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NIKOLAY E. BOROZENETS

Abstract. In this paper, we build on recent results of Frank Garvan and Rishabh Sarma as well as
classical results of Bruce Berndt in order to establish the 11-dissection of the deviations of the rank
and crank modulo 11. Using our new dissections we re-derive results of Garvan, Atkin, Swinnerton-
Dyer, Hussain, Ekin and Chern. By developing and exploiting positivity conditions for quotients
of theta functions, we will also prove new rank-crank inequalities and make several conjectures.
We would like to point out that Kathrin Bringmann and Badri Vishal Pandey have recently solved
one of our conjectures. For other applications of our methods, in this paper we will also prove
new congruences for rank moments as well as the Andrews’ smallest parts function and Eisenstein
series.

1. Introduction

A partition of a positive integer n is a weakly-decreasing sequence of positive integers whose sum
is n. We denote the number of partitions of n by p(n). Among the most famous results in the
theory of partitions are Ramanujan’s congruences:

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

In 1944, Dyson [15] conjectured combinatorial interpretations of the first two congruences. He
defined the rank of a partition as the largest part minus the number of parts and conjectured that
the rank modulo 5 divided the partitions of 5n+ 4 into 5 equal classes and that the rank modulo
7 divided the partitions of 7n + 5 into 7 equal classes. For example the partitions of the number
4 are (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1) and their ranks are 3, 1, 0,−1,−3 respectively, giving an
equinumerous distribution of the partitions of 4 into the five residue classes modulo 5. His modulo
5 and modulo 7 rank conjectures were proved by Atkin and Swinnerton-Dyer [7].

Although the rank does not explain Ramanujan’s third congruence, Dyson conjectured another
function, which he called the crank, that would divide the partitions of 11n+6 into 11 equal classes.
Andrews and Garvan later discovered the crank [3]. For a partition π, let λ(π) denote the largest
part, ϑ(π) the number of ones, and µ(π) the number of parts larger than ϑ(π). The crank of π,
denoted c(π), is defined as follow

c(π) :=

{
λ(π), when ϑ(π) = 0,

µ(π)− ϑ(π), otherwise.

The cranks of the five partitions of 4 are 4, 0, 2,−2,−4 respectively, giving an equinumerous distri-
bution of the partitions of 4 into the five residue classes modulo 5.

Let N(m,n) denote the number of partitions of n with rank m and N(a, r, n) denote the number
of partitions of n with rank ≡ a (mod r). Note that there is a symmetric property N(a, r, n) =
N(r − a, r, n). Let M(m,n) denote the number of partitions of n with crank m and M(a, r, n)
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denote the number of partitions of n with crank ≡ a (mod r). As with the rank, the crank has the
symmetry property M(a, r, n) = M(r − a, r, n). Andrews and Garvan [3] showed

M(a, 5, 5n+ 4) =
p(5n+ 4)

5
, for 0 ≤ a ≤ 4,

M(a, 7, 7n+ 5) =
p(7n+ 5)

7
, for 0 ≤ a ≤ 6,

M(a, 11, 11n+ 6) =
p(11n+ 6)

11
, for 0 ≤ a ≤ 10.

Let q := e2πiz be a nonzero complex number with Im(z) > 0. Using the terminology above, we
define the deviation of the rank from the expected value to be

D(a, r) = D(a, r; q) :=
∞∑
n=0

(
N(a, r, n)− p(n)

r

)
qn

and the deviation of the crank from the expected value to be

DC(a, r) = DC(a, r; q) :=

∞∑
n=0

(
M(a, r, n)− p(n)

r

)
qn.

Recall the q-Pochhammer notation, defined by

(x)n = (x; q)n :=
n−1∏
i=0

(1− xqi).

