact, it turns out that LBC-grammars and LRBVASSAMs are equivalent:

Theorem 6 A commutative language L is generated by an LBC-grammar if and only if its
Parikh image Ψ(L) is generated by an LRBVASSAM.

This theorem shall be considered in Section 4, after the definition of LRBVASSAM.
It can be viewed as an adaptation of Pentus’ theorem. Indeed, LRBVASSAMs belong
to the rule-based paradigm, and they have similarities with Chomsky grammars. To
prove it, one transforms the LRBVASSAM H generating the set V = Ψ(L) into the
LBC-grammar LBCG(H) generating Ψ−1(V) = L (Construction 2). The other way
round, given the LP-grammar G generating L, one constructs the LRBVASSAM,
which we denote by LRB(G), generating Ψ(L) (Construction 3).

As a side result, the equivalence of LP-grammars and LRBVASSAMs allows us to
prove the following:

Theorem 7 The class of languages generated by LP-grammars is equal to the class of
languages generated by LBC-grammars.

That is to say, removing product from the commutative Lambek calculus does
not decrease expressive power of categorial grammars, so LP-grammars and LBC-
grammars are equivalent. Indeed, each LP-grammar G can be converted into an
LRBVASSAM LRB(G) (Theorem 12), which in turn can be converted into an LBC-
grammar LBCG(LRB(G)) (Theorem 10). Therefore G and LBCG(LRB(G)) generate
the same language. Thus LBC-grammars are at least as expressive as LP-grammars
(the converse is trivial).

11

In Section 7, we establish closure properties of the class of languages generated by
LP-grammars using their equivalence with LRBVASSAMs.

Theorem 8 The class of languages generated by LP-grammars is closed under union,
intersection, commutative concatenation, and commutative Kleene plus.

Let us clarify the meaning of the terms commutative concatenation and commuta-
tive Kleene plus.

Definition 4 The commutative concatenation of two commutative languages L1, L2 is the
language ({w1w2 | w1 ∈ L1, w2 ∈ L2})perm .

Definition 5 The commutative Kleene plus of the commutative language L is (L⊕)perm .

4 LRBVASSAM

Vector addition systems are introduced in [17]; they represent a very natural and
simple formalism equivalent to well-known Petri nets. The simplest definition of a
vector addition system is the following one [17]: a vector addition system (VAS) is a
pair (v,W) where W ⊆ Zd is a finite set of integer-valued vectors of dimension d and
v ∈ Nd is a vector. The reachability set of the VAS (v,W) consists of vectors of the
form v+w1+ . . .+wk such that wi ∈W , and v+w1+ . . .+wi ∈ Nd for all i = 1, . . . , k.
Equivalently, let us say that u⇒ u+ w is a direct derivation step in a VAS (v,W) if
u ∈ Nd, u+w ∈ Nd, and w ∈W ; then the reachability set of (v,W) consists of vectors
that can be obtained from v by means of several direct derivation steps.

Countless modifications of vector addition systems have been considered in the
literature: VASP, VASS, AVASS, BVASS, EBVASS, EVASS, PVASS etc. These exten-
sions are used for different purposes. As a side remark we note that one of them is
studying algorithmic complexity of fragments of propositional linear logic [18, 19].
Thus vector addition systems have already been used for analyzing substructural log-
ics (note that L∗P is in fact the multiplicative fragment of intuitionistic linear logic).
Branching vector addition systems with states (BVASS) is one of such modifications,
which is defined in [16]. As the authors of [16] say, BVASSes are developed as a
natural extension of both vector addition systems and Parikh images of context-free
grammars. Here is the formal definition of BVASS [16]:

Definition 6 A branching vector addition system with states (BVASS) is a tuple H =
⟨Q,P0,P1,P2, s,K⟩ where

• K ∈ N is the dimension of H;
• Q is a finite set of states;
• P0 is a finite set of nullary rules of the form q(ν) where q ∈ Q, ν ∈ NK ;
• P1 is a finite set of unary rules of the form p(x + δ2) ← q(x + δ1) where p, q ∈ Q,
δ1, δ2 ∈ NK ;

12

• P2 is a finite set of binary rules of the form p(x+ y)← q(x), r(y) where p, q, r ∈ Q;
• s ∈ Q is the distinguished accepting state.

Note that x, y are variables (just abstract symbols) while ν, δi are vectors from NK .
A pair p(v) where p ∈ Q, v ∈ NK is called a fact. A derivation of a fact p(v) is a sequence

of facts p1(v1), . . . , pn(vn) with pn(vn) = p(v) such that one of the following holds for each
i = 1, . . . , n:

1. pi(vi) ∈ P0;
2. vi = w + δ2 where w ∈ NK , w + δ1 = vj , and pi(x + δ2) ← pj(x + δ1) ∈ P1 (for

some j < i);
3. vi = vj + vk, and pi(x+ y)← pj(x), pk(y) ∈ P2 (for some j, k < i).

A fact p(v) is derivable in H if there exists its derivation. The set L(H) generated by H
consists of vectors v ∈ NK such that s(v) is derivable in H.

For further reasonings, we define the notion of a derivation tree in a BVASS H:

Definition 7 The notion of a derivation tree of a fact p(u) is inductively defined as follows:

1. If p(u) ∈ P0, then p(u) is a derivation tree of p(u);
2. If T is a derivation tree of a fact q(v + δ1) and ζ = p(x + δ2) ← q(x + δ1) ∈ P1,

then the following structure is a derivation tree of p(u) = p(v + δ2):

T
p(v + δ2)

(ζ)

3. If T1, T2 are derivation trees of q(v) and r(w) resp. and η = p(x+ y) ← q(x), r(y)
belongs to P2, then the following structure is a derivation tree of p(u) = p(v +w):

T1 T2
p(v + w)

(η)

Definition 8 Given a derivation tree T , let Rule(T) be the multiset of rule occurrences in T :

1. If T = p(u), then Rule(T) = {p(u)};
2. Let T be of the following form for some T ′:

T ′

p(u)
(ζ)

Then Rule(T) = {ζ} ⊔ Rule(T ′). Put differently, we increase the number of
occurrences of ζ in the multiset Rule(T ′) by 1.

3. Let T be of the following form for some T1, T2:

T1 T2
p(u)

(η)

13

Then Rule(T) = Rule(T1) ⊔ Rule(T2) ⊔ {η}.
Let the size of T be the cardinality of Rule(T), i.e. the number of rules in T .

Example 2 Let B0 = ⟨Q0,P0
0 ,P0

1 ,P0
2 , s,K

0⟩ be the following BVASS.

• The dimension K0 equals 3.
• The set of states Q0 equals {q, s}.
• The set P0

0 consists of the following nullary rules:

– ρ01 = s(1, 0, 1);
– ρ02 = q(1, 1, 1).

• The set P0
1 consists of the following unary rules:

– ρ11 = s(x+ (0, 3, 0))← s(x+ (0, 0, 3));
– ρ12 = s(x+ (0, 0, 3))← s(x+ (0, 3, 0)).

• The set P0
2 equals {ρ21} where

ρ21 = s(x+ y)← s(x), q(y)

• The accepting state is s.

Then, for instance, (3, 2, 3) ∈ L(B0) and (3, 5, 0) ∈ L(B0). Below a derivation tree of s(3, 5, 0)
is presented; it contains the derivation tree of s(3, 2, 3) as a subtree.

s(1, 0, 1) q(1, 1, 1)

s(2, 1, 2)
(ρ21) q(1, 1, 1)

s(3, 2, 3)
(ρ21)

s(3, 5, 0)
(ρ11)

s(3, 2, 3)
(ρ12)

s(3, 5, 0)
(ρ11)

s(3, 2, 3)
(ρ12)

s(3, 5, 0)
(ρ11) (1)

The multiset of rule occurrences in this derivation tree equals
{ρ01, ρ02, ρ02, ρ21, ρ21, ρ11, ρ12, ρ11, ρ12, ρ11}. Its size equals 10.

Remark 3 If a unary rule is of the form q(x+ δ2) ← p(x+ δ1) and, e.g., δ1 = 0⃗, then let us
write q(x+ δ2)← p(x) instead of the awkward q(x+ δ2)← p(x+ 0⃗).

It turns out that branching vector addition systems with states are related to
LP-grammars. However, to formulate this relation precisely we have to modify the
definition of BVASS. These modifications are as follows:

1. Firstly, we are going to require that the size of a derivation tree of a fact s(v) in a
BVASS must be O(|v|). We call this the linear restriction. Note that it immediately
makes the membership problem for BVASS decidable and even places it in NP.
Indeed, if a vector v belongs to the set L(H) generated by a BVASS H with the

14

linear restriction, then this can be justified by a derivation tree of s(v) which size
does not exceed C|v|. Consequently, this derivation has polynomial size w.r.t. the
size of v, hence the problem can be solved non-deterministically in polynomial time.

2. Secondly, we are going to add additional memory to BVASSes. Namely, let v ∈ NK

be a vector such that s(v) is derivable in H. Let us call its first k coordinates
(k ≤ K)main memory coordinates, and let us call the remaining (K−k) coordinates
additional memory coordinates. Then, let us remove additional memory coordinates
of v and thus obtain a new vector v′. Let the set generated by H consist of such
new vectors of dimension k. Informally, we consider the last K − k coordinates
as auxiliary ones that are used only for intermediate calculations and that must
be removed by the end of a derivation. Moreover, let us require that additional
memory coordinates in v must equal 0 by the end of the derivation.

Let us formally introduce both modifications. Given a vector v′ ∈ Nk and K ≥ k,
we denote by ιK(v′) the vector v ∈ NK such that vi = v′i (i = 1, . . . , k) and vi = 0
for k < i ≤ K. Informally, ιK appends (K − k) additional memory coordinates to v′,
which are equal to 0. For example, ι5(1, 2, 3) = (1, 2, 3, 0, 0).

Definition 9 A linearly-restricted branching vector addition system with states and addi-
tional memory (LRBVASSAM) is a tuple H = ⟨Q,P0,P1,P2, s, k,K,C⟩ where all the
components except for k and C are defined as in Definition 6 and k, C ∈ N, 0 ≤ k ≤ K.
The set L(H) generated by this LRBVASSAM consists of vectors u ∈ Nk such that there
exists a derivation tree of s(ιK(u)) in H of size not greater than C|u|.

Remark 4 Note that the zero vector 0⃗ does not belong to L(H) for any H. Indeed, this
would imply that there exists a derivation tree of s(ιK (⃗0)) of size not greater than 0, which
is impossible since the size of any derivation tree is at least 1.

Example 3 Let H0 = ⟨Q0,P0
0 ,P0

1 ,P0
2 , s, k

0,K0, C0⟩ be an LRBVASSAM defined as follows:

• Q0,P0
0 ,P0

1 ,P0
2 , s,K

0 are the same as in Example 2;
• k0 = 2;
• C0 = 1.

Since k0 = 2 andK0 = 3, there are two main memory coordinates and one additional memory
coordinate. Then (3, 5) ∈ L(H0). To check this, we need to show that there is a derivation
tree of s(ι3(3, 5)) = s(3, 5, 0) in H of size less than or equal to C0 · |(3, 5)| = 1 · 8 = 8. Note
that (1) is not such a derivation tree because its size is 10 > 8. However, obviously, it can be
reduced to the following one:

s(1, 0, 1) q(1, 1, 1)

s(2, 1, 2)
(ρ21) q(1, 1, 1)

s(3, 2, 3)
(ρ21)

s(3, 5, 0)
(ρ11) (2)

The size of the new derivation tree equals 6 ≤ 8. Hence (3, 5) ∈ L(H0).
Note that (3, 2) ̸∈ L(H0), although s(3, 2, 3) is derivable in L(B0) as shown in Example

2. This happens because we do not simply erase the additional memory coordinates but we

15

check that they equal 0 and then remove them. It is left as an exercise to rigorously prove
that (3, 2) ̸∈ L(H0).

Remark 5 It is not so common to directly restrict sizes of derivations for formal grammars;
usually, in order to decrease expressive power of some class of formal grammars, restrictions
are imposed on the structure of rules used in them. For example, unrestricted grammars may
include rules of the form α→ β where α and β are arbitrary words; however, such grammars
are too powerful, and the membership problem for them is undecidable. This makes them
computationally unattractive. However, if we allow one to use only rules of the form A→ β,
then we obtain context-free grammars, which are effectively decidable. This is an example
of how the structure of rules in a grammar can be restricted to reduce expressive power of
grammars. In the case of LRBVASSAM, we do not change the definition of rules for BVASS
or the definition of a derivation but rather explicitly limit size of a derivation.

One example of imposing a linear restriction similar to that from Definition 9 can be
found in [20] for multiset-valued linear index grammars; however, we failed to find a simple
connection between these grammars and LP-grammars, so we develop our own definitions.
It would also be interesting to consider other kinds of restrictions, e.g., the quadratic one or
polynomial one and to establish hierarchy results concerning generated classes of sets.

The linear restriction, however, takes a special place among other possible restrictions
due to the following reason. For each BVASS H there exists a constant CH > 0 such that,
if s(v) is derivable in H, then the size of its derivation must be at least CH · |v|. Indeed, if
DH is the maximum of |δ2| such that p(x + δ2) ← q(x + δ1) ∈ P1 and of all numbers |ν|
for p(ν) ∈ P0, then a derivation tree of the size n always results in a fact q(v) such that
|v| ≤ DH · n (the proof is by induction on n). Finally, let CH equal 1/DH . Ergo, the linear
restriction is the least possible one that does not make the resulting language finite; this
property distinguishes it among other restrictions.

The main result relating LRBVASSAMs ald LBC-grammars is the following
theorem:

Theorem 6 A commutative language L is generated by an LBC-grammar if and only if
its Parikh image Ψ(L) is generated by an LRBVASSAM.

It turns out that for further reasonings it is important to require that all the unary
rules in an LRBVASSAM are of the form q(x+ δ2)← p(x+ δ1) for δ1 being non-zero.

Definition 10 An LRBVASSAM ⟨Q,P0,P1,P2, s, k,K,C⟩ is input-sensitive if, for each
φ1 = q(x+ δ2)← p(x+ δ1) ∈ P1, it holds that δ1 ̸= 0⃗.

Proposition 9 For each LRBVASSAM H = ⟨Q,P0,P1,P2, s, k,K,C⟩ there exists an input-

sensitive LRBVASSAM H̃ generating the same set L(H).

Proof Given a vector v = (v1, . . . , vK) ∈ NK , let v⌢a denote the vector (v1, . . . , vK , a).

Let us define H̃ = ⟨Q̃, P̃0, P̃1, P̃2, s̃, k, K̃, C̃⟩ as follows:

• Q̃ = Q; s̃ = s; C̃ = C;
• K̃ = K + 1;

16

• P̃0 consists of nullary rules of the form φ(0) = q(ν⌢0) and φ(1) = q(ν⌢1) for
φ = q(ν) ∈ P0;

• P̃1 consists of unary rules of the form φ(0) = q(x + δ⌢2 0) ← p(x + δ⌢1 1) and
φ(1) = q(x+ δ⌢2 1)← p(x+ δ⌢1 1) for φ = q(x+ δ2)← p(x+ δ1) ∈ P1;

• P̃2 = P2;

The LRBVASSAM H̃ is clearly input-sensitive.
Given a derivation tree T̃ of a fact s(ι

K̃
(v)) in H̃ for v ∈ Nk, one can obtain a derivation

tree of s(ιK(v)) in H from it by removing the last coordinate from each vector in each fact

occurring in T̃ and by replacing each rule of the form φ(i) by φ. The size of the new derivation
tree equals that of T̃ . Consequently, L(H̃) ⊆ L(H).

