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Abstract

In 1985, B. S. Tsirelson discovered a deep connection between Gaussian
processes and important geometric characteristics of a convex compact sets in
a separable Hilbert space, called intrinsic volumes. In this work, we generalize
Tsirelson’s theorem to the mixed volumes of the infinite-dimensional convex
compact sets, first introducing this notion and studying its properties. Using
the obtained result we compute the mixed volume of the closed convex hulls
of the two orthogonal Wiener spirals. Moreover, we prove an analogue of the
Tsirelson’s theorem for Grassmann angles of infinite-dimensional convex cones.
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1 Introduction

1.1 Intrinsic volumes

Let K ⊂ Rd be a non-empty convex compact set and dimK be the dimension of K
(that is, the dimension of the smallest affine subspace containing K). One of the most
important geometric characteristics of K is its intrinsic volumes V0(K), . . . , Vd(K),
which are defined as the coefficients in the Steiner formula (see, e.g., [19, rela-
tion 14.5])

Vold(K + λBd) =
d∑

k=0

κd−kVk(K)λd−k, λ ⩾ 0, (1)

where Vold(·) denotes the volume (d-dimensional Lebesgue measure), Bk is the k-
dimensional unit ball and κk := Volk(Bk) = πk/2/Γ(k

2
+ 1) is the volume of Bk. In

other words, the volume of the neighborhood is represented by a polynomial whose
coefficients depend on the set K.

The intrinsic volumes play an important role in convex geometry (see, e.g., [18]).
In particular, it can be shown [19, Section 6.2] that Vd(·) is the d-dimensional volume,
Vd−1(·) is half the surface area for d-dimensional convex compact sets, V1(·) is the
mean width, up to a constant factor, and V0(·) ≡ 1.

Moreover, the normalization in (1) is chosen so that the intrinsic volumes of
the set do not depend on the dimension of the ambient space. This means that
if we embed K into RN with N ⩾ d, the intrinsic volumes will be the same. This
observation allowed Sudakov [20] and Chevet [3] to generalize the concept of intrinsic
volume to the case of infinite-dimensional K as follows.

Let H be an infinite-dimensional separable Hilbert space. Then for an arbitrary
non-empty convex set K ⊂ H we define Vk(K), k = 0, 1, . . . , by the formula

Vk(K) = sup
K′⊂K

Vk(K
′) ∈ [0,∞], (2)

where the supremum is taken over all finite-dimensional convex compact subsets
K ′ of K.

In the next subsection, we formulate the well-known results demonstrating a deep
connection between the intrinsic volumes of some convex compact sets and Gaussian
processes.
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1.2 Sudakov’s and Tsirelson’s theorems

A mean-zero Gaussian random process (ξ(h))h∈H over a separable Hilbert space H
is called isonormal if its covariance function has the form

cov(ξ(h), ξ(g)) = ⟨h, g⟩, (3)

where ⟨ , ⟩ denotes the inner product on H.
In his paper [20, Proposition 14] Sudakov discovered a connection between the

first intrinsic volume and the expectation of the supremum of an isonormal process.

Theorem 1 (Sudakov). For a convex compact set K ⊂ H

V1(K) =
√
2πE sup

h∈K
ξ(h). (4)

Later Tsirelson [23, Theorem 6] generalized Theorem 1. Let {ξi(h) : h ∈ H},
1 ⩽ i ⩽ k, denote k independent copies of the isonormal process. Then the k-
dimensional spectrum of a convex compact set K ⊂ H is defined as the following
random set:

SpeckK := {(ξ1(h), . . . , ξk(h)) : h ∈ K} ⊂ Rk.

To formulate Tsirelson’s result, we first need the notion of a GB-set. A subset K
of a separable Hilbert space H is said to be a GB-set if there exists a modification of
the isonormal process with index set K, which has almost surely bounded realizations
(see Section 3 for detailed definitions and properties). It is known [20, Theorem 1]
that the property of a convex K to be a GB-set is equivalent to V1(K) < ∞. In the
latter case Vk(K) < ∞ for all k = 0, 1, . . . (see, e.g., [3]).

Theorem 2 (Tsirelson). For all convex compact GB-sets K ⊂ H and all k = 0, 1, . . . ,

Vk(K) =
(2π)k/2

k!κk

EVolk(SpeckK). (5)

Remark 1. In the case when K ⊂ Rd, k ⩽ d, the last formula can be rewritten as

Vk(K) =
(2π)k/2

k!κk

EVolk(AK),

where A is a standard Gaussian matrix of size k × d (whose entries are independent
standard normal random variables), SpeckK = AK := {Ax : x ∈ K} ⊂ Rk.

Notice that in Rd for all non-empty convex compact sets V1(K) < ∞; therefore,
in the finite-dimensional case, it is not necessary to assume the GB-property, since
it is certainly satisfied.
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Remark 2. Strictly speaking, in Theorem 1 we need the existence of a separable
modification of the process ξ, and in Theorem 2 we need the existence of a so-called
natural modification of ξi (see Subsections 3.3, 3.4 for details). We will show that
under the assumptions of Theorems 1, 2 the corresponding modifications do exist
(see Statement 1).

The main goal of this work is to obtain a generalization of Theorem 2 to the
mixed volumes defined in the next subsection.

1.3 Mixed volumes

In 1911, Minkowski proved [16] that for arbitrary non-empty convex compact sets
K1, . . . , Ks ⊂ Rd the functional Vold(λ1K1 + . . .+ λsKs) for λ1, . . . , λs ⩾ 0 is a ho-
mogeneous polynomial of degree d with non-negative coefficients:

Vold(λ1K1 + . . .+ λsKs) =
s∑

i1=1

· · ·
s∑

id=1

λi1 . . . λidṼd(Ki1 , . . . , Kid). (6)

The coefficients Ṽd(Ki1 , . . . , Kid) are uniquely determined if we assume that they
are symmetric with respect to the permutations of Ki1 , . . . , Kid . The coefficient
Ṽd(Ki1 , . . . , Kid) is called the mixed volume of Ki1 , . . . , Kid .

It is easy to understand (see, e.g., [18, Section 5.1]) that intrinsic volumes are
special cases of the mixed volumes, namely,

Vk(K) =

(
d
k

)
κd−k

Ṽd(K, . . . ,K︸ ︷︷ ︸
k times

,Bd, . . . ,Bd). (7)

The theory of mixed volumes finds wide application in convex and algebraic
geometry [2, Chapter 4], inequalities [18] and the theory of Gaussian distributions [9].
Some of the properties of the mixed volumes are given in Subsection 3.5.

A well-known inequality related to the mixed volumes is the Aleksandrov–Fenchel
inequality (see, e.g., [18, Section 7.3]), independently proven by Aleksandrov and
Fenchel.

Theorem 3 (Aleksandrov, Fenchel). Let K1, K2, . . . , Kd be non-empty convex com-
pact sets in Rd. Then

Ṽ 2
d (K1, K2, . . . , Kd) ⩾ Ṽd(K1, K1, K3, . . . , Kd)Ṽd(K2, K2, K3, . . . , Kd). (8)
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Remark 3. If K1 and K2 are homothetic, i.e., K2 = λK1 + x for some λ > 0 and
x ∈ Rd or one of K1, K2 is a one-pointed set, it is not hard to prove that equality
in (8) holds (see Properties 3, 4 of the mixed volumes in Subsection 3.5). However,
the complete classification of the equality cases is still unknown.

The Aleksandrov–Fenchel inequality generalizes many well-known inequalities,
such as the Brunn-Minkowski inequality, the Minkowski’s inequalities, the isoperi-
metric inequalities. We refer to the book of Schneider [18] for more detailed infor-
mation.

In the next subsection, we consider conic counterparts of the intrinsic volumes,
so-called Grassmann angles.

1.4 Convex cones and Grassmann angles

We begin this subsection with the well-known notion of a solid angle. Let C ⊆ Rd be
a convex cone (equivalently, C is a closed convex set such that λx ∈ C for all x ∈ C
and λ ⩾ 0), U be a random vector uniformly distributed over the unit sphere in the
linear span of C in Rd (U ∈ linC ∩ Sd−1). The solid angle of a convex cone C ⊆ Rd

is defined as

α(C) := P[U ∈ C].

As above, we will denote by dimC the dimension of the cone C (i.e., the dimension
of the smallest linear subspace containing C).

Note that if C ⊂ Rd has non-empty interior (i.e., dimC = d) and

C ̸= Rd,

then its solid angle α(C) can be calculated as the one half of the probability to be non-
trivially intersected with the random line W1 passing through the origin randomly
chosen with respect to the Haar measure:

α(C) =
1

2
P[C ∩W1 ̸= {0}].

This observation encouraged Grünbaum [8] to introduce the generalization of
the solid angle in the following way. Let Wj be a j-dimensional linear subspace
randomly chosen with respect to the Haar measure on the Grassmannian of all linear
j-dimensional subspaces in Rd. Define the j-th Grassmann angle of the convex cone
C ⊆ Rd as the probability of the non-trivial intersection of C with the random
(d− j)-plane Wd−j:

γj(C) := P[C ∩Wd−j ̸= {0}], j = 0, 1, . . . , d.
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If C is a d-dimensional cone, its solid angle can be expressed in terms of the Grass-
mann angles:

α(C) :=
1

2
γd−1(C) +

1

2
1[C = Rd] =

1

2
P[C ∩W1 ̸= {0}] + 1

2
1[C = Rd].