In his last letter to Hardy, Ramanujan gave a list of seventeen functions which he called “mock
theta functions.“ He stated that they have certain asymptotic properties similar to the properties
of ordinary theta functions, but that they are not theta functions [32]. Recall the definition of the
universal mock theta function, which gives many mock theta functions as a special cases,

g(x; q) := x−1

(
−1 +

∞∑
n=0

qn
2

(x)n+1(q/x)n

)
.

Also recall the definition of the theta function

j(x; q) := (x)∞(q/x)∞(q)∞ =
∞∑

k=−∞
(−1)kq(

k
2)xk,

where the equivalence of product and sum follows from Jacobi’s triple product identity. Let a and
m be integers with m positive. We introduce

Ja,m := j(qa; qm), Jm := Jm,3m = (qm; qm)∞ and Pi := Ji,11, Xi := J11i,121. (1.1)

To formulate our main results we need the following notation.

Definition 1.1. We define

v11(a0, a1, a2, a3, a4, a5, a7, a8, a9, a10)

:=
J2
121

11

(
a0

1

X1
+ a1q

X5

X2X3
+ a2q

2 X3

X1X4
+ a3q

3 X2

X1X3
+ a4q

4 1

X2

+ a5q
5 X4

X2X5
+ a7q

7 1

X3
+ a8q

19 X1

X4X5
+ a9q

9 1

X4
+ a10q

10 1

X5

)
,

(1.2)

G11(b0, b4, b7, b9, b10) := b0q
22g(q22; q121) + b4q

37g(q44; q121)

+ b7q
40g(q55; q121) + b9q

31g(q33; q121) + b10[q
−1 + q10g(q11; q121)],
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and

ϑ(a1, a2, a3, a4, a5) :=
J6
11

J2
1

[
a1

q2

P4P 2
5

+ a2
1

P 2
1P3

+ a3
q

P1P 2
4

+ a4
q

P 2
2P5

+ a5
q

P2P 2
3

]
. (1.3)

The next two theorems give the 11-dissections for the deviations of the crank and rank modulo
11.

Theorem 1.2. We have

DC(0, 11) = v11(10,−12,−2, 8, 6, 4,−4,−6,−8, 2),

DC(1, 11) = v11(−1, 10,−2,−3,−5, 4, 7, 5, 3, 2),

DC(2, 11) = v11(−1,−1, 9,−3, 6,−7,−4,−6, 3, 2),

DC(3, 11) = v11(−1,−1,−2, 8,−5, 4,−4, 5, 3,−9),

DC(4, 11) = v11(−1,−1,−2,−3, 6,−7, 7, 5,−8, 2),

DC(5, 11) = v11(−1,−1,−2,−3,−5, 4,−4,−6, 3, 2).

Theorem 1.3. We have

D(0, 11) = G11(−2, 0, 0, 0, 0) + v11(10,−12,−2, 8, 6, 4, 18,−6,−8, 2) +

10∑
m=0

ϑ0,m(q11)qm,

D(1, 11) = G11(1, 0,−1, 0, 0) + v11(−1, 10,−2,−3,−5, 4,−4,−6, 3, 2) +
10∑

m=0

ϑ1,m(q11)qm,

D(2, 11) = G11(0, 0, 1, 0,−1) + v11(−1,−1, 9,−3, 6,−7,−4, 5, 3, 2) +
10∑

m=0

ϑ2,m(q11)qm,

D(3, 11) = G11(0, 0, 0, 1, 1) + v11(−1,−1,−2,−3, 17,−7,−4, 5, 3,−9) +
10∑

m=0

ϑ3,m(q11)qm,

D(4, 11) = G11(0, 1, 0,−1, 0) + v11(−1,−1,−2,−3, 6, 4,−4, 5,−8, 13) +

10∑
m=0

ϑ4,m(q11)qm,

D(5, 11) = G11(0,−1, 0, 0, 0) + v11(−1,−1,−2,−3,−5, 4,−4,−6, 3,−9) +

10∑
m=0

ϑ5,m(q11)qm,

where

ϑ0,6(q) = ϑ(0, 0, 2, 2,−2),

ϑ1,6(q) = ϑ(−1, 1,−1,−2, 1),

ϑ2,6(q) = ϑ(1, 0,−1, 2, 0),

ϑ3,6(q) = ϑ(1, 0, 1,−1,−1),

ϑ4,6(q) = ϑ(0,−1, 1, 0, 2),

ϑ5,6(q) = ϑ(−1, 0,−1, 0,−1),

and the other ϑa,m(q) are given explicitly in Section 4.