Let us show the converse inclusion. Let v ∈ L(H); this means, by the definition, that
s(ιK(v)) has a derivation tree T in H of the size ≤ C|v|.

We define functions χ(0) and χ(1) such that χ(i) transforms a derivation tree T of a
fact t(u) into a derivation tree of the fact t(u⌢i) in H̃ (for i ∈ {0, 1}). The joint inductive
definition is as follows:

• If T is of the form t(u) (hence t(u) ∈ P0), then χ(i)(T) := t(u⌢i) ∈ P̃0.
• Let T be of the following form for ζ = q(x+ δ2)← p(x+ δ1) ∈ P1:

T ′

q(w + δ2)
(ζ)

Here T ′ is a derivation tree of p(w+ δ1). Then let us define χ(i)(T) as the following
derivation tree:

χ(1)(T ′)

q((w + δ2)
⌢i)

(ζ(i))

Note that χ(1)(T ′) is the derivation tree of q((w + δ1)
⌢1) = q(ιK̃(w) + δ⌢1 1), and

ζ(i) = q(x+ δ⌢2 i)← p(x+ δ⌢1 1) ∈ P̃1.
• Let T be of the following form for T1, T2 being derivation trees of facts p1(w1) and
p2(w2) resp. and for η = q(x1 + x2)← p1(x1), p2(x2):

T1 T2
q(w1 + w2)

(η)

Then χ(i)(T) is of the following form:

χ(0)(T1) χ(i)(T2)
q((w1 + w2)

⌢i)
(η)

Clearly, χ(i) translates a correct derivation tree into a correct one and, moreover, it preserves
the structure and the size of the initial derivation tree. Thus, given a derivation tree T of
s(ιK(v)), χ(0)(T) is the derivation tree of s(ιK(v)⌢0) = s(ι

K̃
(v)) in H̃ of the same size. This

proves that L(H) ⊆ L(H̃). □

Remark 6 From now on, without loss of generality, we usually consider all LRBVASSAMs to
be input-sensitive.

17

4.1 From LRBVASSAMs to LBC-Grammars

Our goal is to prove that LRBVASSAMs are equivalent to LBC-grammars. Firstly, we
shall show that the latter are at least as expressive as the former. To do this, we would
like to encode nullary, unary and binary rules of LRBVASSAMs using formulas of
LBC. Let us simplify this task a bit and use LP instead of LBC; so, we allow ourselves
to use product.

Construction 1
Assume that we are given the input-sensitive LRBVASSAM H = ⟨Q,P0,P1,P2, s, κ,K,C⟩.

• Let us consider states from Q as primitive formulas; besides, we introduce new
primitive formulas g1, . . . , gK , f (gi correspond to standard-basis vectors ei in NK ,
and f is a distinguished formula with the informal meaning of being the finish state).
Let us agree on the following notation: if v ∈ NK , then g•v := g•v11 • . . . • g•vKK and
gv := gv11 ⊔ . . . ⊔ gvKK . Hence g•v consists of gi-s combined using product • while gv

is a multiset consisting of gi-s.
• For each φ0 = q(ν) ∈ P0, let T (φ0) := q\g•ν\f ;
• For each φ1 = q(x+ δ2)← p(x+ δ1) ∈ P1, let T (φ1) := q\g•δ2\(p • g•δ1);
• For each φ2 = q(x+ y)← p(x), r(y) ∈ P2, let T (φ2) := q\(p\f)\(r\f)\f .
• Let P denote P0 ∪ P1 ∪ P2.

Finally, let LPG(H) be the following LP-grammar: LPG(H) := ⟨s\f, ▷⟩ where ai ▷ A iff
A = gi • T (φ1) • . . . • T (φj) for some 0 ≤ j ≤ C and for some φl from P (i here is iterated
over the range 1, . . . , κ).

Remark 7 Formally, the definition of A•l is not correct if l = 0 (what is the product of A
with itself zero times?); consequently, g•v can also be undefined. A way of defining A•0 could
be A•0 = I (where I is the unit). While there is the unit constant I in L∗

IP, we do not have
it in LP. Nevertheless, let us notice that formulas of the form g•v appear in Construction 1
only in certain positions, namely, within formulas of the form q\g•ν\f and q\g•δ2\(p • g•δ1).
This suggests the following treatment of the problematic cases:

• If v = (v1, . . . , vK) and vi1 ̸= 0, . . . , vij ̸= 0 (j ≥ 1, i1 < . . . < ij) while vt = 0 for

t ̸∈ {i1, . . . , ij}, then we define g•v as g
•vi1
i1
• . . . • g

•vij
ij

.

• If ν = 0⃗ in the formula q\g•ν\f , then we simply take a formula of the form q\f
instead.

• If δ2 = 0⃗ in the formula q\g•δ2\(p • g•δ1), then we take a formula of the form
q\(p • g•δ1) instead.

Note that it is impossible that δ1 = 0⃗ since the LRBVASSAM is input-sensitive.

Example 4 Let us take the LRBVASSAM H0 from Example 3. Then we can transform it into
LPG(H0) (note that κ = 2, therefore Σ = {a1, a2}). To do this, let us introduce primitive
formulas q, s, f, g1, g2, g3 and construct the following formulas:

• T (ρ01) = s\(g1 • g3)\f ;
• T (ρ02) = q\(g1 • g2 • g3)\f ;

18

• T (ρ11) = s\(g2 • g2 • g2)\(s • g3 • g3 • g3);
• T (ρ12) = s\(g3 • g3 • g3)\(s • g2 • g2 • g2);
• T (ρ21) = s\(s\f)\(q\f)\f .
Then LPG(H0) = ⟨s\f, ▷0⟩ where

1. a1 ▷
0 g1; a1 ▷

0 g1 • T (ρ) for ρ ∈ {ρ01, ρ02, ρ11, ρ12, ρ21};
2. a2 ▷

0 g2; a2 ▷
0 g2 • T (ρ) for ρ ∈ {ρ01, ρ02, ρ11, ρ12, ρ21}.

Since C0 = 1, we consider only products with at most one formula of the form T (ρ).
The idea behind Construction 1 is to represent the fact t(v1, v2, v3) by the multiset

gv11 , gv22 , gv33 , t in the antecedent of a sequent. Formulas T (ρ) encode rules applied in a
derivation of the fact. In fact, we shall show that, if the fact t(v1, v2, v3) is derivable in an
LRBVASSAM, then gv1

1 , gv22 , gv33 , t, T (ζ1), . . . , T (ζm)⇒ f is derivable in LP where ζ1, . . . , ζm
are the rules applied in the derivation of t(v1, v2, v3). For example, consider the following
derivation of s(2, 1, 2):

s(1, 0, 1) q(1, 1, 1)

s(2, 1, 2)
(ρ21)

Its multiset of rule occurrences is ρ01, ρ
0
2, ρ

2
1. This derivation corresponds to the following

derivation in LP (we omit some its parts to fit in the page width):

f ⇒ f

g1, g2, g3, q, T (ρ
0
2)⇒ f

g1, g2, g3, T (ρ
0
2)⇒ q\f

(\R)

g1, g2, g3, T (ρ
0
2), (q\f)\f ⇒ f

(\L)

f ⇒ f g1, g3 ⇒ g1 • g3
g1, g3, (g1 • g3)\f ⇒ f

(\L)
s⇒ s

g1, g3, s, T (ρ
0
1)⇒ f

(\L)

g1, g3, T (ρ
0
1)⇒ s\f

(\R)

g1, g2, g3, T (ρ
0
2), g1, g3, T (ρ

0
1), (s\f)\(q\f)\f ⇒ f

(\L)
s⇒ s

g1, g1, g2, g3, g3, s, T (ρ
0
2), T (ρ

0
1), T (ρ

2
1)⇒ f

g1, g1, g2, g3, g3, T (ρ
0
2), T (ρ

0
1), T (ρ

2
1)⇒ s\f

(\R)

Similarly, one can transform the derivation (2) into the derivation of the sequent
g1, g1, g1, g2, g2, g2, g2, g2, T (ρ

0
2), T (ρ

0
1), T (ρ

2
1), T (ρ

2
1), T (ρ

1
1)⇒ s\f . From this sequent we can

derive the one g1 • T (ρ02), g1 • T (ρ01), g1 • T (ρ21), g2 • T (ρ21), g2 • T (ρ11), g2, g2, g2 ⇒ s\f . Its
derivability proves that a1a1a1a2a2a2a2a2 belongs to L(LPG(H0)).

The constructed grammar allows one to simulate derivations in H by derivations in
LP using the LP-grammar LPG(H). However, the latter grammar uses many formulas
with product, so it is not an LBC-grammar. Our goal now is to enhance Construction
1 by eliminating product. The idea of reaching this goal is to use the equivalence
(A • B)\C ⇔ A\B\C. If φ0 = q(ν) ∈ P0, then T (φ0) can be re-defined as q\g•ν
 f
(see the definition of
 in Section 2.5). However, this trick can be used only if product
stands under division, so it does not work with formulas T (φ1) for φ1 ∈ P1. Namely,
the subformula p•g•δ1 is not under division. Even worse, in the definition of LPG(H),
we introduce formulas gi•T (φ1)•. . .•T (φj) where product is the outermost operation.

To handle these cases, we shall use type-raising considered in various papers on
the Lambek calculus and on combinatory categorial grammars (see, e.g., [21]). The
idea is, given a formula B = A1 • . . . • An, to replace it by a formula of the form
(B\C)\C for some C; this places B under division, hence we can replace the latter
formula by the equivalent one (B
 C)\C. The same trick is extensively used in [22]:

19

there C = b is a fresh variable, and A\b is called relative negation of A. Thus (B\b)\b
is a “pseudo-double-negation” of B.

Let us modify Construction 1 as follows:

Construction 2

• For each φ0 = q(ν) ∈ P0 we define the formula T ′(φ0) := q\g•ν
 f ;
• For each φ1 = q(x+ δ2)← p(x+ δ1) ∈ P1 we define the formula
T ′(φ1) := q\g•δ2
 ((p • g•δ1)
 f)\f ;

• For each φ2 = q(x+ y)← p(x), r(y) ∈ P2 we define the formula
T ′(φ2) := T (φ2) = q\(p\f)\(r\f)\f .

Finally, let us define the LBC-grammar LBCG(H) as follows: LBCG(H) := ⟨s\f, ▷′⟩ where
ai ▷

′ B if and only if B = s\((s • A)
 f)\f where A = gi • T ′(φ1) • . . . • T ′(φj) for some
0 ≤ j ≤ C and for some φl from P = P0 ∪ P1 ∪ P2 (i is iterated over the range 1, . . . , κ).

Clearly, LBCG(H) is an LBC-grammar since all the formulas are defined using
only the division operation.

Remark 8 Unfortunately, the number of pairs in LBCG(H) is not polynomial w.r.t. the size of
the LRBVASSAM H, so the construction is not polynomial in size. However, it is polynomial
if the parameter C in the LRBVASSAM is fixed: the number of pairs in the binary relation
of LBCG(H) has the upper bound |Σ|(1 + |P|+ . . .+ |P|C) ≤ κ|P|C+1 for |P| > 1.

Example 5 Let us take the LRBVASSAM H0 from Example 3 and transform it into
LBCG(H0). The following formulas are constructed:

• T ′(ρ01) = s\g1\g3\f ;
• T ′(ρ02) = q\g1\g2\g3\f ;
• T ′(ρ11) = s\g2\g2\g2\(s\g3\g3\g3\f)\f ;
• T ′(ρ12) = s\g3\g3\g3\(s\g2\g2\g2\f)\f ;
• T ′(ρ21) = s\(s\f)\(q\f)\f .
Then LBCG(H0) = ⟨s\f, ▷′⟩ where

1. a1 ▷
′ s\(s\g1\f)\f ; a1 ▷

′ s\(s\g1\T ′(ρ)\f)\f for ρ ∈ {ρ01, ρ02, ρ11, ρ12, ρ21};
2. a2 ▷

′ s\(s\g2\f)\f ; a2 ▷
′ s\(s\g2\T ′(ρ)\f)\f for ρ ∈ {ρ01, ρ02, ρ11, ρ12, ρ21}.

Another example of applying Construction 2 is Example ??.
The main result of this section is the following theorem.

Theorem 10 Let H be an input-sensitive LRBVASSAM. Then:

1. L(LBCG(H)) = Ψ−1(L(H)).
2. The grammar LBCG(H) being considered as an L∗P-grammar generates the same

language Ψ−1(L(H)).

20

Firstly, we want to introduce yet another construction for the sake of simplifying
proof analysis. Namely, let us define the LP-grammar LBCG1(H).

1. For each φ0 = q(ν) ∈ P0 we define the formula T ′
1(φ0) := q\g•ν\f ;

2. For each φ1 = q(x + δ2) ← p(x + δ1) ∈ P1 we define the formula T ′
1(φ1) :=

q\g•δ2\((p • g•δ1)\f)\f ;
3. For each φ2 = q(x + y) ← p(x), r(y) ∈ P2 we define the formula T ′

1(φ2) :=
q\(p\f)\(r\f)\f .

Then, LBCG1(H) := ⟨s\f, ▷′1⟩ where ai ▷
′
1 B if and only if

B = s\((s •A)\f)\f

where A = gi • T ′
1(φ1) • . . . • T ′

1(φj) for some 0 ≤ j ≤ C such that all φl are from
P = P0 ∪ P1 ∪ P2.

Example 6 Let us take the LRBVASSAM H0 from Example 3 and transform it into
LBCG1(H

0). The following formulas are constructed:

• T ′
1(ρ

0
1) = s\(g1 • g3)\f ;

• T ′
1(ρ

0
2) = q\(g1 • g2 • g3)\f ;

• T ′
1(ρ

1
1) = s\(g2 • g2 • g2)\((s • g3 • g3 • g3)\f)\f ;

• T ′
1(ρ

1
2) = s\(g3 • g3 • g3)\((s • g2 • g2 • g2)\f)\f ;

• T ′
1(ρ

2
1) = s\(s\f)\(q\f)\f .

Then LBCG1(H
0) = ⟨s\f, ▷′1⟩ where

1. a1 ▷
′ s\((s • g1)\f)\f ; a1 ▷

′ s\((s • g1 • T ′
1(ρ))\f)\f for ρ ∈ {ρ01, ρ02, ρ11, ρ12, ρ21};

2. a2 ▷
′ s\((s • g2)\f)\f ; a2 ▷

′ s\((s • g2 • T ′
1(ρ))\f)\f for ρ ∈ {ρ01, ρ02, ρ11, ρ12, ρ21}.