In [8], Grünbaum showed that, like the solid angle and the intrinsic volumes, the
Grassmann angles do not depend on the dimension of the ambient space: if we
embed C in RN with N ⩾ d, the Grassmann angles remain the same. In particular,
for a linear j-plane Lj ⊆ Rd, j = 1, . . . , d, we have

γ0(Lj) = . . . = γj−1(Lj) = 1, γj(Lj) = . . . = γd(Lj) = 0.

For C = {0}, we have γ0(C) = γ1(C) = . . . = 0.
It turns out that the Grassmann angles are coniс counterparts of the intrinsic vol-

umes. Generally speaking, there are at least two conic functionals that can be consid-
ered as conic analogs of intrinsic volumes with similar properties: Grassmann angles
and the so-called conic intrinsic volumes. It is well known that these two concepts
are related to each other by linear expression (see, e.g., [19, p. 261, Crofton formula]).
At the same time, they have an important difference for us: Grassmann angles are
monotone under set inclusion, while conic intrinsic volumes in general are not. In
this paper, we are going to work with Grassmann angles and will not delve into the
concept of the conic intrinsic volumes. We refer the reader to the works [15, 19] for
more detailed information about conic intrinsic volumes.

Another goal of this paper is to find a conic analogue of Tsirelson’s theorem for
Grassmann angles.

Next, we formulate the main results of this work.

2 Main results

2.1 Generalization of Tsirelson’s theorem

In order to generalize Theorem 2 to the case of mixed volumes, we first construct an
isonormal Gaussian random process according to Tsirelson [22].

Consider a linear topological space with mean-zero Gaussian measure (E, γ) and
its kernel E0 ⊂ E (see Section 3 for definitions and properties). Since the kernel is
a Hilbert space, the inner product on E0 is defined, which we will denote by ⟨ , ⟩E0

(it is uniquely determined by the measure γ). For each θ ∈ E0 the linear functional
⟨θ, η⟩E0 is continuous in η ∈ E0 and has a unique (up to equality almost everywhere)
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extension to a linear functional, measurable in x ∈ E (see [12, Section 9, Lemma 2]
or [1, Corollary 2.10.8]), which we denote by ⟨θ, x⟩. Moreover,∫

E

⟨θ, x⟩2γ(dx) = ∥θ∥2 = ⟨θ, θ⟩. (9)

Thus, for any set K ⊂ E0, the isonormal Gaussian random process ⟨θ, x⟩ is de-
fined, where θ ∈ K, x ranges over the space E equipped with the Gaussian measure γ.

To state and prove the main result, we will consider the kernel E0 as H and the
process ⟨θ, ·⟩ as isonormal process.

Let us rewrite Theorem 2 according to the notation of this subsection for further
convenience. Formula (5) for k = 0, 1, . . ., becomes

Vk(K) =
(2π)k/2

k!κk

∫
E

∫
E

. . .

∫
E

Volk(Spec(x1, . . . , xk|K))γ(dx1) . . . γ(dxk).

Here K ⊂ E0 is a convex compact GB-set and

Spec(x1, . . . , xk|K) := {(⟨θ, x1⟩, . . . , ⟨θ, xk⟩) : θ ∈ K} ⊂ Rk

is the joint spectrum for x1, . . . , xk ∈ E on K.
Now we introduce the concept of mixed volume for infinite-dimensional convex

sets similar to (2).
Let K1, . . . , Kk ⊂ H be non-empty convex subsets of an infinite-dimensional sepa-

rable Hilbert space H. Then the mixed volume V (K1, . . . , Kk) of the sets K1, . . . , Kk

is defined as

V (K1, . . . , Kk) = sup
K′

i⊂Ki

(
d
k

)
κd−k

Ṽd(K
′
1, . . . , K

′
k,Bd, . . . ,Bd︸ ︷︷ ︸

d−k times

), (10)

where the supremum is taken over all d ⩾ k and all finite-dimensional convex compact
subsets K ′

i ⊂ Ki, dimK ′
i ⩽ d, i = 1, . . . , k.

Remark 4. The normalization in (10) is chosen so that for Ki with dimKi ⩽ d,
the right-hand side of (10) does not depend on d, as well as in (7). Therefore,
V (K1, . . . , Kk) is well defined.

The proof of Remark 4 can be found in Subsection 4.
Remark 5. The author of this paper found only one source [2, Chapter 4, Section 25],
which mentioned a possible generalization of the concept of mixed volume to the case
of infinite-dimensional sets. However, the normalization given there is incorrect and
for finite-dimensional sets the definition depends on the dimension d of the ambient
space.
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Now we are ready to formulate the main result of this subsection.

Theorem 4. Fix k ∈ N. For convex compact GB-sets Ki ⊂ E0, i = 1, . . . , k,
we have

V (K1, . . . , Kk) =
(2π)k/2

k!κk

E Ṽk(SpeckK1, . . . , SpeckKk)

=
(2π)k/2

k!κk

∫
E

. . .

∫
E

Ṽk(Spec(x1, . . . , xk|K1), . . . , Spec(x1, . . . , xk|Kk))γ(dx1) . . . γ(dxk).

Remark 6. GB-property of the sets Ki ensures almost everywhere boundedness (and
convexity) of the sets Spec(x1, . . . , xk|Ki).
Remark 7. As mentioned in the introduction (see Remark 1), in the case when
Ki ⊂ Rd, i = 1, . . . , k, we have V1(Ki) < ∞, hence, the GB-property is automatically
satisfied and need not be assumed.

2.2 Example: mixed volume of the closed convex hulls of two
orthogonal Wiener spirals

Let us first recall the definition of the Wiener spiral introduced by Kolmogorov [11].
The set of functions

{1[0,t](·) : t ∈ [0, 1]} ⊂ L2[0, 1]

is called the Wiener spiral. This set is an important object in functional analysis [11].
Recall that the convex hull of a set F is the smallest convex set containing F .
Gao and Vitale [6] calculated the intrinsic volumes of the closed convex hull K

of the Wiener spiral (it is known that K is a compact subset of L2[0, 1]):

Vk(K) =
κk

k!
=

πk/2

Γ
(
k
2
+ 1
)
k!
. (11)

This was probably the first result that gave an explicit formula for the intrinsic
volumes of a non-trivial infinite-dimensional convex compact set. In particular, (11)
implies that V1(K) < ∞, so K is a GB-set (see Theorem 10 in Subsection 3.4).

Later similar results were obtained for other infinite-dimensional convex compact
sets [10].

Unsurprisingly, the Wiener spiral is closely related to the Wiener process. Let
{W (t) : t ⩾ 0} be the standard one-dimensional Brownian motion. Consider the
standard two-dimensional Brownian motion

{X(2)(t) = (W1(t),W2(t)) : t ⩾ 0},
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where W1(t),W2(t) are independent copies of W (t). Looking at the definition of the
Wiener spiral and Property (3) of the isonormal process, it is easy to see that Spec2K
has the same distribution as the closed convex hull of the two-dimensional Brownian
motion {X(2)(t) : t ∈ [0, 1]}.

Consider two Wiener spirals S1 and S2 in L2[0, 2]:

S1 = {1[0,t](·) : t ∈ [0, 1]} ⊂ L2[0, 2] and S2 = {1[1+t,2](·) : t ∈ [0, 1]} ⊂ L2[0, 2].

We denote the corresponding closed convex hulls by K1 and K2. In our next theorem,
we compute V (K1, K2).

Theorem 5. For the closed convex hulls K1 and K2 of two orthogonal Wiener spirals
we have

V (K1, K2) = 2.

The proof of Theorem 5 uses Theorem 4 (see Section 6).

2.3 The Aleksandrov–Fenchel inequality

In this subsection, we generalize the Aleksandrov–Fenchel inequality to the case of
the mixed volumes of infinite-dimensional convex compact sets.

Theorem 6. Let K1, K2, . . . Kk be non-empty convex compact sets in H. Then

V 2(K1, K2, . . . , Kk) ⩾ V (K1, K1, K3, . . . , Kk)V (K2, K2, K3, . . . , Kk). (12)

We provide the proof of Theorem 6 in Section 7.

Remark 8. As in the finite-dimensional case (see Remark 3), if K1 and K2 are ho-
mothetic, then equality in (12) holds.