Remark 1.4. The dissections for the deviations of the rank and crank modulo 5, 7 and 4, 8 were
found by Hickerson and Mortenson [23, 29] and we use the setting from there.
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1.1. A prelude to new proofs of classical results. Using Theorems 1.2 and 1.3, we give new
proofs of classical results. In Section 5.1 we re-derive crank equalities found by Garvan [20] such
as, for n ≥ 0,

M(0, 11, 11n+ 1) +M(1, 11, 11n+ 1) = 2M(2, 11, 11n+ 1),

M(2, 11, 11n+ 1) = M(3, 11, 11n+ 1) = M(4, 11, 11n+ 1) = M(5, 11, 11n+ 1).

In Section 6.1 we re-derive crank-crank inequalities, which were first proved by Ekin [16] and
Berkovich and Garvan [8], such as, for n ≥ 0,

M(1, 11, 11n+ 1) ≥ p(11n+ 1)

11
≥ M(2, 11, 11n+ 1) ≥ M(0, 11, 11n+ 1).

In Section 5.2 we re-derive congruences for the partition function, which were establish by Atkin
and Swinnerton-Dyer [7], such as

∞∑
n=0

p(11n)qn ≡ J2
11

P1
(mod 11).

In Section 5.3 we re-derive linear rank congruences due to Atkin and Hussain [6], such as, for n ≥ 0,

N(2, 11; 11n)− 5N(3, 11; 11n)− 2N(4, 11; 11n) + 6N(5, 11; 11n) ≡ 0 (mod 11).

1.2. A prelude to new results and new conjectures. In Section 2 we present new rank and
rank-crank inequalities, such as, for n ≥ 0,

2N(2, 11, 11n) +N(3, 11, 11n) +N(5, 11, 11n) ≥ 4N(4, 11, 11n),

which follow directly from the positivity of Fourier coefficients of theta quotients as described in
Section 6.2. Then as a corollary we derive two-term, four-term and six-term inequalities, such as,
for n ≥ 0,

M(1, 11, 11n) ≥ N(4, 11, 11n),

N(2, 11, 11n) +N(3, 11, 11n) ≥ N(4, 11, 11n) +M(1, 11, 11n),

N(2, 11, 11n) + 2N(3, 11, 11n) ≥ N(5, 11, 11n) + 2M(1, 11, 11n).

Using a numerical computing environment, it is possible to generate higher order inequalities for
eight-terms, ten-terms, etc.

As another application of Theorem 1.3 we present in Section 2 new congruences for rank and
crank moments, such as

∞∑
n=0

( ∞∑
m=−∞

m2N(m, 11n+ 6)

)
qn ≡ ϑ(−4, 3, 1, 5,−2) (mod 11).

and congruences for the Andrews’ smallest parts function spt(n), such as
∞∑
n=0

spt(11n+ 6)qn ≡ ϑ(2, 4, 5, 3, 1) (mod 11).

In Section 6.4 we state new conjectural two-term rank and rank-crank inequalities, such as

N(0, 11, 11n) ≥3 N(1, 11, 11n) ≥ N(2, 11, 11n) ≥1 M(0, 11, 11n) ≥ p(11n)

11
≥

≥ M(1, 11, 11n) ≥ N(3, 11, 11n) ≥2 N(4, 11, 11n) ≥ N(5, 11, 11n),

where An ≥ Bn means that An ≥ Bn for all n ≥ 0 and An ≥m Bn means that An ≥ Bn for all
n ≥ m. Recently, our inequalities among rank and crank from Conjecture 6.15 were fully solved by
Bringmann and Pandey using techniques connected with the Circle method [13]. Also in Section
6.4 we state Conjecture 6.19, which is the generalization of our observations on the positivity of
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Fourier coefficients of theta quotients provided in Section 6.2 and we state Conjecture 6.20, which
is the generalization of our new rank and rank-crank inequalities from Section 2.