Remark 9 The grammar LBCG1(H) is obtained from LBCG(H) by replacing each
 by \.
The resulting grammar is not an LBC-grammar anymore, since it includes formulas with
products. Note that L(LBCG(H)) = L(LBCG1(H)); this directly follows from the fact that
replacing a formula in a grammar by an equivalent one does not change the language generated
by the grammar (see Subsection 2.5).

So, our goal is to prove that L(LBCG1(H)) = Ψ−1(L(H)). The proof consists of
the main lemma supported by several technical definitions, propositions and lemmas.

Definition 11 Let Θ = {θ1, . . . , θl} be a multiset consisting of rules from P with a fixed

enumeration of its elements. Then F (i)(Θ) is defined as the formula s\((s • A(i)(Θ))\f)\f
where A(i)(Θ) = gi • T ′

1(θ1) • . . . • T ′
1(θl).

Note that, if Θ′ is the same set Θ with some other enumeration of its elements, then K ⊢
F (i)(Θ)⇔ F (i)(Θ′). Therefore, it is not important how elements of Θ are enumerated.

21

This definition introduces a short notation for formulas appearing in the grammar
LBCG1(H). Indeed, the definition of LBCG1(H) says that ai▷

′
1F

(i)(Θ) for all possible
multisets Θ of cardinality less than or equal to C that consist of rules from P.

Definition 12 Let u = (u1, . . . , uK) ∈ NK be a vector such that |u| = M . We transform it
into the following tuple tuple(u) = (i1, . . . , iM): firstly, i1 = . . . = iu1 = 1; secondly, iu1+1 =
. . . = iu1+u2 = 2; in general, iu1+...+ul−1+1 = . . . = iu1+...+ul−1+ul = l (for l = 2, . . . ,K).
For example, if u = (2, 3, 0, 1), then the tuple is i1 = 1, i2 = 1, i3 = 2, i4 = 2, i5 = 2, i6 = 4.

Let Θ1, . . . ,ΘM be finite ordered multisets of rules from P and let u ∈ NK such that |u| =
M . Then F (u)(Θ1, . . . ,ΘM) := F (i1)(Θ1), . . . , F

(iM)(ΘM) where (i1, . . . , iM) = tuple(u).

Lemma 1 (main) Let H = ⟨Q,P0,P1,P2, s, κ,K,C⟩ be an input-sensitive LRBVASSAM.
Consider the sequent of the form

gu, F (u′)(Θ1, . . . ,ΘM), t⇒ f (3)

where u, u′ ∈ NK , m,M ∈ N, M = |u′|, t ∈ Q, and Θi is a finite ordered multiset of rules
from P for each i = 1, . . . ,M .

The following statements are equivalent:

1. The sequent (3) is derivable in LP;
2. The sequent (3) is derivable in L∗P;
3. The fact t(u + u′) has a derivation tree in H such that the multiset of its rule

occurrences is Θ1 ⊔ . . . ⊔ΘM .

This lemma establishes the equivalence of proofs in LP, L∗P and in the given
LRBVASSAM H. Obviously, statement 1 implies statement 2 (because L∗P extends
LP). We shall show that statement 2 implies statement 3 and that statement 3 implies
statement 1. The former implication is harder then the latter one. To prove it we need
to analyze proofs of sequents in L∗P. The core of the proof is the following proposition
formulated for formulas of the form T (ζ) from the grammar LPG(H).

Proposition 11 Let H = ⟨Q,P0,P1,P2, s, κ,K,C⟩ be an input-sensitive LRBVASSAM.
Consider a sequent of the form gu, T (ζ1), . . . , T (ζm), t ⇒ f where u ∈ NK , m ∈ N, ζi ∈ P,
t ∈ Q. If it is derivable in L∗P, then the fact t(u) has a derivation tree in H such that the
multiset of its rule occurrences is {ζ1, . . . , ζm}.

Its proof is not straightforward, it involves several technical lemmas, so we delay it
to Section 4.1.2. To prove that statement 2 of Lemma 1 implies statement 3 we need
another lemma.

Lemma 2

1. LP ⊢ T (ζ)⇒ T ′
1(ζ).

2. LP ⊢ gi, T (θ1), . . . , T (θl)⇒ F (i)(Θ) where Θ = {θ1, . . . , θl}.

22

Proof Note that T (ζ) = T ′
1(ζ) whenever ζ ∈ P0 ∪ P2. If ζ ∈ P1, then

• T (ζ) = q\g•δ2\(p • g•δ1),
• T ′

1(ζ) = q\g•δ2\((p • g•δ1)\f)\f .

Derivability of q\g•δ2\(p • g•δ1) ⇒ q\g•δ2\((p • g•δ1)\f)\f follows from the fact that LP ⊢
A⇒ (A\B)\B for all formulas A,B.

To prove the second statement, firstly notice that the following structure represents a
correct derivation in LP:

f ⇒ f s, gi, T ′
1(θ1), . . . , T

′
1(θl)⇒ s • gi • T ′

1(θ1) • . . . • T ′
1(θl)

gi, T ′
1(θ1), . . . , T

′
1(θl), s, (s • gi • T ′

1(θ1) • . . . • T ′
1(θl))\f ⇒ f

(\L)

gi, T ′
1(θ1), . . . , T

′
1(θl)⇒ s\((s • gi • T ′

1(θ1) • . . . • T ′
1(θl))\f)\f

(\R)× 2

Thus LP ⊢ gi, T ′
1(θ1), . . . , T

′
1(θl) ⇒ F (i)(Θ). Applying the cut rule several times to this

sequent and to the sequents T (θ1) ⇒ T ′
1(θ1), . . . , and to T (θl) ⇒ T ′

1(θl), which have been

proved to be derivable in LP, we conclude that LP ⊢ gi, T (θ1), . . . , T (θl) ⇒ F (i)(Θ), as
desired. □

When proving that statement 3 of Lemma 1 implies statement 1 we shall use the
following lemmas.

Lemma 3 If the fact t(u) has a derivation tree in H such that the multiset of its rule
occurrences is {φ1, . . . , φN}, then LP ⊢ gu, T ′

1(φ1), . . . , T
′
1(φN), t⇒ f .

Proof The proof is by induction on N , which is the size of a derivation tree.
The base case is N = 0. Then there is no derivation tree of t(u) with the empty multiset

of rule occurrences (there must be at least one nullary rule), ergo the “if” statement is false.
To prove the induction step, consider a derivation tree of t(u). There are three possible

cases how it might look like (corresponding to three items of Definition 7):
Case A. The derivation tree of t(u) is t(u). Then this fact must be a nullary rule t(u) =

φ1 ∈ P0. Then T ′
1(φ1) = T (φ1) = t\g•u\f . Below a derivation of gu, T (φ1), t ⇒ f is

presented:
f ⇒ f gu ⇒ g•u

gu, g•u\f ⇒ f
(\L)

t⇒ t

gu, t\g•u\f, t⇒ f
(\L)

The sequent gu ⇒ g•u is derivable by means of the rule (•R).
Formally, we must also consider the case where u = 0⃗. In this case, T (φ1) = t\f , and the

derivation is of the form:
f ⇒ f t⇒ t

t\f, t⇒ f
(\L)

Case B. The derivation tree of t(u) is of the form

T
t(v + δ2)

(φi)

for some φi = t(x + δ2) ← q(x + δ1) ∈ P1; in particular, u = v + δ2. Without loss of
generality, assume that i = 1. Then T is a derivation tree of the fact q(v+δ1), and Rule(T) =

23

{φ2, . . . , φN}. By the induction hypothesis, the sequent gv+δ1 , T ′
1(φ2), . . . , T

′
1(φN), q ⇒ f is

derivable. From it, one can derive the sequent gu, T ′
1(φ1), . . . , T

′
1(φN), t⇒ f as follows:

f ⇒ f

gv+δ1 , T ′
1(φ2), . . . , T

′
1(φN), q ⇒ f

gv, q • g•δ1 , T ′
1(φ2), . . . , T

′
1(φN)⇒ f

gv, T ′
1(φ2), . . . , T

′
1(φN)⇒ (q • g•δ1)\f

(\R)

gv, T ′
1(φ2), . . . , T

′
1(φN), ((q • g•δ1)\f)\f ⇒ f

(\L)

gδ2 ⇒ g•δ2

gv+δ2 , g•δ2\((q • g•δ1)\f)\f, T ′
1(φ2), . . . , T

′
1(φN)⇒ f

(\L)

t⇒ t

gu, t\g•δ2\((q • g•δ1)\f)\f, T ′
1(φ2), . . . , T

′
1(φN), t⇒ f

(\L)

This completes the proof for this case.
Case C. The derivation tree of t(u) is of the form

T1 T2
t(v1 + v2)

(φi)

for some φi = t(x + y) ← q1(x), q2(y) ∈ P2. Without loss of generality, i = 1. Then Tj is a
derivation tree of the fact qj(vj) for j = 1, 2 (such that u = v1+v2), and Rule(T1)⊔Rule(T2) =
{φ2, . . . , φm}. By the induction hypothesis, the sequents gvj ,Θj , qj ⇒ f are derivable for
j = 1, 2 where Θ1, Θ2 are multisets such that Θ1,Θ2 = T ′

1(φ2), . . . T
′
1(φm). From these two

sequents, one can derive the sequent gu, T ′
1(φ1), . . . , T

′
1(φm), t⇒ f as follows:

f ⇒ f

gv2 ,Θ2, q2 ⇒ f

gv2 ,Θ2 ⇒ q2\f
(\R)

gv2 ,Θ2, (q2\f)\f ⇒ f
(\L)

gv1 ,Θ1, q1 ⇒ f

gv1 ,Θ1 ⇒ q1\f
(\R)

gv1+v2 ,Θ1,Θ2, (q1\f)\(q2\f)\f ⇒ f
(\L)

t⇒ t

gu, t\(q1\f)\(q2\f)\f, T ′
1(φ2), . . . , T

′
1(φm), t⇒ f

(\L)

It remains to note that T ′
1(φ1) = T (φ1) = t\(q1\f)\(q2\f)\f . □

Lemma 4 Let LP ⊢ Γ, A, s⇒ B. Then LP ⊢ Γ, s\((s •A)\B)\B, s⇒ B.

Proof

B ⇒ B

Γ, A, s⇒ B

Γ, s •A⇒ B
(•L)

Γ⇒ (s •A)\B
(\R)

Γ, ((s •A)\B)\B ⇒ B
(\L)

s⇒ s

Γ, s\((s •A)\B)\B, s⇒ B
(\L)

□

Corollary 1 If LP ⊢ Γ, A(i)(Θ), s⇒ f , then LP ⊢ Γ, F (i)(Θ), s⇒ f .

4.1.1 Proofs of Lemma 1 and Theorem 10

Finally, we are ready to prove the main lemma (Lemma 1) and to show how Theorem
7 follows from it.

24

Proof of Lemma 1

Let tuple(u′) = (i1, . . . , iM). Then F (u′)(Θ1, . . . ,ΘM) = F (i1)(Θ1), . . . , F
(iM)(ΘM). Let

Θj =
{
θ1j , . . . , θ

lj
j

}
. Let R = Θ1 ⊔ . . . ⊔ΘM .

Statement 1 obviously implies 2 since each sequent derivable in LP is derivable in L∗P.
To show that statement 2 implies statement 3 let us prove that derivability of the sequent

gu, F (u′)(Θ1, . . . ,ΘM), t⇒ f (4)

in L∗P implies that there is a derivation tree of t(u) in H with the multiset of rule occurrences

equal to R. According to Lemma 2, gij , T (θ1j), . . . , T (θ
lj
j) ⇒ F (ij)(Θj) is derivable in LP.

Applying the cut rule to (4) and to these sequents, we conclude that the following sequent is
derivable in L∗P as well:

gu, gi1 , . . . , giM , T (θ11), . . . , T (θ
l1
1), . . . , T (θ1M), . . . , T (θlMM), t⇒ f

Note that gu, gi1 , . . . , giM = gu+u′
. According to Proposition 11, t(u+u′) has a derivation

tree inH with the multiset of rule occurrences equal to {θ11, . . . , θ
l1
1 , , θ1M , . . . , θlMM } = R.

The implication is proved.
Finally, let us prove that 3 implies 1. By assumption, there exists a derivation tree in H

of t(u+u′) with the multiset R of rule occurrences. It follows from Lemma 3 that the sequent

gu+u′
, T ′

1(θ
1
1), . . . , T

′
1(θ

l1
1), . . . , T ′

1(θ
1
M), . . . , T ′

1(θ
lM
M), t⇒ f

is derivable in LP. Applying the rule (•L) several times we come up with the sequent

gu, A(i1)(Θ1), . . . , A
(iM)(ΘM), t⇒ f.

Applying Corollary 1 several times we conclude that the sequent

gu, F (i1)(Θ1), . . . , F
(iM)(ΘM), t⇒ f

is derivable in LP. This is exactly statement 1 of the lemma. □

Proof of Theorem 10 Let H = ⟨Q,P0,P1,P2, s, κ,K,C⟩. Consider the grammar LBCG1(H),
which is an LP-grammar. Assume that w = b1 . . . bM where bj = aij ∈ Σ for j = 1, . . . ,M .
Then w ∈ L(LBCG1(H)) if and only if there exist multisets Θ1, . . . ,ΘM consisting of rules
from P such that |Θj | ≤ C and such that the sequent

F (i1)(Θ1), . . . , F
(iM)(ΘM)⇒ s\f

is derivable in LP. It is equiderivable with the sequent

F (i1)(Θ1), . . . , F
(iM)(ΘM), s⇒ f.

Lemma 1 tells us that the latter sequent is derivable in LP if and only if the fact s(u′) has
a derivation tree in H such that the multiset of its rule occurrences is Θ1 ⊔ . . . ⊔ ΘM ; here
u′ ∈ NK is a vector such that tuple(u′) and {i1, . . . , iM} coincide as multisets. The multiset
{i1, . . . , iM} contains |w|l occurrences of the number l (for l = 1, . . . , κ) and 0 occurrences of
l if κ < l ≤ K. Thus u′ such that tuple(u′) coincides with i1, . . . , iM must be ιK(Ψ(w)).

Summing up, w ∈ L(LBCG1(H)) if and only if there exist multisets Θ1, . . . ,ΘM con-
sisting of rules from P such that |Θj | ≤ C and such that the fact s(ιK(Ψ(w))) has a
derivation tree in H with the multiset of its rule occurrences being Θ1 ⊔ . . . ⊔ΘM . The lat-
ter is equivalent to the fact that s(ιK(Ψ(w))) has a derivation tree of the size less than or
equal to CM = C|w|. This is exactly equivalent to the statement that Ψ(w) ∈ L(H), hence
L(LBCG1(H)) = Ψ−1(L(H)).

It remains to notice that L(LBCG1(H)) = L(LBCG(H)) since the difference between the
two grammars is that some formulas in them are replaced by equivalent ones.

If LBCG1(H) is considered as an L∗P-grammar, then the same reasonings hold. The only
difference is that we exploit equivalence of statements 2 and 3 of Lemma 1 instead of that of
statements 1 and 3. □

25

4.1.2 Proof of Proposition 11

To prove Proposition 11 we need several technical lemmas.