Remark 9. Let Ki, i = 1, . . . , k, be convex compact GB-sets. Taking the expectation
of both sides of (12) for random sets SpeckKi, i = 1, . . . , k, we obtain

E Ṽ 2
k (SpeckK1,SpeckK2, . . . , SpeckKk)

⩾ E (Ṽk(SpeckK1, SpeckK1, SpeckK3, . . . , SpeckKk) (13)

× Ṽk(SpeckK2, SpeckK2, SpeckK3, . . . , SpeckKk)).

On the other hand, Theorem 4, together with the Aleksandrov–Fenchel inequality,
gives us another estimate for the mean mixed volumes. More precisely, if we apply
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Theorem 4 to the left- and right-hand sides of (12), we get

(E Ṽk(SpeckK1,SpeckK2, . . . , SpeckKk))
2

⩾ E Ṽk(SpeckK1, SpeckK1, SpeckK3, . . . , SpeckKk) (14)

× E Ṽk(SpeckK2, SpeckK2, SpeckK3, . . . , SpeckKk).

The Cauchy–Schwarz inequality implies that the left-hand side of (14) is not greater
than the left-hand side of (13):

E Ṽ 2
k (SpeckK1, SpeckK2, . . . , SpeckKk) ⩾ (E Ṽk(SpeckK1, SpeckK2, . . . , SpeckKk))

2.

Nevertheless, the right-hand sides of (13) and (14) are generally incomparable.
Thus, by Theorem 4 we obtain one more estimate for the mean mixed volumes

different from (13).

2.4 Analogue of Tsirelson’s theorem for Grassmann angles

As before, let H be a separable Hilbert space. A non-empty set C ⊂ H is called
a convex cone or simply a cone, if C is a closed convex set such that λC ⊆ C for
all λ ⩾ 0.

We shall introduce the concept of Grassmann angles for infinite-dimensional con-
vex cones similar to (2), (10). For j = 0, 1, . . . , by definition, put

γj(C) := sup
C′⊂C

γj(C
′) = sup

C′⊂C
P[C ′ ∩Wd−j ̸= {0}], (15)

where the supremum is taken over all d ⩾ j and all finite-dimensional convex cones
C ′ ⊂ C, dimC ′ ⩽ d.

Remark 10. Since Grassmann angles for finite-dimensional cones are monotone under
set inclusion and do not depend on the dimension of the ambient space, γj(C) is
well defined.

Remark 11. It suffices to consider the supremum in (15) only over polyhedral finite-
dimensional cones (a cone is called polyhedral if it is the intersection of a finite number
of closed half-spaces which have 0 on their boundary).

The proof of Remark 11 is postponed to Section 8.
By the k-dimensional spectrum of the cone C, similarly to the case of a compact

set, we mean the following random set:

SpeckC := {(ξ1(h), . . . , ξk(h)) : h ∈ C} ⊂ Rk,
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where ξi, 1 ⩽ i ⩽ k, are independent copies of the isonormal process.
We say that the cone C is a GBσ-cone if C is represented as a countable union

of GB-sets.
As above, to state and prove the following theorem, we use the kernel E0 as a

Hilbert space H and the process ⟨θ, ·⟩ as an isonormal process.

Theorem 7. Let C ⊂ E0 be a GBσ-cone, and let k be some fixed positive integer,
m := min(dimC, k) < ∞. Then for all j = 0, . . . ,m− 1 we have

E[γj(SpeckC)] = γj(C).

Remark 12. For finite-dimensional cones, Theorem 7 was proved by Götze, Kabluchko,
and Zaporozhets in [7, Theorem 3.5].

The proof of Theorem 7 can be found in Section 8.
Let us conclude this introductory part by describing how the rest of the paper

is organized. The next section contains the necessary concepts, definitions and facts
from the theory of random processes and convex geometry, which supplement the
information presented in the first two sections. In particular, in Subsection 3.4 we
formulate and prove Statement 1 auxiliary to Theorem 4 about one of the interpreta-
tions of the GB-property of convex compact sets. Sections 4 and 5 contain proofs of
Remark 4 and Theorem 4. The proofs of Theorems 5, 6 are presented in Sections 6, 7.
Finally, in Section 8, one can find the proof of Theorem 7 about Grassmann angles.

3 Preliminaries

3.1 Gaussian vectors in linear spaces

Following [13, Сhapters 1, 4] and [12, Sections 8, 9], we present the definition and
basic properties of a Gaussian vector in a linear space.

Let E be a linear topological space, E∗ be the space of continuous linear function-
als on E. A random vector X taking values in E is defined as a measurable mapping
from some probability space (Ω,B,P) to E. At the same time, it is assumed that
the corresponding σ-algebra of the space E is large enough: all continuous linear
functionals on E are measurable with respect to it.

A random vector X ∈ E is called Gaussian if f(X) is a normal random variable
for all f ∈ E∗.

An element a ∈ E is said to be the expectation of X if Ef(X) = f(a) for all
f ∈ E∗. A linear operator C : E∗ → E is called the covariance operator of X if
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for any f1, f2 ∈ E∗

cov(f1(X), f2(X)) = f1(Cf2),

where cov(·, ·) denotes the covariance between two random variables. The covariance
operator C has the following properties:

1. f(Cg) = g(Cf) ∀f, g ∈ E∗ (symmetry);

2. f(Cf) ⩾ 0 ∀f ∈ E∗ (non-negative definiteness).

The definition of a Gaussian vector makes sense when the space of continuous
linear functionals on E is rich enough. To this end, we will tacitly assume everywhere
below that E is a locally convex linear topological space, and the distribution of X
is a Radon measure. In this case, any Gaussian vector X has an expectation and
a covariance operator [12, Section 8] that uniquely determine the distribution of X.
Therefore, similarly to the finite-dimensional case, we denote by N(a, C) the distribu-
tion of the Gaussian vector X with expectation a and covariance operator C. Under
the above assumptions, the distributions of all Gaussian vectors have form N(a, C).

In the following, we will be interested in mean-zero case when a = 0.

3.2 Measurable linear functionals and kernel

Consider a Gaussian vector X taking values in the linear space E. We will assume
that a = 0. Denote by γ = N(0, C) the distribution of X in E.

By definition of a Gaussian vector, the random variable f(X) has normal distri-
bution, so

Ef(X)2 =

∫
E

|f(x)|2γ(dx) < ∞.

Thus, a canonical embedding I∗ of the space E∗ into the Hilbert space L2(E, γ)
is well defined. The closure of the image I∗(E∗) in L2(E, γ) is said to be the space
of measurable linear functionals and denoted by E∗

γ .
The inner product in E∗

γ is inherited from L2(E, γ):

⟨g1, g2⟩E∗
γ
=

∫
E

g1(x)g2(x)γ(dx) = Eg1(X)g2(X);

∥g∥2E∗
γ
= Eg(X)2.
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In what follows, we treat the operator I∗ as the embedding I∗ : E∗ → E∗
γ .

We define the dual operator I : E∗
γ → E by the following relation:

f(Ig) = ⟨I∗f, g⟩E∗
γ
= Ef(X)g(X), ∀f ∈ E∗, g ∈ E∗

γ .

It is known [13, Section 4.1] that under the assumptions stated in Subsection 3.1,
the dual operator I exists, it is linear and injective, and, moreover, the covariance
operator C can be factorized as

C = II∗.

Finally, the kernel is defined as the set E0 := I(E∗
γ) ⊂ E equipped with inner

product

⟨θ1, θ2⟩E0 := ⟨I−1θ1, I
−1θ2⟩E∗

γ
, θ1, θ2 ∈ E0,

and hence with norm

∥θ∥2 := ∥θ∥2E0
= ⟨θ, θ⟩E0 , θ ∈ E0.

The norm is well defined since the operator I is injective.
Thus, the kernel is uniquely determined by the measure γ and provides the key

information about it (see [13]).
We collect some properties of the kernel (see [13, Section 4.1]).

1. C(E∗) ⊂ E0 ⊂ E. If the kernel is finite-dimensional, then in the nondegenerate
case these three spaces coincide, otherwise they are all distinct.

2. If E0 is infinite-dimensional, then γ(E0) = 0.

3. The space E0 is separable.

4. The balls {θ ∈ E0 : ∥θ∥ ⩽ R}, R > 0, are compact sets in E.

3.3 Separable and natural modifications of process

Let (Ω,B,P) be a probability space and T be a metric space. A random process
ξ(t, ω), t ∈ T , ω ∈ Ω, is said to be separable if there exists at most countable set
S ⊂ T (a separant of the process) such that for any open set U ⊂ T with probability 1
the following equalities hold:

sup
t∈U

ξ(t) = sup
t∈U∩S

ξ(t), inf
t∈U

ξ(t) = inf
t∈U∩S

ξ(t).
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Recall that a random process (η(t))t∈T is called a modification of the process
(ξ(t))t∈T if these processes are defined on the same probability space and equality
P (ξ(t) = η(t)) = 1 holds for any t ∈ T . A realization of the process (ξ(t))t∈T is
the function t 7→ ξ(t, ω) for some fixed ω ∈ Ω. The following theorem (see, e.g.,
[1, Proposition 2.6.5]) provides a sufficient condition for the existence of a separable
modification of a mean-zero Gaussian process.