1.3. A guide to the paper. In Section 2 we state our new rank-crank inequalities and new
congruences as described in Section 1.2. In Section 3 we prove Theorem 1.2, which gives us the
11-dissection of the deviation of the crank modulo 11. In Section 4 we present all the dissection
elements of the deviation of the rank and prove Theorem 1.3.

In Section 5 we provide new proofs for classical results as described in Section 1.1. In Section
6.1 we observe known results on crank inequalities as described in Section 1.2. In Section 6.2 we
develop techniques to exploit the positivity of Fourier coefficients. In Section 6.3 we use results
from Section 6.2 to prove some examples of new rank-crank inequalities. Proofs of other new rank-
crank inequalities are straightforward and similar but for the sake of prosperity and to underscore
the role played by the dissections of Theorems 1.2 and 1.3, we place in Section 8 all the proofs for
the new results found in Section 2. In Section 6.4 we state Conjecture 6.15, which presents rank-
crank inequalities, and state Conjecture 6.19, which describes in general the positivity of Fourier
coefficients of sums of theta quotients. The rank-crank inequalities in Conjecture 6.15 have recently
been solved by Bringmann and Pandey [13]. Also in Section 6.4 we state Conjecture 6.20, which
describes the general case of rank-crank inequalities. In Section 7 we prove new congruences for
rank and crank moments, Andrews’ smallest parts function spt(n) and Eisenstein series.

2. The Main Results in Full

Using Theorem 1.2 and Theorem 1.3 we are able to find new rank and rank-crank inequalities.

Theorem 2.1. Consider n ≥ 0. For Ni = N(i, 11, 11n) and Mi = M(i, 11, 11n) we have

N0 + 2N1 +M1 ≥ 2N2 +N4 +M0,

N0 + 2N1 + 3N2 +M1 ≥ 3N3 + 3N5 +M0,

2N2 +N3 +N5 ≥ 4N4,

N2 + 5N3 + 3N4 +M0 ≥ N0 + 2N1 + 6N5 +M1.

For Ni = N(i, 11, 11n+ 1) and Mi = M(i, 11, 11n+ 1) we have

N0 + 4N2 +N4 +M0 ≥ 2N1 + 3N3 +N5 +M2,

N0 + 3N1 + 6N3 +M0 ≥ 4N2 + 6N4 +M2,

2N1 + 6N4 ≥ N2 + 3N3 + 4N5,

N1 + 2N2 + 3N5 + 3M2 ≥ N0 +N3 + 4N4 + 2M0 +M1,

3N2 + 2N3 +N4 + 3M2 ≥ N0 +N1 + 4N5 + 2M0 +M1.

For Ni = N(i, 11, 11n+ 2) and Mi = M(i, 11, 11n+ 2) we have

3N2 +N4 ≥ 2N0 + 2N5

2N1 + 2N3 +N5 + 2M0 ≥ 2N2 + 3N4 + 2M2

3N0 + 2N2 +M2 ≥ N1 +N3 + 3N5 +M0

2N0 +N1 +N3 + 3N4 +M0 ≥ 4N2 + 3N5 +M2

N0 + 3N1 +N2 + 8N5 + 3M0 ≥ 8N3 + 5N4 + 3M2.
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For Ni = N(i, 11, 11n+ 3) and Mi = M(i, 11, 11n+ 3) we have

N0 + 2N3 +M1 ≥ N1 + 2N5 +M0,

5N1 + 2N2 + 2N4 ≥ 2N0 + 4N3 + 3N5,

2N0 + 4N3 +N5 +M0 ≥ N1 + 3N2 + 3N4 +M1,

6N2 + 3N5 + 5M1 ≥ N0 +N1 + 2N3 + 5N4 + 5M0,

4N0 + 2N1 + 4N4 + 3M0 ≥ 7N2 + 3N3 + 3M1.