Lemma 5 If L∗P ⊢ Π ⇒ q where Π ∈ SFm(LPG(H))∗ consists of formulas from
SFm(LPG(H)) and where q ∈ Q, then Π = q.

Proof The proof is by induction on the size of a derivation in L∗P. The base case is trivial
(q ⇒ q is an axiom). To prove the induction step consider the last rule applied in a derivation
of Π⇒ q.

Case (\L). The last rule application is of the form:

Γ, A⇒ q ∆⇒ B

Γ,∆, B\A⇒ q
(\L)

Here Π = Γ,∆, B\A. Let us apply the induction hypothesis to Γ, A ⇒ q and thus conclude
that Γ = ∅, A = q. Therefore, B\A = B\q ∈ SFm(LPG(H)). However, there are no formulas
in SFm(LPG(H)) that are of the form B\q. This is proved by inspection of Construction
1. Indeed, for each formula D\C from SFm(LPG(H)) it is the case that C includes either
f or g•δ1 where δ1 ̸= 0⃗. Here we use the fact that H is input-sensitive. This leads us to a
contradiction. Consequently, it is not the case that (\L) is the last rule application.

Case (•L). The last rule application is of the form:

Γ, A,B ⇒ q

Γ, A •B ⇒ q
(•L)

By the induction hypothesis, Γ, A,B = q; however, there are at least two formulas in Γ, A,B.
This is a contradiction, hence is not the case that (•L) is the last rule application.

Cases (\R) and (•R) are impossible since the formula in the succedent of the sequent
is q, which is primitive. □

This lemma implies the following one:

Lemma 6 (the lock and key lemma) Let the sequent Π ⇒ C be derivable in L∗P where Π
consists of formulas from SFm(LPG(H)) and C belongs to this set as well. Let the last rule
application be that of (\L) and let the major formula be of the form q\A for q ∈ Q. Then Π
must contain q as a separate formula (i.e. Π = Π′, q).

Proof The last rule application in the derivation of Π⇒ C must be of the form:

Γ, A⇒ C ∆⇒ q

Γ,∆, q\A⇒ C
(\L)

Here Γ,∆, q\A = Π. Since ∆ consists of formulas from SFm(LPG(H)), one can apply Lemma
5 and conclude that ∆ = q. In what follows, q is one of the formulas in Π. □

We call this lemma the lock and key lemma because the primitive formula q reminds
us a key that opens “a lock” q\A; without the key, the lock cannot be opened.

We need another lemma of the same kind. To formulate it, let us introduce a
function D, which takes a multiset of formulas of LP and returns a multiset of formulas.

26

Definition 13 The function D is defined as follows:

• D(p) = p (p ∈ Pr);
• D(B\A) = B\A;
• D(A •B) = D(A),D(B);
• D(Γ,∆) = D(Γ),D(∆).

Informally, we replace all outermost products • in a multiset of formulas by com-
mas. Let us also say that, if g•u = gi1 • . . . • gin is a formula where n = |u| and
if π ∈ Sn, then π(g•u) is the formula giσ(1)

• . . . • giσ(n)
. In other words, we simply

change the order of factors in g•u. Since the product is commutative, this leads to an
equivalent formula π(g•u)⇔ g•u interchangeable with g•u.

Lemma 7 Let L∗P ⊢ Π ⇒ π(g•h) where Π ∈ SFm(LPG(H))∗ consists of formulas from
SFm(LPG(H)), 0⃗ ̸= h ∈ NK , n = |h|, and π is a permutation from Sn. Then D(Π) = gh.

Proof The proof is again by induction on the size of a derivation of the sequent. The base
case is trivial since in such a case we have a sequent of the form gi ⇒ gi for some i. To prove
the induction step let us consider the last rule applied. Again, there are several cases:

Case (\L). In this case, the last rule application has the form:

Γ, A⇒ π(g•h) ∆⇒ B

Γ,∆, B\A⇒ π(g•h)
(\L)

Applying the induction hypothesis we conclude that D(Γ, A) = gv for some v ∈ NK . Conse-
quently, A must be a product of several primitive formulas of the form gi, i.e. A = τ(g•w)
for some w ∈ NK , w ̸= 0⃗, and for some permutation τ . Therefore, B\τ(g•w) belongs to
SFm(LPG(H)). However, there are no formulas of such form in SFm(LPG(H)); indeed, for
each formula D\C from SFm(LPG(H)) it is the case that C includes either f or some q ∈ Q.
In what follows, the last rule application cannot be of the form (\L).

Case (\R). This is impossible since there are no divisions in π(gh).
Case (•L). In this case, the last rule application is of the form

Γ, E1, E2 ⇒ π(gh)

Γ, E1 • E2 ⇒ π(gh)
(•L)

It suffices to notice that D(Γ, E1 • E2) = D(Γ, E1, E2). The induction hypothesis completes
the proof for this case.

Case (•R). In this case, the last rule application is of the form

Γ1 ⇒ π1

(
g•h1

)
Γ2 ⇒ π2

(
g•h2

)
Γ1,Γ2 ⇒ π(g•h)

where π
(
g•h

)
= π1

(
g•h1

)
•π2

(
g•h2

)
for some vectors h1, h2 (note that they belong to NK

as well as h, they are not h’s coordinates); consequently, h1+h2 = h. Applying the induction
hypothesis we conclude that D(Γ1) = gh1 , D(Γ2) = gh2 . This implies that D(Γ1,Γ2) = g•h.
This concludes the proof. □

We are ready to prove Proposition 11.

27

Proof of Proposition 11 We prove that derivability of the sequent gu, T (ζ1), . . . , T (ζm), t⇒ f
implies that there is a derivation tree of t(u) in H with the multiset of rule occurrences
{ζ1, . . . , ζm}. The proof is by induction on m.

The base case of the proof is trivial. Indeed, the sequent of interest is definitely not an
axiom since we have t in the antecedent and f ̸= t in the succedent.

We proceed with proving the induction step. As usually, let us consider the last rule
application in the derivation. Note that only the rule (\L) can be applied at the last step of
the derivation of gu, T (ζ1), . . . , T (ζm), t ⇒ f because all the formulas in this sequent that
are not primitive are of the form B\A. Without loss of generality, let T (ζ1) be the major
formula in the last rule application. There are three subcases:

Subcase a: ζ1 = q(ν) ∈ P0. Then the last step of the derivation must be of the form

gu2 , g•ν\f,Θ2 ⇒ f gu1 ,Θ1 ⇒ q

gu, q\g•ν\f, T (ζ2), . . . , T (ζm), t⇒ f
(\L)

for some u1, u2 ∈ NK and some Θ1, Θ2 such that gu1 , gu2 = gu (equivalently, u1 + u2 = u)
and Θ1,Θ2 = T (ζ2), . . . , T (ζm), t. This is simply how the rule (\L) looks like in general.
Lemma 5 implies that gu1 ,Θ1 = q, hence u1 = 0⃗ (there are no formulas of the form gi in the
antecedent) and Θ1 = q. Since Θ1,Θ2 = T (ζ2), . . . , T (ζm), t, it must be the case that t = q
and Θ2 = T (ζ2), . . . , T (ζm). Note also that u2 = u because u1 = 0⃗. Summarizing, the last
rule application is of the form

gu, g•ν\f, T (ζ2), . . . , T (ζm)⇒ f q ⇒ q

gu, q\g•ν\f, T (ζ2), . . . , T (ζm), q ⇒ f
(\L)

Now, let us investigate how the last rule application can look like in the derivation of the
sequent gu, g•ν\f, T (ζ2), . . . , T (ζm)⇒ f . Clearly, it must be an application of (\L) since all
the formulas in the sequent are either primitive or of the form B\A; besides the succedent is
a primitive formula. Two possibilities exist:

1. The formula T (ζi) for some i ∈ {2, . . . ,m} is the major one in the last rule appli-
cation of gu, g•ν\f, T (ζ2), . . . , T (ζm) ⇒ f . The formula T (ζi) is of the form r\A
for some r ∈ Q and for some A. Then, according to Lemma 6, the formula r must
be contained in gu, g•ν\f, T (ζ2), . . . , T (ζm) as a separate formula, which is not the
case. This leads us to a contradiction.

2. The formula g•ν\f is major. Then the last rule application in the derivation of
gu, g•ν\f, T (ζ2), . . . , T (ζm)⇒ f must be of the following form:

gu3 , f,Θ3 ⇒ f gu4 ,Θ4 ⇒ g•ν

gu, g•ν\f, T (ζ2), . . . , T (ζm)⇒ f
(\L)

Here gu3 , gu4 = gu (equivalently, u3 + u4 = u), and Θ3,Θ4 = T (ζ2), . . . , T (ζm).
Let us examine the sequent gu3 , f,Θ3 ⇒ f . We want to prove that it is an axiom.

Otherwise, it would be the conclusion of some rule application; more precisely, this
rule application must be that of (\L). Notice that all the formulas with division in
this sequent are of the form r\A for some r ∈ Q. If the last rule application was
(\L), then its major formula would be of this form. According to Lemma 6, this
would imply that r is contained in gu3 , f,Θ3; however, this is not the case. As a
consequence, gu3 , f,Θ3 ⇒ f is the axiom f ⇒ f , hence u3 = 0⃗, Θ3 = ∅.

Now it remains to apply Lemma 7 to gu4 ,Θ4 ⇒ g•ν , using which we con-
clude that gu4 = gν and that Θ4 = ∅. Finally, we have u = u4 = ν, q = t, and

28

T (ζ2), . . . , T (ζm) = ∅. Hence there is a derivation tree of t(u) in H with the multiset
of rule occurrences {ζ1}: t(u) = q(ν) = ζ1 belongs to P0.

Subcase b: ζ1 = q(x + δ2) ← p(x + δ1) ∈ P1. Then the last step of the derivation of
gu, T (ζ1), . . . , T (ζm), t⇒ f must be of the form:

gu, g•δ2\(p • g•δ1), T (ζ2), . . . , T (ζm)⇒ f q ⇒ q

gu, q\g•δ2\(p • g•δ1), T (ζ2), . . . , T (ζm), t⇒ f
(\L)

and t = q. This is proved in the same way as for Subcase a (using Lemma 5).
The lock and key lemma implies that the major formula in the last rule application in

the derivation of
gu, g•δ2\(p • g•δ1), T (ζ2), . . . , T (ζm)⇒ f (5)

must be g•δ2\(p•g•δ1). Indeed, the remaining formulas are either primitive or they are of the
form r\A for some r ∈ Q. However, there is no formula of the form r ∈ Q in the antecedent.
Ergo, the last rule application in the derivation of (5) must be of the form

gu1 , p • g•δ1 ,Θ1 ⇒ f gu2 ,Θ2 ⇒ g•δ2

gu, g•δ2\(p • g•δ1), T (ζ2), . . . , T (ζm)⇒ f
(\L)

for some u1, u2 ∈ NK and Θ1,Θ2 such that gu1 , gu2 = gu (equivalently, u1 + u2 = u) and
T (ζ2), . . . , T (ζm) = Θ1,Θ2. According to Lemma 7, gu2 ,Θ2 = gδ2 , hence u2 = δ2, Θ2 = ∅.

Since gu1 , p • g•δ1 ,Θ1 ⇒ f is derivable, then so is gu1 , p, gδ1 ,Θ1 ⇒ f ; indeed, the
latter is obtained from the former by using the rule (•−1

L) several times, which is admis-

sible in L∗P. Since T (ζ2), . . . , T (ζm) = Θ1,Θ2 = Θ1, the sequent gu1 , p, gδ1 ,Θ1 ⇒ f
equals gu1+δ1 , T (ζ2), . . . , T (ζm), p ⇒ f . Let us apply the induction hypothesis to it; it
yields that there is a derivation tree of p(u1 + δ1) in H with the multiset of rule occur-
rences {ζ2, . . . , ζm}. Finally, applying the rule ζ1 to p(u1 + δ1) we come up with the fact
q(u1+δ2) = q(u1+u2) = q(u). Consequently, there is a derivation tree in H of the latter fact
with the multiset of rule occurrences {ζ1, . . . , ζm}. This concludes the proof for this case.

Subcase c: ζ1 = q(x+ y)← p(x), r(y). Then T (ζ1) = q\(p\f)\(r\f)\f , the last step of
the derivation is of the form

gu, (p\f)\(r\f)\f, T (ζ2), . . . , T (ζm)⇒ f q ⇒ q

gu, q\(p\f)\(r\f)\f, T (ζ2), . . . , T (ζm), t⇒ f
(\L)

and t = q. This is proved in the same way as for Subcases a and b (using Lemma
5). Now, let us consider the last rule application in the derivation of the sequent
gu, (p\f)\(r\f)\f, T (ζ2), . . . , T (ζm)⇒ f . We infer from the lock and key lemma (Lemma 6)
that the major formula in this rule application cannot be T (ζi) for any i = 2, . . . ,m. Thus
the major formula must be (p\f)\(r\f)\f , ergo the last rule application in the derivation of
gu, (p\f)\(r\f)\f, T (ζ2), . . . , T (ζm)⇒ f must be of the form

gu2 , (r\f)\f,Θ2 ⇒ f gu1 ,Θ1 ⇒ p\f
gu, (p\f)\(r\f)\f, T (ζ2), . . . , T (ζm)⇒ f

(\L)

for some u1, u2 ∈ NK and some Θ1,Θ2 such that u1+u2 = u and Θ1,Θ2 = T (ζ2), . . . , T (ζm).
Again, the lock and key lemma implies that the last rule application in the derivation of
gu2 , (r\f)\f,Θ2 ⇒ f must be of the form

gu4 , f,Θ4 ⇒ f gu3 ,Θ3 ⇒ r\f
gu2 , (r\f)\f,Θ2 ⇒ f

(\L)

for some u3, u4 ∈ NK and some Θ3,Θ4 such that u3 + u4 = u2 and Θ3,Θ4 = Θ2.

29

Now, let us look at the sequent gu4 , f,Θ4 ⇒ f . If it is obtained after some rule application,
then its major formula must be contained in Θ4, hence it must equal T (ζi) for some i. Each
T (ζi) is of the form x\A for some x ∈ Q. The lock and key lemma (Lemma 6) implies that x
must be in gu4 , f,Θ4, which is not the case. Consequently, gu4 , f,Θ4 ⇒ f must be the axiom
f ⇒ f . Therefore, u4 = 0⃗, Θ4 = ∅.