Theorem 8. Consider a mean-zero Gaussian random process (ξ(t))t∈T on a set T .
Suppose that T with semimetric d(t, s) =

√
E |ξ(t)− ξ(s)|2 is separable. Then, there

exists a separable modification (η(t))t∈T of the process (ξ(t))t∈T .

To prove Theorem 4, the existence of a separable modification of the process
⟨θ, x⟩ is not sufficient. We need the so-called natural modification introduced by
Tsirelson [21].

A modification (η(t))t∈T of the process (ξ(t))t∈T is called natural if there exists a
metric ρ1 on T such that (T, ρ1) is a separable metric space and the process (η(t))t∈T
has almost surely continuous realizations on (T, ρ1).

Below we formulate a theorem (see [12, Section 7] or [1, Theorem 2.6.3, Proposi-
tion 2.6.4]) that allows us to check the existence of a natural modification in terms
of the oscillations α.

Theorem 9. Let (T, ρ) be a separable metric space and let (ξ(t))t∈T be a mean-zero
separable Gaussian random process with the continuous covariance function

(t, s) 7→ E ξ(t)ξ(s).

Then there exists a non-random function α : T → [0,∞] such that with probability 1
for all t ∈ T

α(t) = lim
ε→0

sup{|ξ(u, ω)− ξ(v, ω)|, u, v ∈ B(t, ε)},

where B(t, ε) denotes the open ball of radius ε centered at t.
Moreover, if α(t) < ∞ for all t ∈ T , then the process (ξ(t))t∈T has a natural

modification.

3.4 GB-sets: equivalent definitions and properties

As mentioned in the introduction, a GB-set is a subset K of a separable Hilbert
space H such that there exists a modification of the isonormal process with index
set K, which has almost surely bounded realizations.
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In this subsection, we formulate the results of Sudakov [20, Theorem 1] and
Tsirelson [21, Theorem 3] on equivalent definitions of GB-set, and also prove an
auxiliary Statement 1 about the connection between the GB-property of a set and
the oscillation of a corresponding process.

Theorem 10 (Sudakov). Let K ⊂ H be a convex subset of a Hilbert space H. The
following statements are equivalent:

1. the set K is a GB-set;

2. V1(K) < ∞.

Theorem 11 (Tsirelson). Let K ⊂ H be a subset of a Hilbert space H. The following
statements are equivalent:

1. the isonormal process on the set K has a natural modification;

2. the set K is a GBσ-set (that is a countable union of GB-sets).

Statement 1. Let K ⊂ E0 be a convex compact GB-set. Then Theorem 9 holds
for the process ⟨θ, ·⟩ on T = K with standard metric generated by the inner product.
Thus, the process ⟨θ, ·⟩ on K has a natural modification.

Moreover, the converse also holds. Consider a convex compact set K ⊂ E0 with
standard metric satisfying all conditions of Theorem 9. Then K is a GB-set.

Remark 13. Note that Statement 1 can be deduced from Theorem 11. Nevertheless,
we will provide an alternative proof of Statement 1 for the reader’s convenience.

Remark 14. The existence of a separable modification of the process ⟨θ, ·⟩ does not
require the GB-property of the compact set K, as can be seen from the proof below.

Proof of Statement 1. First, let us check that the process ⟨θ, x⟩, θ ∈ K, has a sepa-
rable modification.

We will use Theorem 8. Note that for θ1, θ2 ∈ K we have

d(θ1, θ2) :=
√

E|⟨θ1, x⟩ − ⟨θ2, x⟩|2 =
√
E (⟨θ1, x⟩2 + ⟨θ2, x⟩2 − 2⟨θ1, x⟩⟨θ2, x⟩)

=
√

⟨θ1, θ1⟩+ ⟨θ2, θ2⟩ − 2⟨θ1, θ2⟩ =
√

⟨θ1 − θ2, θ1 − θ2⟩ = ∥θ1 − θ2∥.

Here in the third equality, we used the fact that the process ⟨θ, x⟩, θ ∈ K, is isonor-
mal. Therefore, the semimetric d coincides with the standard metric on K, and hence
K is separable with this semimetric. Then, by Theorem 8, we can assume without
loss of generality that the process ⟨θ, ·⟩ is separable.
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Now we need to check the continuity of the covariance function.
Let (θ1, θ2) ∈ K × K and ∥θn1 − θ1∥ → 0, ∥θn2 − θ2∥ → 0 as n → ∞. Let us

show that

E⟨θn1 , x⟩⟨θn2 , x⟩ =
∫
E

⟨θn1 , x⟩⟨θn2 , x⟩γ(dx) →
∫
E

⟨θ1, x⟩⟨θ2, x⟩γ(dx) = E⟨θ1, x⟩⟨θ2, x⟩.

Indeed, by the isonormality of the process and the Cauchy–Schwarz inequality,∣∣∣∣∫
E

⟨θn1 , x⟩⟨θn2 , x⟩γ(dx)−
∫
E

⟨θ1, x⟩⟨θ2, x⟩γ(dx)
∣∣∣∣

= |⟨θn1 , θn2 ⟩ − ⟨θ1, θ2⟩|

⩽ |⟨θn1 − θ1, θ2⟩|+ |⟨θn1 − θ1, θ
n
2 − θ2⟩|+ |⟨θn2 − θ2, θ1⟩|

⩽ ∥θn1 − θ1∥∥θ2∥+ ∥θn1 − θ1∥∥θn2 − θ2∥+ ∥θn2 − θ2∥∥θ1∥.

Letting n → ∞ in the last inequality leads to the required relation.
Finally, let us verify that the oscillation α introduced in Theorem 9 is finite in

the case when K is a convex compact GB-set.
We have V1(K) < ∞ by Theorem 10. We will need formula (4) for V1(K):

V1(K) =
√
2π

∫
E

(sup
θ∈K

⟨θ, x⟩)γ(dx).

Assume that there exist θ ∈ K,E1 ⊂ E, γ(E1) > 0 such that for x ∈ E1

α(θ) = lim
ε→0

sup{|⟨θ1, x⟩ − ⟨θ2, x⟩|, θ1, θ2 ∈ B(θ, ε)} = ∞.

Since for x ∈ E1 we have

∞ = α(θ) ⩽ 2 sup
θ∈K

|⟨θ, x⟩|, sup
θ∈K

−⟨θ, x⟩ = sup
θ∈K

⟨θ,−x⟩,

and the distribution γ is symmetric, we get a contradiction with finiteness of V1(K).
This means that α(θ) < ∞.

Conversely, suppose that α(θ) < ∞ for all θ ∈ K. Let us prove that in this case

γ(x ∈ E : sup
θ∈K

|⟨θ, x⟩| < ∞) = 1.

We fix x ∈ E1, where E1 ⊂ E is a set of full measure on which α(θ) < ∞
for all θ ∈ K.
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For each θ ∈ K we choose ε̃(θ),M(θ) < ∞ such that

sup{|⟨θ1, x⟩ − ⟨θ2, x⟩|, θ1, θ2 ∈ B(θ, ε̃(θ))} < M(θ). (16)

Consider the covering of K by balls {B(θ, ε̃(θ))}θ∈K . Since K is compact, we can
choose a finite subcovering of K of the form {B(θi, ε̃(θi))}Ni=1 = {Bi}Ni=1.

Then by the linearity of the process ⟨θ, ·⟩ and by relation (16), we have

sup
θ∈K

|⟨θ, x⟩| = max
1⩽i⩽N

sup
θ∈Bi

|⟨θ − θi, x⟩+ ⟨θi, x⟩|

⩽ max
1⩽i⩽N

|⟨θi, x⟩|+ max
1⩽i⩽N

sup
θ∈Bi

|⟨θ − θi, x⟩|

⩽ max
1⩽i⩽N

|⟨θi, x⟩|+ max
1⩽i⩽N

M(θi) < ∞.

Since the last inequality holds for all x ∈ E1 by our assumption, and γ(E1) = 1,
we have γ(x ∈ E : supθ∈K |⟨θ, x⟩| < ∞) = 1.

Thus, K is a GB-set. Then by Theorem 10, we obtain that V1(K) < ∞.
The statement is proved.

3.5 Properties of mixed volumes

We collect the basic properties of the mixed volumes defined in the introduction,
some of which we will need in the proofs of Theorems 4, 6. For a more detailed
introduction to mixed volume theory, we refer to [2, Chapter 4] and [18, Chapter 5].

For any non-empty convex compact sets K,K1, . . . , Kd ⊂ Rd we have:

1. Ṽd(K, . . . ,K) = Vold(K).

2. Independence of order:

Ṽd(K1, . . . , Kd) = Ṽd(Kσ1 , . . . , Kσd
),

where σ is an arbitrary permutation of numbers 1, . . . , d.