For Ni = N(i, 11, 11n+ 4) and Mi = M(i, 11, 11n+ 4) we have

4N1 + 3N3 + 5M1 ≥ 2N0 + 3N2 +N4 +N5 + 5M0,

4N0 + 5N2 + 3M0 ≥ 5N1 + 2N3 +N4 +N5 + 3M1,

3N1 +N2 +M0 ≥ 2N0 + 2N3 +M1,

3N0 +N4 +N5 +M1 ≥ 3N2 + 2N3 +M0.

For Ni = N(i, 11, 11n+ 5) and Mi = M(i, 11, 11n+ 5) we have

3N0 +N2 +N5 + 2M2 ≥ 2N1 + 3N3 + 2M0,

7N1 +N4 + 3M2 ≥ 3N0 + 2N2 +N3 + 2N5 + 3M0,

2N0 +N2 + 3N3 +N5 + 4M0 ≥ 3N1 + 4N4 + 4M2,

4N2 + 7N3 + 2N4 ≥ 4N0 + 2N1 + 7N5,

4N1 +N2 + 2N4 +N5 + 5M2 ≥ 2N0 + 6N3 + 5M0.

For Ni = N(i, 11, 11n+ 7) and Mi = M(i, 11, 11n+ 7) we have

N0 + 2N4 + 2M0 ≥ 2N3 +N5 + 2M1,

3N0 +N1 +N2 + 7N3 + 4N5 ≥ 5N4 + 4M0 + 7M1,

4N1 + 4N2 + 3N4 + 4M1 ≥ 4N0 + 6N3 +N5 + 4M0,

N0 + 5N3 + 2N4 ≥ 2N1 + 2N2 + 4N5.

For Ni = N(i, 11, 11n+ 8) and Mi = M(i, 11, 11n+ 8) we have

N0 + 2N2 + 3N4 + 5M0 ≥ 3N1 + 3N5 + 5M1,

2N1 + 4N3 + 2N5 + 3M1 ≥ N0 + 2N2 + 5N4 + 3M0,

2N1 + 5N2 + 2N5 +M1 ≥ 3N0 + 5N3 +N4 +M0,

7N0 + 4N1 + 5N4 + 4N5 ≥ 8N2 +N3 + 4M0 + 7M1,

5N0 + 6N1 + 4N3 + 2N4 ≥ N2 + 5N5 + 6M0 + 5M1.

For Ni = N(i, 11, 11n+ 9) and Mi = M(i, 11, 11n+ 9) we have

4N2 +M0 ≥ 2N1 +N3 +N4 +M1,

4N1 +N3 +N4 ≥ N0 + 3N2 + 2N5,

4N0 + 3N3 + 3N4 + 4M0 ≥ 2N1 + 5N2 + 3N5 + 4M1,

3N1 + 4N2 + 7N5 + 3M1 ≥ 2N0 + 6N3 + 6N4 + 3M0.