As we know, the sequents gu1 ,Θ1 ⇒ p\f and gu3 ,Θ3 ⇒ r\f are derivable in L∗P. The
rule (\−1

R) allows us to infer that the sequents gu1 ,Θ1, p⇒ f and gu3 ,Θ3, r ⇒ f are derivable
as well. Let us apply the induction hypothesis to these sequents and conclude that p(u1) and
r(u3) can be derived in H; moreover, the induction hypothesis tells us that the multisets of
rule occurrences in some their derivation trees are {ζ | T (ζ) ∈ Θ1} and {ζ | T (ζ) ∈ Θ3} resp.
Finally, from p(u1) and r(u3) we can obtain the fact q(u1+u3) using ζ1. The derivation tree
of q(u1 +u3) consists of two subtrees that are derivation trees for p(u1) and r(u3) connected
together via the rule application of ζ1. It remains to notice that, since u4 = 0⃗, it holds that
q(u1+u3) = q(u1+u3+u4) = q(u1+u2) = q(u). Hence we have proved that q(u) is derivable
in H. Moreover, we have proved that the multiset of rule occurrences in its derivation tree
equals {ζ | T (ζ) ∈ Θ1}⊔{ζ | T (ζ) ∈ Θ3}⊔{ζ1} = {ζ | T (ζ) ∈ Θ1⊔Θ3}⊔{ζ1} = {ζ1, . . . , ζm},
which is what we wanted to prove. □

4.2 From LP-Grammars to LRBVASSAMs

Section 4.1 was devoted to the proof of the fact that LBC-grammars are at least
as expressive as LRBVASSAMs. In this subsection, we show that actually the two
formalisms are equivalent. Namely, given an LP-grammar G, we shall present an LRB-
VASSAM LRB(G) generating Ψ(L(G)). Note that LBC-grammars form a subclass
of LP-grammars, so this result together with Theorem 10 imply the equivalence of
LBC-grammars, LP-grammars and LRBVASSAMs.

The idea behind the construction of LRB(G) we are going to introduce is the follow-
ing. Let F be a finite set of formulas such that |F| = c. Let ei be the i-th standard-basis
vector in Nc of the form (0, . . . , 0, 1, 0, . . . , 0) where the i-th coordinate equals 1. We
fix an enumeration num : F → {1, . . . , c} and, given a sequent A1, . . . , An ⇒ B of LP
where all Ai, B ∈ F , we transform it into the fact B(enum(A1) + . . .+ enum(An)). For
example, if F = {p, q, r} and num(p) = 1, num(q) = 2, then the sequent p, p, q ⇒ r is
transformed into the fact r(2, 1, 0). Thus succedents of sequents become states of an
LRBVASSAM and antecedents are encoded as vectors. It remains to translate each
rule of LP into that of an LRBVASSAM. For example, the rule

Π⇒ A Φ⇒ B
Π,Φ⇒ A •B (•R)

is transformed into the binary rule (A • B)(x + y) ← A(x), B(y) of LRBVASSAM.
Indeed, the sum of vectors corresponds to the concatenation of antecedents. The same
can be done with all the remaining rules except for the rule (\L). It has two premises,
so it must be encoded as a binary rule of LRBVASSAM; however, the antecedent of
the conclusion of this rule is not simply the result of concatentation of the antecedents
of the premises. To overcome this issue, we shall slightly modify the calculus LP in
order to make the rule (\L) “truly binary”.

30

4.2.1 A Modification of the Commutative Lambek Calculus

Given a categorial grammar G which is either an LP-grammar or an L∗P-grammar, let
us define a variant of the calculus L∗P denoted by L∗PG and a variant of LP denoted by
LPG. The set FmLPG

of formulas of both L∗PG and LPG equals FmLPG
= FmLP | Σ.

Recall that Σ is the alphabet; so its symbols are now treated as formulas. Sequents of
L∗PG are of one of the three forms: Π⇒ C or Π⇒1 C, or Π⇒2 C (i.e. we introduce
two more sequential arrows) where C ̸∈ Σ.

The axioms and rules of L∗PG are as follows:

A⇒ A
(ax)

Γ, A⇒ S

Γ, a⇒ S
(a ▷ A)

for a ▷ A

∆, D ⇒ C

∆⇒1 D\C (1̂)
Π⇒1 C\A Φ⇒ D

Π,Φ⇒2 (D\C)\A (\̂L)
∆⇒2 D\C
∆, D ⇒ C

(2̂)

Π, D ⇒ C

Π⇒ D\C
(\R)

Γ, A,B ⇒ C

Γ, A •B ⇒ C
(•L) Π⇒ A Φ⇒ B

Π,Φ⇒ A •B (•R)

It is required that all the formulas from Γ,Π,∆,Φ as well as formulas A,B,C,D must
be from FmLP, i.e. they must not belong to Σ. The formula S is not an arbitrary one
but it is the distinguished formula of the grammar G.

The role of new sequential arrows⇒1 and⇒2 is technical. In a nutshell, they help

us to replace the rule (\L) with the “truly binary” one (\̂L) and also to control the
size of a derivation in L∗PG.

The calculus LPG is obtained from L∗PG by requiring that Π ̸= ∅ in the rule
(\R) (Lambek’s restriction for LPG). Equivalently, we can present the rule (\R) in the
following form:

Γ, A,D ⇒ C

Γ, A⇒ D\C
(\R)

Presence of the formula A is needed only to guarantee that there is something in the
antecedent of the conclusion. The multiset Γ now can be empty.

Let Ξ = ai1 . . . aim ∈ Σ∗. If Θ = T1, . . . , Tm is a multiset of formulas such that
aij ▷ Tj for j = 1, . . . ,m, then we write Ξ ▷ Θ. Clearly, if Ξ1 ▷ Θ1 and Ξ2 ▷ Θ2, then
Ξ1Ξ2 ▷Θ1,Θ2. Recall that we allow one to use commas as separators between symbols
in a word. So, we consider Ξ = ai1 , . . . , aim both as a word and as a multiset, depending
on the context.

Lemma 8 If the last rule application in a given derivation of a sequent is that of (2̂), then
this derivation must be of the form

. . .
Σ, A⇒ C

Σ⇒1 A\C (1̂)
. . .

Φ⇒ B

Σ,Φ⇒2 (B\A)\C (\̂L)

Σ,Φ, B\A⇒ C
(2̂)

(6)

31

Proof Let the last rule application look as follows:

∆⇒2 D\C
∆, D ⇒ C

(2̂)

So, the sequent of interest is of the form ∆, D ⇒ C. The only rule after which ∆ ⇒2 D\C
can appear is (\̂L). Hence D = B\A and the last step in the derivation of ∆⇒2 D\C is

Σ⇒1 A\C Φ⇒ B

Σ,Φ⇒2 (B\A)\C (\̂L)

for some Σ,Φ such that ∆ = Σ,Φ. Finally, the sequent Σ ⇒1 A\C can appear only as the
result of a rule application of (1̂):

Σ, A⇒ C

Σ⇒1 A\C (1̂)

□

Lemma 9 Let Π,Ξ ⇒ C be a sequent such that Π is a multiset with elements from FmLP;
Ξ = ai1 , . . . , aim ; and C ∈ FmLP. Then:

1. L∗PG ⊢ Π,Ξ⇒ C if and only if L∗P ⊢ Π,Θ⇒ C for some Θ such that Ξ ▷Θ.
2. LPG ⊢ Π,Ξ⇒ C if and only if LP ⊢ Π,Θ⇒ C for some Θ such that Ξ ▷Θ.

Proof Firstly, let us prove that L∗PG ⊢ Π,Ξ ⇒ C implies L∗P ⊢ Π,Θ ⇒ C for some
appropriate Θ. This is done by induction on the size of a derivation in L∗PG. The base case
is trivial. To prove the induction step, consider the last rule application. It cannot be that

of (1̂) or of (\̂L) since the sequential arrow is ⇒. If the last rule applied is either (•L), (•R)
or (\R), then it suffices to apply the induction hypothesis to the premises and use the same
rule application in L∗P.

Assume that the last rule application is that of (2̂). Lemma 8 says that then the derivation
must be of the form . . .

Σ, A⇒ C

Σ⇒1 A\C (1̂)
. . .

Φ⇒ B

Σ,Φ⇒2 (B\A)\C (\̂L)

Σ,Φ, B\A⇒ C
(2̂)

for some Σ and Φ such that Σ,Φ, B\A = Π,Ξ. Obviously, B\A belongs to Π but not to Ξ.
Thus Π = Π′, B\A.

Let Π′ = ΠΣ,ΠΦ and Ξ = ΞΣ,ΞΦ such that Σ = ΠΣ,ΞΣ and Φ = ΠΦ,ΞΦ. By the
induction hypothesis, L∗P ⊢ ΠΣ, A,ΘΣ ⇒ C and L∗P ⊢ ΠΦ,ΘΦ ⇒ B for ΘΣ,ΘΦ for which
it is the case that ΞΣ ▷ΘΣ and ΞΦ ▷ΘΦ.

From these sequents derivable in L∗P, we derive the following one:

ΠΣ, A,ΘΣ ⇒ C ΠΦ,ΘΦ ⇒ B

ΠΣ,ΠΦ,ΘΣ,ΘΦ, B\A⇒ C
(\L)

The resulting sequent equals Π,ΘΣ,ΘΦ ⇒ C, and Ξ = ΞΣ,ΞΦ ▷ ΘΣ,ΘΦ = Θ. This is what
we aimed to prove.

Another case is the last rule application being that of (a ▷A). Without loss of generality,
let the last rule application be of the form

Π, A,Ξ′ ⇒ S

Π, ai1 ,Ξ
′ ⇒ S

(ai1 ▷ A)

32

where Ξ = ai1 ,Ξ
′, hence Ξ′ = ai2 , . . . , aim . The induction hypothesis tells us that L∗P ⊢

Π, A,Θ′ ⇒ S for Θ′ such that Ξ′ ▷Θ′. Define Θ as A,Θ′. Then Ξ ▷Θ and L∗P ⊢ Π,Θ⇒ S.
This completes the first part of the proof.

The converse statement, namely, that L∗PG ⊢ Π,Ξ⇒ C is implied by L∗P ⊢ Π,Θ⇒ C, is
proved as follows. Firstly, given a derivation of Π,Θ⇒ C we transform each rule application
in it in a sequence of rule applications in L∗PG. The only non-trivial case is a rule application
of (\L). Given a rule application

Σ, A⇒ C Φ⇒ B

Σ,Φ, B\A⇒ C
(\L)

of the rule (\L), we transform it into the sequence (6) of rule applications in L∗PG. Hence
we prove Π,Θ⇒ C in L∗PG. Secondly, it remains to apply rules of the form (a ▷A) in order
to derive Π,Ξ⇒ C from Π,Θ⇒ C.

The proof of the second statement is the same. We only have to take care about non-
emptiness of sequents when applying the induction hypothesis. □

4.2.2 Transformation of Commutative Lambek Grammars into
LRBVASSAMs

Let us now proceed with the definition of the main construction that trasforms an
L∗P-grammar (or an LP-grammar) into an equivalent LRBVASSAM.

Construction 3
Assume that we are given the L∗P-grammar G = ⟨S, ▷⟩. We construct the LRBVASSAM
LRB∗(G) := ⟨Q,P0,P1,P2, S, κ,K, F ⟩ as follows:

• Q := SFm+(G) ∪ {(A,C)j | C ∈ SFm+(G), A ∈ SFm−(G), j ∈ {1, 2}}.
• K equals κ + |SFm−(G)| (recall that κ = |Σ|). Hereinafter we fix a bijection ind :
Σ ∪ SFm−(G) → {1, . . . ,K} such that ind(ai) = i for i = 1, . . . , κ. Informally,
ind enumerates negative subformulas of G by numbers from k + 1 up to K and
it enumerates elements of Σ according to their original numbering (namely, the
number i is assigned to ai ∈ Σ).

• P0 consists of nullary rules A
(
eind(A)

)
for A ∈ SFm−(G) ∩ SFm+(G).

• P1 consists of the following rules:

1. ρA•B,C = C
(
x+ eind(A•B)

)
← C

(
x+ eind(A) + eind(B)

)
for A • B ∈ SFm−(G),

C ∈ SFm+(G);
2. ρ∗D\C = (D\C)(x)← C

(
x+ eind(D)

)
for D\C ∈ SFm+(G);

3. ρ1D,C = (D,C)1(x)← C
(
x+ eind(D)

)
for C ∈ SFm+(G), D ∈ SFm−(G);

4. ρ2D,C = C
(
x+ eind(D)

)
← (D,C)2(x) for C ∈ SFm+(G), D ∈ SFm−(G);

5. ρAai
= S (x+ ei)← S

(
x+ eind(A)

)
for A such that ai ▷ A.

• P2 consists of the following rules:

1. ρA•B = (A •B)(x+ y)← A(x), B(y) for A •B ∈ SFm+(G);
2. ρD\C,A = ((D\C), A)2(x + y) ← (C,A)1(x), D(y) for D\C ∈ SFm−(G) and

A ∈ SFm+(G).

33

• S, which is the distinguished formula in G, is also the distinguished state of the new
grammar.

• F = 6 · max
A∈Fm(G)

|A|+ 1.

If G is an LP-grammar, then let us define the LRBVASSAM LRB(G) in the same way
as LRB∗(G) with the only difference that we replace the rules ρ∗D\C by the rules

ρAD\C = (D\C)(x+ eind(A))← C(x+ eind(D) + eind(A))

for D\C ∈ SFm+(G) and A ∈ SFm−(G).

Remark 10 The size of the grammar LRB∗(G) (or LRB(G)) is polynomial w.r.t. the size of G.

Example 7 Consider the LP-grammar G0 from Example 1. Firstly, let us look at the sets of
its positive and negative subformulas:

• SFm+(G0) = {p\p, p, q};
• SFm−(G0) = {q\p\p, q, q • q, p\p, p}.

The LRBVASSAM LRB∗(G) := ⟨Q,P0,P1,P2, S, κ,K, F ⟩ is defined as follows.

• Q = {p\p, p, q} ⊔ {(A,C)i | C ∈ SFm+(G0), A ∈ SFm−(G0), i ∈ {1, 2}}. The total
number of states equals 3 + 2 · 3 · 5 = 33. For example, (q • q, p\p)1 ∈ Q.

• κ = 2 (recall that the alphabet Σ equals {a, b} in Example 1).
• K = 2 + 5 = 7.
• Let ind have the following definition: ind(q\p\p) = 3, ind(q) = 4, ind(q • q) = 5,
ind(p\p) = 6, ind(p) = 7.

• S = S0 = p\p.
• F = 6 · 5 + 1 = 31.
• Nullary rules are listed below.

– (p\p)(0, 0, 0, 0, 0, 1, 0);
– p(0, 0, 0, 0, 0, 0, 1);
– q(0, 0, 0, 1, 0, 0, 0).

• Unary rules are listed below.

– C(x+ (0, 0, 0, 0, 1, 0, 0))← C(x+ (0, 0, 0, 2, 0, 0, 0)) for C ∈ {p\p, p, q};
– (p\p)(x)← p(x+ (0, 0, 0, 0, 0, 0, 1));
– (D,C)1(x) ← C(x + eind(D)) for C ∈ SFm+(G0), D ∈ SFm−(G0); for example,

the rule (q • q, p\p)1(x)← (p\p)(x+(0, 0, 0, 0, 1, 0, 0)) is one of these unary rules;
– C(x + eind(D)) ← (D,C)2(x) for C ∈ SFm+(G0), D ∈ SFm−(G0); for example,

the rule (p\p)(x+(0, 0, 0, 0, 1, 0, 0))← (q • q, p\p)2(x) is one of these unary rules;
– (p\p)(x+ (1, 0, 0, 0, 0, 0, 0))← (p\p)(x+ (0, 0, 1, 0, 0, 0, 0));
(p\p)(x+ (0, 1, 0, 0, 0, 0, 0))← (p\p)(x+ (0, 0, 0, 1, 0, 0, 0));
(p\p)(x+ (0, 1, 0, 0, 0, 0, 0))← (p\p)(x+ (0, 0, 0, 0, 1, 0, 0)).