3. Non-negative multilinearity:

Ṽd(λK1 + λ′K ′
1,K2 . . . , Kd)

= λṼd(K1, K2 . . . , Kd) + λ′Ṽd(K
′
1, K2 . . . , Kd) for λ, λ′ ⩾ 0.

18



4. Invariance with respect to a parallel translation:

Ṽd(K1 + a1, . . . , Kd + ad) = Ṽd(K1, . . . , Kd)

for any a1, . . . , ad ∈ Rd.

5. Invariance with respect to a unimodular affine transformation O:

Ṽd(OK1, . . . , OKd) = Ṽd(K1, . . . , Kd).

6. Monotonicity with respect to each argument: let Li, i = 1, . . . , d, be convex
compact sets such that Ki ⊂ Li. Then

Ṽd(K1, . . . , Kd) ⩽ Ṽd(L1, . . . , Ld).

This property implies the non-negativity of the mixed volumes.

7. Additivity: if A,B,A ∪B ⊂ Rd are non-empty convex compact sets, then

Ṽd(A ∪B, . . . , A ∪B︸ ︷︷ ︸
i times

, Ki+1, . . . , Kd) = Ṽd(A, . . . , A,Ki+1, . . . , Kd)

+ Ṽd(B, . . . , B,Ki+1, . . . , Kd)− Ṽd(A ∩B, . . . , A ∩B,Ki+1, . . . , Kd).

8. The mixed volume Ṽd is continuous function on (Kd)d, where by Kd we denote
the collection of all non-empty convex compact sets in Rd equipped with the
Hausdorff metric dH
(dH(K1, K2) := inf{ε ⩾ 0 : K1 ⊂ K2 + εBd and K2 ⊂ K1 + εBd}).

4 Proof of Remark 4
Let Ki ⊂ Rd. It is sufficient to prove that(

d
k

)
κd−k

Ṽd(K1, . . . , Kk,Bd, . . . ,Bd) =

(
d+1
k

)
κd+1−k

Ṽd+1(K1, . . . , Kk,Bd+1, . . . ,Bd+1).

Indeed, according to Minkowski’s formula (6),

Vold+1(λ1K1 + . . .+ λkKk + λBd+1)

=

∫ λ

−λ

Vold(λ1K1 + . . .+ λkKk +
√
λ2 − z2Bd)dz

=

∫ λ

−λ

k+1∑
i1=1

· · ·
k+1∑
id=1

λi1 . . . λidṼd(Ki1 , . . . , Kid)dz,
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where λk+1 =
√
λ2 − z2, Kk+1 = Bd. To explain the first equality notice that the

intersection of the set λ1K1 + . . . + λkKk + λBd+1 with the horizontal hyperplane
Rd+(0, . . . , 0, z) gives us the set λ1K1+ . . .+λkKk+

√
λ2 − z2Bd and equality follows

from Fubini’s theorem.
Now let us look at the coefficient of the monomial λ1 · · ·λk on the left- and right-

hand sides of the last equality.
By Minkowski’s formula (6) applied to the left-hand side, we obtain the coefficient

k! Ṽd+1(K1, . . . , Kk,Bd+1, . . . ,Bd+1)

(
d+ 1

k

)
λd+1−k.

On the right-hand side, the coefficient of λ1 · · ·λk is

k! Ṽd(K1, . . . , Kk,Bd, . . . ,Bd)

(
d

k

)∫ λ

−λ

√
(λ2 − z2)

d−k
dz.

Notice that∫ λ

−λ

√
(λ2 − z2)

d−k
dz = λd+1−k

∫ 1

−1

√
(1− z2)

d−k
dz = λd+1−k

√
πΓ(d−k

2
+ 1)

Γ(d−k+3
2

)
.

Comparing the coefficients, we obtain

k! Ṽd+1(K1, . . . , Kk,Bd+1, . . . ,Bd+1)

(
d+ 1

k

)
λd+1−k

= k! Ṽd(K1, . . . , Kk,Bd, . . . ,Bd)

(
d

k

)
λd+1−k

∫ 1

−1

√
(1− z2)

d−k
dz.

Taking into account the value of κk := πk/2/Γ(k
2
+ 1) and the last equality, we have(

d+ 1

k

)
Ṽd+1(K1, . . . , Kk,Bd+1, . . . ,Bd+1)κd−k

=

(
d

k

)
Ṽd(K1, . . . , Kk,Bd, . . . ,Bd)κd+1−k,

which completes the proof.

5 Proof of Theorem 4
We divide the proof of the theorem into two cases.

Case 1. dimKi < ∞ for all i = 1, . . . , k. In this case, taking into account
Remarks 1, 4, the statement of Theorem 4 can be rewritten in the following form.
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Statement 2. If K1, . . . , Kk ⊂ Rd, k = 1, . . . , d, then

Ṽd(K1, . . . , Kk,Bd, . . . ,Bd) = ck,dE Ṽk(AK1, . . . , AKk),

where ck,d =
κd−k(2π)

k/2

k!(dk)κk
, AKi := {Ax : x ∈ Ki} ⊂ Rk and A is the standard Gaussian

matrix of size k × d.

Proof of Statement 2. Let us look at Vold

(∑k
i=1 αiKi + (d− 1)λBd

)
.

By Minkowski’s theorem (6),

Vold

(
k∑

i=1

αiKi + (d− 1)λBd

)
=

d+k−1∑
i1=1

· · ·
d+k−1∑
id=1

λi1 . . . λidṼd(Ki1 , . . . , Kid), (17)

where λ1 = α1, . . . , λk = αk, λk+1 = . . . = λd+k−1 = λ, Kk+1 = . . . = Kd+k−1 = Bd.
Therefore, in the sum on the right-hand side, the coefficient of λd−k is a polynomial
in α1, . . . , αk, and the coefficient of λd−kα1 · · ·αk is equal to

k!

(
d

k

)
Ṽd(K1, . . . , Kk,Bd, . . . ,Bd).

On the other hand, considering K :=
∑k

i=1 αiKi, by Minkowski’s theorem (6),
we have

Vold(K + (d− 1)λBd) =
d∑

i1=1

· · ·
d∑

id=1

λi1 . . . λidṼd(Li1 , . . . , Lid), (18)

where λ1 = 1, λ2 = . . . = λd = λ, L1 = K, L2 = . . . = Ld = Bd. In this case, since
the mixed volumes are invariant with respect to permutations of the arguments, the
coefficient of λd−k will be equal to(

d

k

)
Ṽd(K, . . . ,K︸ ︷︷ ︸

k times

,Bd, . . . ,Bd).

Further,

Ṽd(K, . . . ,K︸ ︷︷ ︸
k times

,Bd, . . . ,Bd)
(7)
=

κd−k(
d
k

) Vk(K) =
κd−k(

d
k

) Vk

(
k∑

i=1

αiKi

)

(5)
=

κd−k(
d
k

) (2π)k/2

k!κk

EVolk

(
A

(
k∑

i=1

αiKi

))

=
κd−k(

d
k

) (2π)k/2

k!κk

EVolk

(
k∑

i=1

αiAKi

)
.
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Applying again Minkowski’s theorem (6), we conclude that EVolk

(∑k
i=1 αiAKi

)
is a homogeneous polynomial of degree k in α1, . . . , αk with coefficient of α1 · · ·αk

equal to
k! E Ṽk(AK1, . . . , AKk).

Thus, on the right-hand side of (18) the coefficient of λd−kα1 · · ·αk equals

κd−k
(2π)k/2

κk

E Ṽk(AK1, . . . , AKk).

So, the left-hand sides of relations (17) and (18) are the same. Hence, the coeffi-
cients of λd−kα1 · · ·αk are the same on the right-hand sides:

k!

(
d

k

)
Ṽd(K1, . . . , Kk,Bd, . . . ,Bd) = κd−k

(2π)k/2

κk

E Ṽk(AK1, . . . , AKk).

This completes the proof of Statement 2.

Case 2. dimKi = ∞ for at least one index i = 1, . . . , k.
According to Statement 1, the GB-property of the compact sets Ki implies that

the processes ⟨θ, x⟩, θ ∈ Ki, have a natural modification.
Next, we reduce Case 2 to the finite-dimensional one (Statement 2).

Let K1,1 ⊂ K1,2 ⊂ . . . ⊂ K1, K2,1 ⊂ K2,2 ⊂ . . . ⊂ K2, . . . , Kk,1 ⊂ Kk,2 ⊂ . . . ⊂ Kk.
Here Ki,j are finite-dimensional convex compact sets, and ∪∞

j=1Ki,j is dense in Ki.
Then by definition (10) and by Properties 6, 8 of mixed volumes, we get

V (K1, . . . , Kk) = lim
j→∞

V (K1,j, . . . , Kk,j).

Now we formulate the lemma proved by Tsirelson in [23].

Lemma 1. Let ξ(t, ω) be a natural modification of some random process, ω ∈ Ω,
t ∈ T , and let S ⊂ T be dense in T in the following sense: for any t ∈ T there
are sn ∈ S, n = 1, 2, . . . , such that ξ(sn, ω) → ξ(t, ω) as n → ∞ for almost all ω
(the corresponding set of probability 1, generally speaking, depends on t). Then there
exists a set Ω0 ⊂ Ω of probability 1 with the following property: for any t ∈ T there
are s′n ∈ S, n = 1, 2, . . . , such that ξ(s′n, ω) → ξ(t, ω) as n → ∞ for all ω ∈ Ω0.

Corollary 1. Let K ⊂ E0 be a convex compact GB-set. If K0 ⊂ K is dense
in K, then for almost all (x1, . . . , xk) the set Spec(x1, . . . , xk|K0) is dense in the set
Spec(x1, . . . , xk|K).
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The above corollary is stated in [23] without proof. For the reader’s convenience,
we prove it here.

Proof of Corollary 1. Since K0 is dense in K in the usual sense, for any θ ∈ K
there exist sn ∈ K0, n = 1, 2, . . . , such that ∥sn − θ∥ → 0 as n → ∞. Moreover,
by Property (9), ∫

E

⟨sn − θ, x⟩2γ(dx) = ∥sn − θ∥2 → 0

as n → ∞. Therefore, the sequence ⟨sn − θ, x⟩2 converges to 0 in measure. Then
there is a subsequence (we will also denote it by sn) such that ⟨sn − θ, x⟩2 converges
to 0 almost everywhere (the corresponding set of probability 1 depends on θ).

Since K ⊂ E0 is a convex compact GB-set, the Gaussian process ⟨θ, x⟩ has a
natural modification by Statement 1. Hence, by Lemma 1, for any θ ∈ K there exist
s′n ∈ K0 such that

⟨s′n, x⟩ → ⟨θ, x⟩ (19)

as n → ∞ for almost all x, and the corresponding set of probability 1 is common
for all θ ∈ K.

Then we can conclude that for almost all (x1, . . . , xk) the set

Spec(x1, . . . , xk|K0) = {(⟨θ, x1⟩, . . . , ⟨θ, xk⟩) : θ ∈ K0} ⊂ Rk

is dense in the set

Spec(x1, . . . , xk|K) = {(⟨θ, x1⟩, . . . , ⟨θ, xk⟩) : θ ∈ K} ⊂ Rk,

since the argument above implies a coordinate-wise density (19), and the correspond-
ing set of probability 1 in Rk will also be common for all θ ∈ K.

Using Corollary 1, we get that almost surely ∪∞
j=1Spec(x1, . . . , xk|Ki,j) is dense

in Spec(x1, . . . , xk|Ki).
Then we use Statement 2 for the finite-dimensional Ki,j:

V (K1, . . . ,Kk) = lim
j→∞

V (K1,j , . . . ,Kk,j)

= lim
j→∞

(2π)k/2

k!κk

∫
E
. . .

∫
E
Ṽk(Spec(x1, . . . , xk|K1,j), . . . ,Spec(x1, . . . , xk|Kk,j))γ(dx1) . . . γ(dxk)

=
(2π)k/2

k!κk

∫
E
. . .

∫
E

lim
j→∞

Ṽk(Spec(x1, . . . , xk|K1,j), . . . ,Spec(x1, . . . , xk|Kk,j))γ(dx1) . . . γ(dxk)

=
(2π)k/2

k!κk

∫
E
. . .

∫
E
Ṽk(Spec(x1, . . . , xk|K1), . . . ,Spec(x1, . . . , xk|Kk))γ(dx1) . . . γ(dxk).
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Here in the third equality we have used Lebesgue’s dominated convergence the-
orem. The last equality also follows from Properties 6, 8 of mixed volumes and
Corollary 1.

The proof of Theorem 4 is complete.

6 Proof of Theorem 5
Since K1 and K2 are compact GB-sets, we can apply Theorem 4 with k = 2:

V (K1, K2) =
2π

2κ2

E Ṽ2(Spec2K1, Spec2K2).

Since κ2 = π, we get

V (K1,K2) = E Ṽ2(Spec2K1, Spec2K2)

= E Ṽ2

(
conv

(
{X(2)

1 (t) : t ∈ [0, 1]}
)
, conv

(
{X(2)

2 (t) : t ∈ [0, 1]}
))

, (20)

where X(2)
1 (t), X

(2)
2 (t) are independent standard two-dimensional Brownian motions,

and conv(F ) denotes a convex hull of the set F (i.e., the smallest convex set con-
taining F ).

Therefore, our problem is reduced to finding the mean mixed area E Ṽ2 of the
convex hulls of independent two-dimensional Brownian motions on [0, 1].

Further, for calculation, we will use an analogue of the technique given in [14].
The main tools of this technique are the support function and the associated Cauchy’s
formulae.

Let C be an arbitrary closed smooth convex curve in a plane. Let us represent
the curve C as

C = {(x(s), y(s)), s ∈ C}.

Now we recall the notion of the support function of the curve C.
For φ ∈ [0, 2π) the value of the support function M(φ) of the curve C is defined by

M(φ) = max
s∈C

{x(s) cosφ+ y(s) sinφ}.

The Cauchy’s formulae (see, e.g., [14, pp. 48-49]) allow us to express the length L
of the curve C and the area A of the figure bounded by the curve C in terms of the
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support function:

L =

∫ 2π

0

M(φ)dφ, (21)

A =
1

2

∫ 2π

0

(
(M(φ))2 − (M ′(φ))2

)
dφ. (22)

In the case when the curve C is random (for example, the boundary of a convex
hull of a two-dimensional Brownian motion is almost surely smooth [4]), M(φ) and
M ′(φ) are random variables.

Taking the expectation of both sides of relations (21), (22), we get

EL =

∫ 2π

0

EM(φ)dφ, (23)

EA =
1

2

∫ 2π

0

(
E(M(φ))2 − E(M ′(φ))2

)
dφ. (24)

Note that the distribution of the two-dimensional Brownian motion is invariant
under rotations. Hence, the distribution of the support function M(φ) does not
depend on φ. Therefore, it is sufficient to consider φ = 0,M(φ)

d
= M(0), where d

= is
equality in distribution. Relations (23), (24) in this case can be written in the form

EL = 2π EM(0),

EA = π
(
E(M(0))2 − E(M ′(0))2

)
. (25)

The following expression (see, e.g., [17, pp. 4-5]) is an analogue of the Cauchy’s
formulae for computation of the mixed area of two convex compact sets F1, F2 in a
plane with smooth boundary:

Ṽ2(F1, F2) =
1

2

∫ 2π

0

(M1(φ)M2(φ)−M ′
1(φ)M

′
2(φ)) dφ,

where M1 and M2 are the support functions of the curves representing the boundaries
of F1 and F2, respectively.

Similarly to (24), for random F1, F2 we get

E Ṽ2(F1, F2) =
1

2

∫ 2π

0

(E(M1(φ)M2(φ))− E(M ′
1(φ)M

′
2(φ))) dφ. (26)
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Now consider conv
(
{X(2)

1 (t) : t ∈ [0, 1]}
)

and conv
(
{X(2)

2 (t) : t ∈ [0, 1]}
)

as F1

and F2, respectively. By formula (26) and the independence of X(2)
1 (t) and X

(2)
2 (t),

we have

E Ṽ2

(
conv

(
{X(2)

1 (t) : t ∈ [0, 1]}
)
, conv

(
{X(2)

2 (t) : t ∈ [0, 1]}
))

=
1

2

∫ 2π

0

(EM1(φ)EM2(φ)− EM ′
1(φ)EM

′
2(φ)) dφ

=
1

2
2π
(
(EM1(0))

2 − (EM ′
1(0))

2
)
= π

(
(EM1(0))

2 − (EM ′
1(0))

2
)
. (27)

Here the second equality follows from relation (25) and the fact that M1 and M2 are
identically distributed.

Thus, it remains to calculate EM1(0) and EM ′
1(0), where M1 is the support

function of the boundary of the convex hull of the two-dimensional Brownian mo-
tion on [0, 1].

Recall that

{X(2)(t) : t ∈ [0, 1]} = {(W1(t),W2(t)) : t ∈ [0, 1]},

where W1(t) and W2(t) are independent standard one-dimensional Brownian motions.
We fix a direction φ. For t ∈ [0, 1], consider projections on the direction φ and

perpendicular to it:

zφ(t) = W1(t) cosφ+W2(t) sinφ,

hφ(t) = −W1(t) sinφ+W2(t) cosφ.