• Binary rules are of the form ((D\C), A)2(x + y) ← (C,A)1(x), D(y) for D\C ∈
SFm−(G0) and A ∈ SFm+(G0). For example, one of these binary rules is
(q\p\p, p)2(x+ y)← (p\p, p)1(x), q(y).

34

Theorem 12

1. Let G be an L∗P-grammar. Then L(LRB∗(G)) = Ψ(L(G)) \ {⃗0}.
2. Let G be an LP-grammar. Then L(LRB(G)) = Ψ(L(G)).

Definition 14 Given the multiset Π = A1, . . . , An, let vec[Π] := eind(A1) + . . . + eind(An).
Clearly, this definition does not depend on the order of formulas in A1, . . . , An.

Definition 15 In this definition, we are going to describe a translation denoted by τ∗. Its
input is a derivation tree of the sequent Π ⇒ C in L∗PG; the translation τ∗ transforms it
into a derivation tree of the fact C (vec[Π]) in LRB∗(G) as follows:

1. Each sequent Φ ⇒ B within this derivation tree is translated into the fact
B (vec[Φ]).

2. We replace each axiom or rule application in L∗PG within this derivation tree by
a rule application in LRB(G) as follows:

X ⇒ X
(ax)

X (vec[X]) = X
(
eind(X)

)
Γ, A,B ⇒ C

Γ, A •B ⇒ C
(•L)

C
(
vec[Γ] + eind(A) + eind(B)

)
C
(
vec[Γ] + eind(A•B)

) (ρA•B,C)

Π, D ⇒ C

Π⇒ D\C
(\R)

C
(
vec[Π] + eind(D)

)
(D\C) (vec[Π])

(ρ∗D\C)

∆, D ⇒ C

∆⇒1 D\C (1̂)
C
(
vec[∆] + eind(D)

)
(D,C)1 (vec[∆])

(ρ1D,C)

∆⇒2 D\C
∆, D ⇒ C

(2̂)
(D,C)2 (vec[∆])

C
(
vec[∆] + eind(D)

) (ρ2D,C)

Γ, A⇒ S

Γ, ai ⇒ S
(ai ▷ A)

S
(
vec[Γ] + eind(A)

)
S (vec[Γ] + ei)

(ρAai
)

Π⇒ A Φ⇒ B
Π,Φ⇒ A •B (•R)

A (vec[Π]) B (vec[Φ])

A •B (vec[Π] + vec[Φ])
(ρA•B)

Π⇒1 C\A Φ⇒ D

Π,Φ⇒2 (D\C) \A (\̂L)
(C,A)1 (vec[Π]) D(vec[Φ])

((D\C) , A)2 (vec[Π] + vec[Φ])
(ρD\C,A)

Similarly, we can define a translation τ of a derivation tree of the sequent Π ⇒ C in LPG

into a derivation tree of the fact C(vec[Π]) in LRB(G). Since L∗PG and LPG differ only in
the definition of the rule (\R), the only difference in the definition of τ comparing to τ∗ is
that each rule application of (\R) is translated into the following rule application:

35

Γ, A,D ⇒ C

Γ, A⇒ D\C
(\R)

C
(
vec[Γ] + eind(A) + eind(D)

)
(D\C)

(
vec[Γ] + eind(A)

) (ρAD\C)

Clearly, the rule applications presented in the rightmost column are correct
according to the definition of the LRBVASSAM LRB∗(G) (or LRB(G)).

Lemma 10

1. The translation τ∗ translates a correct derivation in L∗PG into a correct one in
LRB∗(G). Vice versa, each correct derivation in LRB∗(G) is a translation of a
correct derivation in L∗PG.

2. The translation τ translates a correct derivation in LPG into a correct one in
LRB(G). Vice versa, each correct derivation in LRB(G) is a translation of a correct
derivation in LPG.

Proof As we noticed, the fact that the translation τ∗ (the translation τ) transforms a correct
derivation in L∗PG (in LPG) into a correct one in LRB∗(G) (in LRB(G)) is straightforward.
To prove the converse, note that, since each fact derivable in LRB∗(G) (or in LRB(G)) is of the
form A(v) where v ∈ NK , it holds that v = vec[Π,Ξ] for some Π consisting of formulas from
FmLPG

and some Ξ consisting of elements of Σ. Then, it suffices to compare Construction 3
with Definition 15 and observe that each application of a rule from LRB∗(G) (from LRB(G)
resp.) must be of one of the forms present in its rightmost column. Thus each rule application
in LRB∗(G) (in LRB(G)) is a translation of a correct rule application in L∗PG (in LPG). □

Lemma 11 Let L∗PG ⊢ A1, . . . , An ⇒ B for some formulas Ai, B ∈ FmLP. Then the size of
any derivation tree of this sequent in L∗PG is less than or equal to 3(|A1|+ . . .+ |An|+ |B|).

Proof The proof is by induction on the size of a given derivation tree of A1, . . . , An ⇒ B.
If the sequent is an axiom, then the statement obviously holds. To prove the induction

step, consider the last rule application in the derivation.
If it is that of (\R), then it is of the form

A1, . . . , An, D ⇒ C

A1, . . . , An ⇒ D\C
(\R)

The size of the derivation subtree starting from the premise A1, . . . , An, D ⇒ C is, by induc-
tion hypothesis, of the size not greater than 3(|A1| + . . . + |An| + |D| + |C|). Thus the
size of the whole derivation tree does not exceed 3(|A1| + . . . + |An| + |D| + |C|) + 1 ≤
3(|A1|+ . . .+ |An|+ |D|+ |C|+ 1) = 3(|A1|+ . . .+ |An|+ |D\C|). Similarly, one considers
the rules (•L) and (•R).

36

Assume that the last application is that of the rule (2̂). Lemma 8 implies that the last
steps in the derivation are as follows:

Σ, C ⇒ B

Σ⇒1 C\B (1̂)
Φ⇒ D

Σ,Φ⇒2 (D\C)\B (\̂L)

Σ,Φ, D\C ⇒ B
(2̂)

Here Σ,Φ, D\C = A1, . . . , An. Let Σ = B1, . . . , Bx, Φ = C1, . . . , Cy. By the induction
hypothesis, the size of the derivation tree of Σ, C ⇒ B is less than or equal to 3(|B1| +
. . . + |Bx| + |C| + |B|) and that of the derivation tree of Φ ⇒ D is less than or equal
to 3(|C1| + . . . + |Cy| + |D|). Hence the size of the whole derivation tree does not exceed
3(|B1|+ . . .+ |Bx|+ |C|+ |B|+ |C1|+ . . .+ |Cy|+ |D|) + 3 = 3(|A1|+ . . .+ |An|+ |B|). □

Lemma 12 The sequent Γ, ai ⇒ R has a derivation tree in L∗PG (in LPG) of the size n+1
if and only if there is A such that ai ▷A and such that the sequent Γ, A⇒ R has a derivation
tree in L∗PG (in LPG) of the size n.

Proof The proof of the “only if” direction is by induction on the size n + 1 of a derivation
tree of Γ, ai ⇒ R in the calculus of interest. This sequent cannot be an axiom because axioms
do not involve constants from Σ. Assume that the last rule application is that of (•L), or
(•R), or (\R), or (1̂), or , or (2̂), or (\̂L). In general, this rule application can be represented
as follows:

∆, ai ⇒ T Ω

Γ, ai ⇒ R
(r)

(7)

Here ∆, ai ⇒ T is some sequent with the derivation tree of the size l+1 for some l; (r) is the
rule name; Ω is either another premise or nothing. The induction hypothesis for ∆, ai ⇒ T
tells us that ∆, A⇒ T has a derivation tree of the size l for some A such that ai ▷ A. Then
let us construct a derivation tree of Γ, A⇒ R as follows:

∆, A⇒ T Ω

Γ, A⇒ R
(r)

Hence we simply change ai by A both in the premise and in the conclusion. Clearly, the size
of this derivation tree is that of (7) decreased by 1.

The remaining case is where the last rule application is that of (ai ▷ A):

Γ, A⇒ S

Γ, ai ⇒ S
(ai ▷ A)

Its premise is derivable, and it has a desired form. The size of its derivation tree is n.
To prove the “if” direction, it suffices to take a derivation tree T of Γ, A⇒ R of the size

n and apply the rule (ai ▷ A). □

Proof of Theorem 12 Let us denote max
A∈Fm(G)

|A| by µ. Then F = 6µ+ 1.

A vector v ∈ Nκ belongs to L(LRB∗(G)) (to L(LRB(G))) if and only if S(ιK(v)) has a
derivation tree in LRB∗(G) (in LRB(G) resp.) with the size not greater than F |v|. Note that
v = Ψ(ai1 . . . aim) where i1, . . . , im = tuple(v). According to Definition 15, S(ιK(v)) is the
translation of the sequent ai1 , . . . , aim ⇒ S.

37

Firstly, it follows from Lemma 10 that there is one-to-one correspondence between deriva-
tions of ai1 , . . . , aim ⇒ S in L∗PG (in LPG) and those of S(ιK(v)) in LRB∗(G) (in LRB(G)
resp.). Moreover, both τ∗ and τ preserve sizes of derivations. Ergo, S(ιK(v)) has a derivation
tree of the size d ≤ F |v| = F ·m if and only if ai1 , . . . , aim ⇒ S has a derivation tree of the
size d ≤ F ·m (in corresponding formalisms). Lemma 12 entails that the latter is equivalent
to the fact that A1, . . . , Am ⇒ S has a derivation tree of the size d−m ≤ (F − 1)m = 6µ ·m
for some A1, . . . , Am such that aij ▷ Aj . But note that, if A1, . . . , Am ⇒ S is derivable
for such A1, . . . , Am, then, according to Lemma 11, each its derivation does not exceed
3(|A1|+ . . .+ |Am|+ |B|) ≤ 3µ(m+ 1) ≤ 6µ ·m (if m ≥ 1); hence the restriction on the size
of a derivation tree is always satisfied and thus redundant. If m = 0, then v = 0⃗, so it belongs
neither to L(LRB∗(G)) nor to L(LRB(G)). Note that Ψ−1(⃗0) = Λ is the empty word, and it
does not belong to L(G) if G is an LP-grammar.

Summarizing the above reasonings, v ∈ Nκ, v ̸= 0⃗ belongs to L(LRB∗(G)) (to
L(LRB(G))) if and only if A1, . . . , Am ⇒ S is derivable in L∗PG (in LPG resp.) for
some A1, . . . , Am such that aij ▷ Aj . According to Lemma 9, this is equivalent to deriv-
ability of the same sequent in L∗P (in LP resp.) and thus is equivalent to the fact that
ai1 . . . aim = Ψ−1(v) ∈ L(G).

□

5 LRBVASSAM Generating a Non-Semilinear Set

In the previous section, we have shown that LBC-grammars are equivalent to LRB-
VASSAMs (Theorems 10, 12). This shall be used to prove Theorem 3 and Theorem 4.
In this section, we prepare the second ingredient: we present an LBC-grammar gener-
ating the language QLperm where QL = {albn | l, n ∈ N, 1 ≤ n, l ≤ n2}. The Parikh
image Ψ(QLperm) of this language equals QS = {(l, n) | 1 ≤ n, l ≤ n2}. If we present
an LRBVASSAM generating QS, then we shall prove both theorems of interest.

Construction 4 Let QH = ⟨Q,P0,P1,P2, s, κ,K,C⟩ be the following LRBVASSAM:

• K = 4, κ = 2.
• Q = {q, r1, r2, s}.
• P0 includes only ζ0 = q(0, 0, 0, 0).
• P1 consists of unary rules

1. ζ1 = q(x+ (0, 1, 0, 1))← q(x+ (0, 0, 0, 0)),
2. ζ2 = r1(x+ (0, 0, 0, 0))← q(x+ (0, 0, 0, 0)),
3. ζ3 = r1(x+ (1, 0, 1, 0))← r1(x+ (0, 1, 0, 0)),
4. ζ4 = r2(x+ (0, 0, 0, 0))← r1(x+ (0, 0, 0, 1)),
5. ζ5 = r2(x+ (0, 1, 0, 0))← r2(x+ (0, 0, 1, 0)),
6. ζ6 = r1(x+ (0, 0, 0, 0))← r2(x+ (0, 0, 0, 0)),
7. ζ7 = s(x+ (0, 0, 0, 0))← r1(x+ (0, 0, 0, 0)).

• P2 is empty.
• C = 5.

Note that we do not use binary rules.

38

Theorem 13 The set L(QH) equals QS.

Proof First of all, let us agree on the notation used in the proof. We put α = (1, 0, 0, 0), β =
(0, 1, 0, 0), ρ = (0, 0, 1, 0), σ = (0, 0, 0, 1). Be aware that the first and the second coordinates
in this LRBVASSAM are the main memory coordinates, while the third and the fourth ones
are the additional memory coordinates.

The LRBVASSAM QH has only nullary and unary rules. Consequently, any derivation
tree in this grammar can be represented simply as a sequence of facts t1(u1), . . . , tn(un) such
that each t1(u1) is the nullary rule q(⃗0) and for i = 2, . . . , n the fact ti(ui) is obtained from
ti−1(ui−1) by means of some unary rule from P1. A derivation tree is completely defined by
a sequence of rule applications.

Let us say that a derivation in QH is completely typical if it is of the following form for
some n ∈ N:

1. It starts with the axiom ζ0 = q(⃗0). The rule ζ1 is applied n times. The result is

q(n(β + σ)) = q(0, n, 0, n).

2. The rule ζ2 is applied. The result is

r1(n(β + σ)) = r1(0, n, 0, n).

3. The following part of the derivation consists of n blocks. Below the index i is
iterated over the range of integers from 1 to n (it is incremented by 1). Let i = 1,
x1 := 0, y1 := n; then r1(n(β + σ)) = r1(xiα+ yiβ + (n− yi)ρ+ (n+ 1− i)σ). The
definition of xi for arbitrary i shall be presented a bit later.
(a) At the beginning of the i-th iteration we have the fact

r1(xiα+ yiβ + (n− yi)ρ+ (n+ 1− i)σ).

(b) The rule ζ3 is applied li ≤ yi times. The result is

r1((xi + li)α+ (yi − li)β + (n− yi + li)ρ+ (n+ 1− i)σ).

(c) The rule ζ4 is applied. The result is

r2((xi + li)α+ (yi − li)β + (n− yi + li)ρ+ (n− i)σ).

(d) The rule ζ5 is applied l′i ≤ n− yi + li times. The result is

r2((xi + li)α+ (yi − li + l′i)β + (n− yi + li − l′i)ρ+ (n− i)σ).

(e) The rule ζ6 is applied. The result is

r1((xi + li)α+ (yi − li + l′i)β + (n− yi + li − l′i)ρ+ (n− i)σ).

39

This is the last step of the iteration, so let xi+1 := xi + li, yi+1 := yi − li + l′i.
Finally, i is increased by 1 and the next iteration of step 3 starts.