Then zφ and hφ are independent standard one-dimensional Brownian motions on [0, 1].
Consequently, the support function

M1(φ) = max
t∈[0,1]

zφ(t)

is the maximum of the one-dimensional Brownian motion zφ on [0, 1].
Let t∗ ∈ [0, 1] be the time when this maximum is attained. Then

M1(φ) = zφ(t
∗) = W1(t

∗) cosφ+W2(t
∗) sinφ. (28)

Differentiating (28) with respect to φ, we have

M ′
1(φ) = −W1(t

∗) sinφ+W2(t
∗) cosφ = hφ(t

∗).
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In other words, M1(φ) is the maximum of the first Brownian motion zφ, and M ′
1(φ)

corresponds to the value of the second, independent Brownian motion hφ at time t∗

when the first one attains its maximum.
In particular, for φ = 0 we obtain z0(t) = W1(t), h0(t) = W2(t), and

M1(0) = max
t∈[0,1]

W1(t),

M ′
1(0) = W2(t

∗).

The cumulative distribution function of the maximum of one-dimensional Brow-
nian motion on [0, 1] is well known (see, e.g., [5]), namely

F (m) = P

(
max
t∈[0,1]

W1(t) ⩽ m

)
= erf

(
m√
2

)
,

where erf(z) = 2√
π

∫ z

0
e−u2

du. The first moment of this distribution is easily calcu-
lated:

EM1(0) = E max
t∈[0,1]

W1(t) =

√
2

π
. (29)

Let us show that

EM ′
1(0) = EW2(t

∗) = 0. (30)

Indeed, since t∗ and W2(t) are independent, we see that

EM ′
1(0) = EW2(t

∗) =

∫ 1

0

∫ ∞

−∞
xp1(x, t)dx p2(t)dt. (31)

Here p1 denotes the density of the normal distribution N(0, t) under the condition
that t∗ = t, and p2 denotes the density of the random variable t∗ (an explicit formula
for p2 can be found in [14]). Since for a fixed t ∈ [0, 1] the inner integral in (31)
equals 0, we have EM ′

1(0) = 0.
Combining (20), (27), (29) and (30), we get

V (K1, K2) = π
(
(EM1(0))

2 − (EM ′
1(0))

2
)
= 2.
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7 Proof of Theorem 6
Taking into account Remark 4, we can write

V (K1, K2, . . . , Kk) = sup
K′

i⊂Ki

V (K ′
1, K

′
2, . . . , K

′
k),

where the supremum is taken over all finite-dimensional convex compact subsets
K ′

i ⊂ Ki, i = 1, . . . , k.
So, we want to prove that(
sup

K′
i⊂Ki

V (K ′
1, K

′
2, . . . , K

′
k)

)2

⩾ sup
K′′

i ⊂Ki

V (K ′′
1 , K

′′
1 , . . . , K

′′
k ) sup

K′′′
i ⊂Ki

V (K ′′′
2 , K

′′′
2 , . . . , K

′′′
k ).

(32)

Let us start with the right-hand side of (32):

V (K1, K1, K3, . . . , Kk)V (K2, K2, K3, . . . , Kk)

= sup
K′′

i ⊂Ki

V (K ′′
1 , K

′′
1 , K

′′
3 , . . . , K

′′
k ) sup

K′′′
i ⊂Ki

V (K ′′′
2 , K

′′′
2 , K

′′′
3 , . . . , K

′′′
k )

= sup
K′′

i ⊂Ki,K′′′
i ⊂Ki

[V (K ′′
1 , K

′′
1 , K

′′
3 , . . . , K

′′
k )V (K ′′′

2 , K
′′′
2 , K

′′′
3 , . . . , K

′′′
k )]

⩽ sup
K′′

i ⊂Ki,K′′′
i ⊂Ki

[V (K ′′
1 , K

′′
1 , conv(K

′′
3 ∪K ′′′

3 ), . . . , conv(K
′′
k ∪K ′′′

k ))

×V (K ′′′
2 , K

′′′
2 , conv(K

′′
3 ∪K ′′′

3 ), . . . , conv(K
′′
k ∪K ′′′

k ))]

⩽ sup
K′′

i ⊂Ki,K′′′
i ⊂Ki

V 2(K ′′
1 , K

′′′
2 , conv(K

′′
3 ∪K ′′′

3 ), . . . , conv(K
′′
k ∪K ′′′

k ))

⩽

(
sup

K′
i⊂Ki

V (K ′
1, K

′
2, . . . , K

′
k)

)2

= V 2(K1, K2, . . . , Kk).

Here, the first inequality holds by monotonicity Property 6 of the mixed volumes
and the second inequality holds by the Aleksandrov–Fenchel inequality (8) for finite-
dimensional sets.

8 Proof of Theorem 7
Throughout this section we use the following notation:
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• the closed conic (or positive) hull of the set F we denote by

posF := {λx : x ∈ conv(F ), λ ⩾ 0},

where conv(F ) denotes a closed convex hull of the set F .

We will write pos(v1, . . . , vl) for conic hull of vectors v1, . . . , vl.

• the linear span of F we denote by linF ;

• dH denotes the Hausdorff metric on the sphere;

• for two orthogonal vectors x and y we write x ⊥ y;

• ⟨x, y⟩ denotes the inner product of vectors x, y and ∥x∥ denotes the norm of x,
it will be clear from the context in which space the inner product and norm
are taken.

To prove Remark 11 and Theorem 7, we need two statements.

Statement 3. Suppose that the cones C, {Cn}n∈N in Rd satisfy Cn∩Sd−1 → C∩Sd−1

in the Hausdorff metric dH on the sphere Sd−1. Then for j = 0, 1, . . . , d we have

γj(Cn) → γj(C)

as n → ∞.

Remark 15. This statement is not new, see [15, Proposition 8.2], [19, Theorem 6.5.2(b)].
In [15] it was proved that the conic intrinsic volumes mentioned in the introduction
are continuous with respect to the so-called conic Hausdorff metric. This implies
Statement 3. For the reader’s convenience, here we present the proof of Statement 3
without using the concept of conic intrinsic volumes.

Proof of Statement 3. Denote S = C ∩ Sd−1, Sn = Cn ∩ Sd−1 (see Figure 1) and let
dH(Sn, S) = εn. We have to show that

|P[Cn ∩Wd−j ̸= {0}]−P[C ∩Wd−j ̸= {0}]| → 0, n → ∞,

which will follow from the two convergences:

P[Cn ∩Wd−j ̸= {0}, C ∩Wd−j = {0}] → 0, n → ∞;

P[Cn ∩Wd−j = {0}, C ∩Wd−j ̸= {0}] → 0, n → ∞.
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If j = d, then the claim of the statement is trivial. If j = d−1, then it is equivalent to
convergence of the Lebesgue measure of Sn to the Lebesgue measure of S. Further,
we proceed by induction on the difference d− j.

Let us denote by Gj′(H) the Grassmannian of j′-dimensional linear subspaces of
the affine space H. The Haar measure P of the required events (for j < d− 1) can
be represented as (see, e.g., [19, Theorem 7.1.1])

P[Cn ∩Wd−j ̸= {0}, C ∩Wd−j = {0}] (33)

=

∫
Sd−1

∫
Gd−j−1(Hx)

1[Cn ∩Wd−j−1(Hx) ̸= ∅, C ∩Wd−j−1(Hx) = ∅] dµ dx,

and
P[Cn ∩Wd−j = {0}, C ∩Wd−j ̸= {0}]

=

∫
Sd−1

∫
Gd−j−1(Hx)

1[Cn ∩Wd−j−1(Hx) = ∅, C ∩Wd−j−1(Hx) ̸= ∅] dµ dx,

where Hx denotes the hyperplane {y ∈ Rd : ⟨x, y⟩ = 1} with x as the origin, dx is
the normalized Lebesgue measure on the sphere Sd−1, dµ is the Haar measure on
Gd−j−1(Hx). By Lebesgue’s dominated convergence theorem it is sufficient to prove
that the inner integrals in (33) tend to 0 as n tends to ∞ for almost every x ∈ Sd−1.
If x ∈ IntS (where IntS denotes the interior of the set S taken on the sphere),
then this claim is trivial, since for large n we have x ∈ Sn. The set of x such that
x ∈ S \ IntS has Lebesgue measure 0. Hence further we can assume x /∈ S and
x /∈ Sn for sufficiently large n.

Consider the sets Bx = C∩Hx and Bx,n = Cn∩Hx and let Πx : Hx → Sd−2(Hx) be
the projection on the unit sphere in Hx, i.e., the mapping defined by x+h 7→ x+ h

∥h∥
for h ⊥ x. It is clear that the following events coincide:

{C ∩Wd−j−1(Hx) = ∅} = {Bx ∩Wd−j−1(Hx) = ∅}
= {ΠxBx ∩Wd−j−1(Hx) = ∅} = {posHx

(ΠxBx) ∩Wd−j−1(Hx) = {x}},

where posHx
denotes the positive hull in Hx. Similarly, for Cn we get

{Cn ∩Wd−j−1(Hx) ̸= ∅} = {Bx,n ∩Wd−j−1(Hx) ̸= ∅}
= {ΠxBx,n ∩Wd−j−1(Hx) ̸= ∅} = {posHx

(ΠxBx,n) ∩Wd−j−1(Hx) ̸= {x}}.