The result of all the n iterations is the fact

r1(xn+1α+ yn+1β + (n− yn+1)ρ).

4. The rule ζ7 is applied. The result is

s(xn+1α+ yn+1β + (n− yn+1)ρ).

Note that, since r1(xiα+yiβ+(n−yi)ρ+(n+1− i)σ) is a correct fact, all its coordinates
are non-negative, hence yi ≥ 0 and n− yi ≥ 0; equivalently, 0 ≤ yi ≤ n.

We say that a derivation is typical if it is an initial part (a prefix) of a completely typical
derivation. Our claim is that each derivation in G is typical. This is straightforwardly proved
by induction on the length of a derivation; the proof is a simple consideration of which rule
can be the next one at each step of a completely typical derivation. In fact, the description
of a completely typical derivation exhausts all possible sequences of rule applications in H.

Let (l,m) ∈ L(QH); equivalently, s(ι4(l,m)) = s(l,m, 0, 0) = s(lα+mβ) has a derivation
in QH of the size less than or equal to C(m + l) = 5(m + l). If this derivation exists, it
is typical. In fact, it must be completely typical since we reach the state s only at the last
step of a completely typical derivation. Consider this typical derivation. For it, it must be
the case that yn+1 = m and n − yn+1 = 0, hence yn+1 = n = m. Most importantly,
l = xn+1 = l1 + . . . + ln ≤ y1 + . . . + yn ≤ n · n = n2 = m2. Be aware that 1 ≤ m, since
otherwise l = m = 0 and the size of a derivation of s(lα +mβ) would be less than or equal
to 0, which is impossible.

Conversely, if 1 ≤ n and l ≤ n2, then let us show that the fact s(lα+nβ) has a derivation
in QH of size ≤ 5(n + l). Indeed, a derivation of interest is the completely typical one with
parameters li = n (for i ≤ ⌊l/n⌋), li = l−⌊l/n⌋n (for i = ⌊l/n⌋+1), li = 0 (for i > ⌊l/n⌋+1);
l′i = li (for all i). In this case, the result of the derivation is s(xn+1α+ yn+1β+(n− yn+1)ρ)
where xn+1 = l1 + . . .+ ln = n⌊l/n⌋+(l−⌊l/n⌋n) = l, yn+1 = n. The size of this derivation
can be computed by summing the number of rule applications at each stage.

1. At stage 1, there are n rule applications.
2. At stage 2, there is 1 rule application.
3. At the i-th iteration of stage 3, the number of rule applications equals li+1+l′i+1 =

2li + 2. The sum of these numbers over all iterations equals 2l + 2n.
4. At stage 4, there is 1 rule application.

In total, the number of rule applications equals 3n + 2l + 2. Since 1 ≤ n, the inequality
3n+ 2l + 2 ≤ 5(n+ l) holds as expected. □

6 Proofs of Theorems from Section 3

Finally, we prove all the theorems from Section 3 (except for Theorem 8, which shall
be proved in Section 7). Before proofs of the theorems, we recall their statements.

Theorem 3 There exists an LBC-grammar QG such that:

1. QG generates the language QLperm .

40

2. If the grammar QG is considered as an L∗P-grammar, then it generates the same
language QLperm .

Proof of Theorem 3
The desired LP-grammarQG is the grammar LBCG(Q̃H) where Q̃H is the input-sensitive

LRBVASSAM obtained from QH by applying Proposition 9; QH is defined by Construction
4. Theorem 13 says that L(QH) = QS; then, by Theorem 10, the language L(LBCG(Q̃H))
equals Ψ−1(QS) = QLperm .

The second statement of Theorem 10 implies the second part of the statement of the
present theorem. □

Theorem 4 The set of languages generated by LBC-grammars properly contains the set
of permutation closures of context-free languages.

Proof of Theorem 4
Buszkowski in [5] proves that languages generated by LBC-grammars contain permutation

closures of context-free languages (without the empty word, to be precise).
Given the LRBVASSAM QH, let us consider the LBC-grammar LBCG(QH). According

to Theorem 10, it generates the language Ψ−1(L(QH)) = Ψ−1(QS) = QLperm , which is not
the permutation closure of a context-free language according to Proposition 2. □

Theorem 5 For K being any of the calculi LBC, LP, L∗P, or L∗
IP, K-grammars can

generate languages that are not permutation closures of context-free languages.

Proof of Theorem 5 Since LBC-grammars is a subclass of LP-grammars, the statement of
the theorem follows from Theorem 4 for K = LP. The second statement of Theorem 3 proves
the statement of the theorem for K = L∗P. Finally, note that L∗P-grammars is a subclass of
L∗
IP-grammars, so the statement of the theorem holds for them as well. □

Theorem 6 A commutative language L is generated by an LBC-grammar if and only if
its Parikh image Ψ(L) is generated by an LRBVASSAM.

Proof of Theorem 6
Given an LRBVASSAM H generating Ψ(L), one constructs the input-sensitive LRBVASSAM

H̃ generating the same set (using Proposition 9). Then, LBCG(H̃) is an LBC-grammar

such that L(LBCG(H̃)) = Ψ−1(L(H)) = L, according to Theorem 10. This proves the “if”
statement of the theorem. Conversely, given an LBC-grammar G generating L, one constructs
the LRBVASSAM LRB(G). Then, according to Theorem 12, L(LRB(G)) = Ψ(L(G)) = Ψ(L).
This proves the “only if” statement of the theorem. □

Theorem 7 The class of languages generated by LP-grammars is equal to the class of
languages generated by LBC-grammars.

Proof of Theorem 7
Clearly, the class of languages generated by LBC-grammars is contained in the class of lan-
guages generated by LP-grammars. To show the converse, take an LP-grammar G. Firstly,
convert it into an LRBVASSAM LRB(G); Theorem 12 implies that L(LRB(G)) = Ψ(L(G)).
Secondly, convert LRB(G) into the LBC-grammar LBCG(LRB(G)). Theorem 10 implies that
L(LBCG(LRB(G))) = Ψ−1(L(LRB(G))) = Ψ−1(Ψ(L(G))) = L(G). □

41

7 Closure Properties

We have proved that the class of languages generated by LP-grammars is wider than
permutation closures of context-free languages. This makes the former class quite mys-
terious since we do not know much about its structure. Let us establish some closure
properties of this class using the equivalence of LP-grammars and LRBVASSAMs.
Namely, we are going to prove Theorem 8 by showing that sets generated by LRB-
VASSAMs are closed under intersection, union, sum, and Kleene star. Let us recall
the statement of this theorem:

The class of languages generated by LP-grammars is closed under union, intersection,
commutative concatenation, and commutative Kleene plus.

Definition 16 The sum of two sets A,B ⊆ Nκ is the set A+B = {u+ v | u ∈ A, v ∈ B}.

Definition 17 The Kleene plus of the set A ⊆ Nκ is the set
A⊕ = {u1 + . . .+ ul | l > 0, ui ∈ A for i = 1, . . . , l}.

Theorem 14 The class of sets generated by LRBVASSAMs is closed under union, intersec-
tion, sum and Kleene plus.

According to Theorem 6, this theorem is equivalent to Theorem 8.
Firstly, let us prove that sets generated by LRBVASSAMs are closed under union

and sum. To do this, let us introduce a special property of LRBVASSAMs:

Definition 18 An LRBVASSAM H = ⟨Q,P0,P1,P2, s, k,K,C⟩ is totally restricted if any
derivation tree of any fact of the form s(ιK(v)) in the BVASS ⟨Q,P0,P1,P2, s,K⟩ has the
size less than or equal to C|v|.

Compare this with the definition of LRBVASSAM. In that definition, we do not
impose any restriction on a BVASS; instead, we just disregard large derivations. In
the definition of a totally restricted LRBVASSAM, it is required that any possible
derivation is not large.

Proposition 15 For any LP-grammar G = ⟨S, ▷⟩ the LRBVASSAM LRB(G) is totally
restricted.

Proof Look at the proof of Theorem 12. It follows from that proof that S(ιK(v)) has a
derivation tree of size d if and only if ai1 , . . . , aim ⇒ S has a derivation tree of the size d.
It also follows from that proof that any derivation tree of ai1 , . . . , aim ⇒ S has a size that
does not exceed F ·m = F |v|. Therefore, d must not exceed F |v| for any derivation tree of
S(ιK(v)), as desired. □

42

Proposition 16 For each LRBVASSAM H there exists a totally-restricted LRBVASSAM
generating L(H).

Proof Take an equivalent input-sensitive LRBVASSAM H̃ (using Proposition 9) and consider

the LRBVASSAM LRB(LBCG(H̃)). It generates L(H) according to Theorems 10 and 12 and
it is totally restricted. □

Let us prove Theorem 14. To do this, let us take two LRBVASSAMs H1,
H2. Assume without loss of generality that they are totally restricted. Let Hi =
⟨Qi,Pi

0,Pi
1,Pi

2, s
i, κ,Ki, Ci⟩; we modify these LRBVASSAMs as follows.

1. Let us make Q1 and Q2 disjoint by defining Q = {(q, i) | i = 1, 2, q ∈ Qi} and
replacing the set of states Qi by Q̄i = {(q, i) | q ∈ Qi}. Let s̄i = (si, i).

2. Let us define K as max{K1,K2}. Then, given Hi, let us replace

• each its nullary rule q(ν) by (q, i)(ιK(ν)),
• each its unary rule p(x+ δ2)← q(x+ δ1) by

(p, i)(x+ ιK(δ2))← (q, i)(x+ ιK(δ1)),

• each its binary rule q(x+ y)← p(x), r(y) by

(q, i)(x+ y)← (p, i)(x), (r, i)(y).

The new sets of nullary, unary and binary rules are denoted by P̄i
0, P̄i

1, P̄i
2 resp.

Let H̄i = ⟨Q̄i, P̄i
0, P̄i

1, P̄i
2, s̄

i, κ,K,Ci⟩. Clearly, L(H̄i) = L(Hi); indeed, new additional
memory coordinates always equal 0, so they do not affect derivations. It is also clear
that the new grammars are also totally restricted.

Construction 5 (LRBVASSAM generating L(H1) ∪ L(H2))
Let H∪ = ⟨Q∪,P∪

0 ,P∪
1 ,P∪

2 , s∪, κ,K,C∪⟩ where

• Q∪ = Q̄1 ∪ Q̄2 ∪ {s∪} where s∪ is a new state that does not belong to Q̄1 ∪ Q̄2;
• P∪

j = P̄1
j ∪ P̄2

j for j = 0, 2;
• P∪

1 = P̄1
1 ∪ P̄2

1 ∪ {ω1, ω2} such that ωj = s∪(x)← s̄j(x);
• C∪ = max{C1, C2}+ 1.

Proposition 17 Assume that t(u) has a derivation tree in H∪ for u ∈ NK and t ∈ Q̄j .

Then all the rules in this derivation tree are from P̄j = P̄j
0 ∪ P̄

j
1 ∪ P̄

j
2 .

Proof The proof is by induction on the size of the derivation tree. Without loss of generality,
let j = 1. It suffices to notice that, if the fact t(u) has the state t ∈ Q̄1, then it cannot be
obtained as the result of any rule from P̄2 (since there only states from Q̄2 are involved) or
of one of the rules ω1, ω2. The remaining possibility is that t(u) is obtained by means of a

43

rule from P̄1. It is either an axiom or is the result of an application of a unary or a binary
rule. In the second case, it remains to apply the induction hypothesis to its premises. □

Lemma 13 The LRBVASSAM H∪ generates the set L(H1) ∪ L(H2).

Proof Assume that s∪(ιK(v)) has a derivation tree inH∪ for v ∈ Nκ. The last rule application
in this derivation tree must be ωj for some j ∈ {1, 2}; hence s̄j(ιK(v)) is derivable in H∪.
Without loss of generality, let j = 1. According to Proposition 17, the derivation tree contains
rules only from P̄1. Therefore s̄1(ιK(v)) is derivable in H1, hence v ∈ L(H1) (since any
derivation in H1 satisfies the linear restriction). Similar reasonings should be made if j = 2.
This shows that L(H∪) ⊆ L(H1) ∪ L(H2).

The other way round, given a derivation tree of s̄j(ιK(v)) in Hj of the size d ≤ Cj |v|,
let us apply the rule ωj to it and obtain s∪(ιK(v)). The size of its derivation tree equals

d + 1 ≤ 1 + Cj |v| ≤ C|v|. Here we use the fact that |v| ≠ 0 (see Remark 4). Therefore,
L(H1) ∪ L(H2) ⊆ L(H∪). □

Construction 6 (LRBVASSAM generating L(H1) + L(H2))
Let H+ = ⟨Q+,P+

0 ,P+
1 ,P+

2 , s+, κ,K,C+⟩ where

• Q+ = Q̄1 ∪ Q̄2 ∪ {s+} where s+ is a new state, which does not belong to Q̄1 ∪ Q̄2;
• P+

j = P̄1
j ∪ P̄2

j for j = 0, 1;

• P+
2 = P̄1

2 ∪ P̄2
2 ∪ {σ} such that σ = s+(x)← s̄1(x), s̄2(y);

• C+ = C∪ = max{C1, C2}+ 1.

Proposition 18 Assume that t(u) has a derivation tree in H+ for u ∈ NK and t ∈ Q̄j .
Then all the rules in this derivation tree are from P̄j .

The proof is the same as that of Proposition 17.

Lemma 14 The LRBVASSAM H+ generates the set L(H1) + L(H2).

Proof Assume that s+(ιK(v)) has a derivation tree in H+ for v ∈ Nκ. The last rule
application in this derivation tree must be σ:

s̄1(ιK(v1)) s̄2(ιK(v2))

s+(ιK(v))
(σ)

Thus s̄j(ιK(vj)) is derivable in H+ for some vj ∈ Nκ (here j = 1, 2). It holds that ιK(v1) +

ιK(v2) = ιK(v); equivalently, v1 + v2 = v. According to Proposition 18, the fact s̄j(ιK(vj))

is derivable in Hj . Consequently, vj ∈ L(Hj) since any derivation in Hj satisfies the linear

restriction. This shows that L(H+) ⊆ L(H1) + L(H2).
Conversely, given vj ∈ L(Hj), consider a derivation tree T j of s̄j(ιK(vj)) in Hj ; it must

be of the size dj ≤ Cj |vj |. Consider the following derivation tree of s+(ιK(v1 + v2)):

T1 T2
s+(ιK(v1 + v2))

(σ)

44

Its size equals d1 + d2 + 1 ≤ C1|v1| + C2|v2| + 1 ≤ max{C1, C2}(|v1| + |v2|) + 1 =
max{C1, C2}|v1+v2|+1 ≤ C+|v1+v2|. Here we use the fact that v1, v2 ∈ Nκ, which implies
that |v1|+|v2| = |v1+v2|. We also use the fact that v1+v2 ̸= 0⃗ (otherwise v1 = v2 = 0, which
is impossible as explained in Remark 4). In what follows, L(H+) ⊆ L(H1) + L(H2). □

Now, let us show how to generate the commutative Kleene plus L(H)⊕.