Hence, we have to show that for almost every x ∈ Sd−1

µ [ΠxBx,n ∩Wd−j−1(Hx) ̸= ∅,ΠxBx ∩Wd−j−1(Hx) = ∅] → 0, as n → ∞;

µ [ΠxBx,n ∩Wd−j−1(Hx) = ∅,ΠxBx ∩Wd−j−1(Hx) ̸= ∅] → 0, as n → ∞.
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Figure 1: Illustration for the proof of Statement 3.

The latter will follow from the convergence

ΠxBx,n → ΠxBx, as n → ∞,

in the Hausdorff metric on Hx by the induction hypothesis. First let us show that
ΠxBx,n is a subset of a small neighbourhood of ΠxBx. Consider p ∈ ΠxBx,n. We
have to show that there exist a point p′ ∈ ΠxBx close to p. By the definition
of Πx and the Hausdorff metric there exist q ∈ S, λ > 0 and v ∈ Bd such that
λ(q + εnv) ∈ Hx and Πx(λq + λεnv) = p. Expanding q = αx+ h and v = αvx+ hv,
where α, αv ∈ R, h, hv ⊥ x, we get

p = Πx(λq + λεnv) = Πx(λ(αx+ h) + λεn(αvx+ hv)) = x+
h+ εnhv

∥h+ εnhv∥
.
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Notice that α + εnαv > 0, since λ > 0 and the coefficient of x is λ(α + εnαv) = 1.
Hence, −α < εnαv ⩽ εn.

If α > 0, then 1
α
q = x + h

α
∈ Bx and we put p′ = x + h

∥h∥ ∈ ΠxBx. Since x /∈ S,
infq∈S ∥h∥ > 0. Therefore, ∥p−p′∥ = O(εn), because the projection Πx is 1

r
-Lipschitz

on the sets {x+ h : ∥h∥ > r} for all r > 0.
The case α < 0 is a bit more complicated.
Assume that there exists qx ∈ S such that ∆ = ⟨qx, x⟩ > 0. Consider ε′n = εn

∆
.

For some hx ⊥ x we have qx = ∆x+ hx. Let

q′ = (1− ε′n)q + ε′nqx = ((1− ε′n)α +∆ε′n)x+ (1− ε′n)h+ ε′nhx.

It is clear that α′ := (1− ε′n)α+∆ε′n > α+∆ε′n ⩾ 0 for sufficiently small εn. Hence,
1
α′ q

′ ∈ Bx and we put

p′ = x+
h+ ε′n(hx − h)

∥h+ ε′n(hx − h)∥
∈ ΠxBx.

Similarly to the previous situation we get the uniform bound ∥p− p′∥ = O(εn).
When ⟨q, x⟩ < 0 for all q ∈ S we have ΠxBx,n = ΠxBx = ∅ for all sufficiently

large n. Consequently, we are left with the case when supq∈S⟨q, x⟩ = 0. This set of
possible x has measure 0 and hence can be dismissed.

To show that ΠxBx is a subset of a small neighbourhood of ΠxBx,n we pro-
ceed similarly. For p ∈ ΠxBx we take qn ∈ Sn, λn ⩾ 0 and vn ∈ Bd such that
λ(qn + εnvn) ∈ Hx and Πx(λnqn + λnεnvn) = p. All of the constants in O(εn) de-
pended only on infq∈Sn ∥h∥, which is uniformly bounded for all Sn for large n. Hence,
the same bounds will hold.

Proof of Remark 11. Let {C ′
n}n∈N be a sequence of polyhedral finite-dimensional

cones approximating an arbitrary finite-dimensional cone C ′: C ′
1 ⊂ C ′

2 ⊂ . . . ⊂ C ′,
∪∞

n=1C
′
n ⊂ C ′. If dimC ′ = d, then C ′

n ∩ Sd−1 → C ′ ∩ Sd−1 in the Hausdorff metric dH
on the sphere Sd−1. Therefore, by Statement 3, γj(C ′

n) = P[C ′
n ∩ Wd−j ̸= {0}] →

γj(C
′) = P[C ′ ∩ Wd−j ̸= {0}]. Thus, it suffices to take the supremum in (15) over

polyhedral finite-dimensional cones.

Statement 4. Consider the finite-dimensional cones Cn ⊂ E0, n ∈ N: C1 ⊂ C2 ⊂
. . . ⊂ C that approximate the cone C ⊂ E0 from the inside: ∪∞

n=1Cn is dense in C.
Then we have

γj(pos(∪∞
n=1Cn)) = γj(C).
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Proof of Statement 4. Clearly, γj(pos(∪∞
n=1Cn)) ⩽ γj(C) because of ∪∞

n=1Cn ⊂ C
and monotonicity of Grassmann angles. Let us show that γj(pos(∪∞

n=1Cn)) ⩾ γj(C).
By definition,

γj(C) = sup
C′⊂C

P[C ′ ∩Wd−j ̸= {0}],

where the supremum can be taken only over polyhedral finite-dimensional cones by
Remark 11. Consequently, it is sufficient to prove that for every finite-dimensional
polyhedral cone C ′ ⊂ C, d := dimC ′, we have

γj(C
′) = P[Wd−j ∩ C ′ ̸= {0}] ⩽ γj(pos(∪∞

n=1Cn)).

The cone C ′ is polyhedral, hence there are unit vectors v1, . . . , vl ∈ linC ′ such
that C ′ = pos(v1, . . . , vl). Consider ε > 0. The set ∪∞

n=1Cn is dense in C, hence for
every vi there exists a unit vector ui ∈ ∪∞

n=1Cn such that dH(ui, vi) < ε. Therefore,
the cone C ′

ε = pos(u1, . . . , ul) is close to C ′, i.e., dH(C
′
ε ∩ S(E0), C

′ ∩ S(E0)) < ε,
where S(E0) denotes the unit sphere in E0. Let εk be a sequence of positive num-
bers such that lim εk = 0 as k → ∞. We want to use Statement 3 to show that
limk→∞ γj(C

′
εk
) = γj(C

′). To do this formally we need to place all C ′
εk

into one
common finite-dimensional space with C ′.

Notice that dimC ′
ε ⩽ l for every ε, hence dim lin(C ′

ε ∪ C ′) ⩽ d + l. This means
that for every ε there exist a linear subspace Uε ⊂ E0 with dimUε = d+ l such that
C ′

ε ∪ C ′ ⊂ Uε. Decompose Uε into the orthogonal sum Uε = linC ′ ⊕ Vε. Now fix
(d + l)-dimensional space Rd+l = Rd ⊕ Rl and the isometry I between linC ′ and
Rd. Let Jε : Uε → Rd+l be an isometric operator such that Jε coincides with I on
linC ′. Then γj(C

′) = γj(IC ′), γj(C
′
ε) = γj(JεC

′
ε) and dH(C

′
ε ∩ S(E0), C

′ ∩ S(E0)) =
dH(JεC

′
ε ∩ Sd+l−1, IC ′ ∩ Sd+l−1). Therefore, JεkC

′
εk

→ IC ′, as k → ∞, Statement 3
applies and

γj(C
′) = γj(IC ′) = lim

k→∞
γj(JεkC

′
εk
) = lim

k→∞
γj(C

′
εk
).

To conclude the proof notice that for every ε > 0, we have C ′
ε ⊂ pos(∪∞

n=1Cn), hence
γj(C

′
ε) ⩽ γj(pos(∪∞

n=1Cn)).

We return to the proof of Theorem 7.
For cones C such that dimC < ∞, this theorem is proved in [7, Theorem 3.5]. It

remains to check the case dimC = ∞. We approximate the cone C from the inside
by finite-dimensional cones Cn, n ∈ N: C1 ⊂ C2 ⊂ . . . ⊂ C; ∪∞

n=1Cn is dense in C.
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We will use the same argument as applied above to the mixed volumes (see
Subsection 2.1 and Section 5).

The proof of Corollary 1 does not use the compactness of the set K, the key
property in the proof is the existence of a natural modification of the process ⟨θ, x⟩
on K. Therefore, by Theorem 11 we can repeat the proof of Corollary 1 for a convex
GBσ-cones C.

Thus, using Corollary 1, we get that ∪∞
n=1Spec(x1, . . . , xk|Cn) is almost surely

dense in Spec(x1, . . . , xk|C) = {(⟨θ, x1⟩, . . . , ⟨θ, xk⟩) : θ ∈ C}. Hence,

E[γj(SpeckC)] = E[γj(pos(∪∞
n=1SpeckCn))] = E[ lim

n→∞
γj(SpeckCn)]

= lim
n→∞

E[γj(SpeckCn)] = lim
n→∞

γj(Cn) = γj(pos(∪∞
n=1Cn)) = γj(C).

Here, the first and last equalities hold by Statement 4, the second and fifth by defi-
nition of Grassmann angle (15). In the third equality we have used Lebesgue’s dom-
inated convergence theorem. Finally, the fourth equality is the assertion of the theo-
rem for finite-dimensional cones Cn.
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