Construction 7 (LRBVASSAM generating L(H)⊕)
Given the totally-restricted LRBVASSAM H = ⟨Q,P0,P1,P2, s, κ,K,C⟩, let H⊕ =
⟨Q⊕,P⊕

0 ,P⊕
1 ,P⊕

2 , s⊕, κ,K,C⊕⟩ where

• Q⊕ = Q ∪ {s⊕} where s⊕ is a new state;
• P⊕

0 = P0;
• P⊕

1 = P1 ∪ {χ} where χ = s⊕(x)← s(x);
• P⊕

2 = P2 ∪ {π} where π = s⊕(x+ y)← s⊕(x), s⊕(y);
• C⊕ = C + 2.

Lemma 15 The LRBVASSAM H⊕ generates the set L(H)⊕.

The proof is similar to those presented earlier in this section.

Proof Assume that s⊕(ιK(v)) has a derivation tree in H⊕ for v ∈ Nκ. Let us prove that v
belongs to L(H)⊕ by induction on the size of this derivation. The base case is trivial because
there is no axiom with the state s⊕.

Consider the last rule application in this derivation.
Case 1. It is π:

s⊕(ιK(v1)) s⊕(ιK(v2))

s⊕(ιK(v))
(π)

Here v1, v2 are some vectors. By induction hypothesis, v1, v2 ∈ L(H)⊕, and thus v = v1+v2 ∈
L(H)⊕ (since the Kleene plus of a set is closed under sums).

Case 2. It is χ:
s(ιK(v))

s⊕(ιK(v))
(π)

Derivability of s(ιK(v)) in H⊕ is equivalent to derivability of the same fact in H (the proof
is the same as for Proposition 17). Thus v ∈ L(H) ⊆ L(H)⊕.

To prove the converse, assume that v = v1 + . . .+ vl where vi ∈ L(H); we want to prove
that v ∈ L(H⊕). We know that s(ιK(vi)) has a derivation tree in H of the size not greater
than C|vi| for i = 1, . . . , l; then, s⊕(ιK(vi)) can be obtained from s(ιK(vi)) using π, and the
size of its derivation is thus not greater than C|vi|+1. After that, we apply the rule χ (l−1)
times to obtain s⊕(ιK(v1)+ . . .+ ιK(vl)) = s⊕(ιK(v)). The total number of rule applications
does not exceed C|v1|+ 1 + . . .+ C|vl|+ 1 + l − 1 = C|v|+ 2l − 1. It remains to note that,
since |vi| ≥ 1, it holds that |v| ≥ l. Therefore, the size of the derivation of s⊕(ιK(v)) does
not exceed (C + 2)|v|, as desired. □

Speaking of closure under intersection, let us prove this property using LP-
grammars instead of LRBVASSAMs (although an argument similar to the above ones
can be provided to prove that the class of sets generated by LRBVASSAMs is closed

45

under intersection). The proof of this fact is inspired by Kanazawa’s one from [23]
where it is proved that languages generated by grammars over the multiplicative-
additive Lambek calculus are closed under intersection. The main idea is that, in the
commutative Lambek calculus, we can use multiplicative conjunction instead of the
additive one. Let us present the proof.

Construction 8 Let Gi = ⟨Si, ▷i⟩ (i = 1, 2) be two LP-grammars. Assume without loss
of generality that SFm(G1) ∩ SFm(G2) = ∅, or, equivalently, that primitive subformulas of
formulas from G1 and G2 are pairwise disjoint. Having this in mind, let us define G∩ = ⟨S, ▷⟩
as follows:

• S∩ := S1 • S2;
• a ▷ T if and only if T is of the form T1 • T2 where a ▷i Ti (i = 1, 2).

Proposition 19

1. Let LP ⊢ A1, . . . , An ⇒ B where Ai are from SFm(G∩) and where B is from
SFm(Gk) (for some k ∈ {1, 2}). Then all Ai are also from SFm(Gk).

2. Let LP ⊢ A1, . . . , An, B1, . . . , Bm ⇒ A•B where Ai and A are from SFm(G1), and
Bi, B are from SFm(G2). Then LP ⊢ A1, . . . , An ⇒ A and LP ⊢ B1, . . . , Bm ⇒ B.

Both statements are proved by straightforward induction on the size of a derivation.

Lemma 16 The LP-grammar G∩ generates the language L(G1) ∩ L(G2).

Proof The word a1 . . . an belongs to L(G∩) if and only if there exist formulas T i
j for i = 1, 2,

j = 1, . . . , n such that aj ▷ T
1
j • T

2
j and

LP ⊢ T 1
1 • T 2

1 , . . . , T
1
n • T 2

n ⇒ S1 • S2.

The latter is equivalent to the fact that LP ⊢ T 1
1 , . . . , T

1
n , T

2
1 , . . . , T

2
n ⇒ S1 •S2 (use the rules

(•L) and (•−1
L) to justify this). Using Proposition 19 we conclude that this is equivalent to

the fact that LP ⊢ T 1
1 , . . . , T

1
n ⇒ S1 and LP ⊢ T 2

1 , . . . , T
2
n ⇒ S2. Summarizing, a1 . . . an

belongs to L(G∩) if and only if there exist formulas T 1
1 , . . . , T

1
n and T 2

1 , . . . , T
2
n such that

ai ▷1 T 1
i , ai ▷2 T 2

i and LP ⊢ T 1
1 , . . . , T

1
n ⇒ S1, LP ⊢ T 2

1 , . . . , T
2
n ⇒ S2. This means exactly

that a1 . . . an ∈ L(G1) and a1 . . . an ∈ L(G2). This completes the proof. □

Interestingly, both the class of languages generated by LP-grammars and the class
of permutation closures of context-free languages turn out to be closed under intersec-
tion. Indeed, each permutation closure of a context-free language is the inverse Parikh
image of some semilinear set, and semilinear sets are closed under intersection [24]. If
this was not the case, we might have a simpler way of proving that LP-grammars are
not equivalent to permutation closures of context-free languages.

46

8 Conclusion

We have shown that LP-grammars are not context free in the sense that they generate
more than permutation closures of context-free languages. This result contrasts with
that for Lambek grammars, which are context free [3]. Our proof relies on establishing
the equivalence of LP-grammars and LRBVASSAMs, which represent yet another
extension of vector addition systems.

Several open questions remain:

1. Is the set of languages generated by LP-grammars closed under complement? Note
that semilinear sets are. If the answer to this question is negative, then this would
give us another proof of the fact that the class of languages generated by LP-
grammars is wider than permutation closures of context-free languages.

2. Can one generate a language like {af(n) | n > 0} where f(n) is some nonlinear
function (e.g., f(n) = n2) by an LP-grammar? We conjecture that the answer is
negative. In our opinion, this problem as well as the previous one can be approached
by studying LRBVASSAMs and establishing their properties. Namely, we expect
that the pumping lemma or some its version can be proved for LRBVASSAMs.

3. The linear restriction can be imposed on BVASS as well resulting in LRBVASS.
Then one might ask whether LRBVASS generate the same class of sets as LRBVAS-
SAMs, i.e. whether additional memory is essential in LRBVASSAMs6. Similarly, it
would be interesting to answer the question if BVASS are equivalent to BVASSAMs.

4. In general, we are not aware that there is no other formalism existing in the lit-
erature, which would appear to be equivalent to LRBVASSAMs. Finding more
connections with other formalisms would be interesting.

We would like to emphasize the importance of the linear restriction in the defini-
tion of LRBVASSAMs. It proved to be extremely useful for relating LP-grammars
and BVASS. Moreover, the idea of considering such a restriction can be successfully
exploited for other kinds of grammars as well, e.g., for hypergraph Lambek grammars.
In [10], we prove that any DPO hypergraph grammar7 with the linear restriction
similar to the one used in the present paper can be transformed into an equivalent
hypergraph Lambek grammar. The main construction in [10] is very close to Construc-
tion 1. We assume that using the linear restriction for other kinds of formal grammars
could also be fruitful for investigating expressive power of categorial grammars.

Acknowledgments. I thank Stepan L. Kuznetsov for bringing my attention to this
problem and for suggesting valuable ideas to explore. I also thank the anonymous
reviewer for his careful attention and remarks that helped me to improve my work.

6As an exercise, the reader might check that LRBVASSAMs generate the same class of languages as
LRBVASAMs, which are LRBVASSAMs with only one state.

7DPO grammars extend unrestricted Chomsky grammars to hypergraphs.

47

Financial Support

The study was supported by the Theoretical Physics and Mathematics Advancement
Foundation “BASIS”; by RFBR, project number 20-01-00670; and by the Interdis-
ciplinary Scientific and Educational School of Moscow University “Brain, Cognitive
Systems, Artificial Intelligence”.

References

[1] Joachim Lambek: The mathematics of sentence structure. Amer. Math. Mon.
65(3), 154–170 (1958)

[2] Bar-Hillel, Y., Gaifman, H., Shamir, E.: On categorial and phrase structure
grammars. Bull. Res. Counc. Israel 9, 1–6 (1960)

[3] Mati Pentus: Lambek grammars are context free. In: Proceedings of the Eighth
Annual Symposium on Logic in Computer Science, pp. 429–433. IEEE Computer
Society, Montreal, Canada (1993). https://doi.org/10.1109/LICS.1993.287565

[4] Johan van Benthem: The Semantics of Variety in Categorial Grammar. Linguistic
and Literary Studies in Eastern Europe, vol. 25, pp. 37–55. John Benjamins,
Amsterdam (1983)

[5] Wojciech Buszkowski: A note on the Lambek-van Benthem calculus. Bulletin of
the Section of Logic 13(1), 31–35 (1984)

[6] Johan van Benthem: Language in action. J. Philos. Log. 20(3), 225–263 (1991).
https://doi.org/10.1007/BF00250539

[7] Richard Moot and Christian Retoré: The Logic of Categorial Grammars - A
Deductive Account of Natural Language Syntax and Semantics. Lecture Notes
in Computer Science, vol. 6850. Springer, Berlin, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-31555-8

[8] Oriol Valent́ın: Theory of discontinuous Lambek calculus. PhD thesis, Universitat
Autònoma de Barcelona. Departament de Filologia Catalana (2012)

[9] Stepan L. Kuznetsov: Personal communication (2021)

[10] Tikhon Pshenitsyn: From double pushout grammars to hypergraph lambek gram-
mars with and without exponential modality. In: Grabmayer, C. (ed.) Proceedings
TERMGRAPH 2022, Technion, Haifa, Israel. EPTCS, vol. 377, pp. 9–26 (2023).
https://doi.org/10.4204/EPTCS.377.1

[11] Wayne D. Blizard: Multiset theory. Notre Dame Journal of Formal Logic 30(1),
36–66 (1988). https://doi.org/10.1305/ndjfl/1093634995

48

https://doi.org/10.1109/LICS.1993.287565
https://doi.org/10.1007/BF00250539
https://doi.org/10.1007/978-3-642-31555-8
https://doi.org/10.1007/978-3-642-31555-8
https://doi.org/10.4204/EPTCS.377.1
https://doi.org/10.1305/ndjfl/1093634995

[12] Parikh, R.J.: Language generating devices. Quarterly Progress Report 60, 199–
212 (1961)

[13] J. Goldstine: A simplified proof of Parikh’s theorem. Discrete Mathematics 19(3),
235–239 (1977). https://doi.org/10.1016/0012-365X(77)90103-0

[14] Martin Hyland, Valeria de Paiva: Full intuitionistic linear logic. Ann. Pure Appl.
Logic 64(3), 273–291 (1993). https://doi.org/10.1016/0168-0072(93)90146-5

[15] Seymour Ginsburg, Edwin H. Spanier: Bounded algol-like languages. Transactions
of the American Mathematical Society 113(2), 333–368 (1964)

[16] Kumar Neeraj Verma and Jean Goubault-Larrecq: Karp-Miller trees for a branch-
ing extension of VASS. Discret. Math. Theor. Comput. Sci. 7(1), 217–230
(2005)

[17] Richard M. Karp, Raymond E. Miller: Parallel program schemata. Journal of
Computer and System Sciences 3(2), 147–195 (1969). https://doi.org/10.1016/
S0022-0000(69)80011-5

[18] Max I. Kanovich: Petri nets, Horn programs, linear logic and vector games. Ann.
Pure Appl. Log. 75(1-2), 107–135 (1995). https://doi.org/10.1016/0168-0072(94)
00060-G

[19] de Groote, P. and Guillaume, B. and Salvati, S.: Vector addition tree automata.
In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer
Science, 2004., pp. 64–73 (2004). https://doi.org/10.1109/LICS.2004.1319601

[20] Owen Rambow: Multiset-valued linear index grammars: Imposing dominance con-
straints on derivations. In: ACL, pp. 263–270. Morgan Kaufmann Publishers /
ACL, Las Cruces, New Mexico (1994). https://doi.org/10.3115/981732.981768

[21] Wojciech Buszkowski: In: Loukanova, R. (ed.) Lambek Calculus with Clas-
sical Logic, pp. 1–36. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-63787-3 1

[22] Max I. Kanovich, Stepan L. Kuznetsov, Andre Scedrov: The complexity of
multiplicative-additive lambek calculus: 25 years later. In: Iemhoff, R., Moortgat,
M., de Queiroz, R.J.G.B. (eds.) WoLLIC 2019, Utrecht, The Netherlands, Pro-
ceedings. Lecture Notes in Computer Science, vol. 11541, pp. 356–372. Springer,
Berlin, Heidelberg (2019). https://doi.org/10.1007/978-3-662-59533-6 22

[23] Makoto Kanazawa: The Lambek calculus enriched with additional connectives.
J. Log. Lang. Inf. 1(2), 141–171 (1992)

[24] Seymour Ginsburg, Edwin H. Spanier: Semigroups, Presburger formulas, and
languages. Pac. Jour. of Math. 16(2), 285–296 (1966). https://doi.org/pjm/
1102994974

49

https://doi.org/10.1016/0012-365X(77)90103-0
https://doi.org/10.1016/0168-0072(93)90146-5
https://doi.org/10.1016/S0022-0000(69)80011-5
https://doi.org/10.1016/S0022-0000(69)80011-5
https://doi.org/10.1016/0168-0072(94)00060-G
https://doi.org/10.1016/0168-0072(94)00060-G
https://doi.org/10.1109/LICS.2004.1319601
https://doi.org/10.3115/981732.981768
https://doi.org/10.1007/978-3-030-63787-3_1
https://doi.org/10.1007/978-3-030-63787-3_1
https://doi.org/10.1007/978-3-662-59533-6_22
https://doi.org/pjm/1102994974
https://doi.org/pjm/1102994974

	Introduction
	Preliminaries
	Basic Notions
	The Lambek Calculus With Permutation
	Categorial Grammars
	Auxiliary Notions
	Properties

	The Results of the Work
	LRBVASSAM
	From LRBVASSAMs to LBC-Grammars
	Proofs of Lemma 1 and Theorem 10
	Proof of Proposition 11

	From LP-Grammars to LRBVASSAMs
	A Modification of the Commutative Lambek Calculus
	Transformation of Commutative Lambek Grammars into LRBVASSAMs

	LRBVASSAM Generating a Non-Semilinear Set
	Proofs of Theorems from Section 3
	Closure Properties
	Conclusion
	Acknowledgments