For Ni = N(i, 11, 11n+ 10) and Mi = M(i, 11, 11n+ 10) we have

3N1 + 2N5 + 2M3 ≥ 2N2 + 2N3 +N4 + 2M0,

3N0 +N2 +N3 +M0 ≥ 3N1 + 2N4 +M3,

2N1 + 4N4 +M3 ≥ N0 +N2 +N3 + 3N5 +M0,

6N2 + 6N3 + 6M0 + 5M3 ≥ 6N0 + 6N1 + 3N4 + 8N5.
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As a corollary of Theorem 2.1 we can derive two-term and four-term rank-crank inequalities
modulo 11. Similar inequalities among rank and crank of different modulus were studied by many
authors. For example, two-term rank-rank and crank-crank inequalities modulo 2, 3, 4 were studied
by Andrews and Lewis [4, 27], two-term rank-rank and crank-crank inequalities modulo 5, 7, 11
were studied by Garvan and Ekin [16, 20], two-term rank-crank inequalities modulo 8 were studied
by Lewis and Mortenson [26, 29], two-term and four-term rank-rank inequalities modulo 10 were
studied by Mao, Alwaise, Iannuzzi, Swisher [1, 28] and two-term rank-rank inequalities modulo 12
were studied by Fan, Xia, Zhao [18].

Corollary 2.2. Consider n ≥ 0. For Ni = N(i, 11, 11n) and Mi = M(i, 11, 11n) we have

M1 ≥ N4,

N2 +N3 ≥ N4 +M1.

For Ni = N(i, 11, 11n+ 1) and Mi = M(i, 11, 11n+ 1) we have

N2 ≥ M2,

M2 ≥ N4,

N2 +N4 ≥ N3 +N5.

For Ni = N(i, 11, 11n+ 2) and Mi = M(i, 11, 11n+ 2) we have

N1 ≥ M2,

M0 ≥ N5,

2M0 ≥ N2 +N5,

N2 +M0 ≥ N0 +N5,

N1 +N3 ≥ M0 +M2,

N1 +N5 ≥ N4 +M2.

For Ni = N(i, 11, 11n+ 3) and Mi = M(i, 11, 11n+ 3) we have

N0 ≥ M0,

M1 ≥ N4,

N0 +M0 ≥ 2N2,

N2 +M1 ≥ N4 +M0,

N0 +N3 ≥ N2 +M1.

For Ni = N(i, 11, 11n+ 4) and Mi = M(i, 11, 11n+ 4) we have

N1 ≥ M0,

2N1 ≥ N0 +M0,

N1 +M1 ≥ N2 +M0,

N1 +N3 ≥ 2M0.
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For Ni = N(i, 11, 11n+ 5) and Mi = M(i, 11, 11n+ 5) we have

N2 ≥ M0,

M2 ≥ N5,

N2 +N3 ≥ M0 +M2,

N2 +M2 ≥ N0 +N5,

N0 +M0 ≥ N1 +N4,

N2 +N3 ≥ N1 +N5,

N0 +N2 ≥ N1 +M0.

For Ni = N(i, 11, 11n+ 7) and Mi = M(i, 11, 11n+ 7) we have

N0 ≥ M1,

M0 ≥ N4,

N3 +N4 ≥ N5 +M0.

For Ni = N(i, 11, 11n+ 8) and Mi = M(i, 11, 11n+ 8) we have

N2 ≥ M1,

M0 ≥ N3,

M0 +M1 ≥ N2 +N4,

N1 +N5 ≥ 2N3,

N0 +M0 ≥ 2N2,

N3 +M0 ≥ N4 +M1,

N2 +N3 ≥ 2M1,

2M0 ≥ N1 +N5.

For Ni = N(i, 11, 11n+ 9) and Mi = M(i, 11, 11n+ 9) we have

N2 ≥ M1,

M0 ≥ N5,

M1 +M0 ≥ N2 +N5,

N0 +M0 ≥ N2 +M1,

N2 +N5 ≥ N3 +N4.

For Ni = N(i, 11, 11n+ 10) and Mi = M(i, 11, 11n+ 10) we have

N1 ≥ M0,

M3 ≥ N4,

N0 +M0 ≥ N1 +N4,

N2 +N3 ≥ 2M0,

N1 +N4 ≥ 2M0,

N1 +M3 ≥ N2 +N3.

We can also consider six-term rank-crank inequalities.
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Corollary 2.3. Consider n ≥ 0. For Ni = N(i, 11, 11n) and Mi = M(i, 11, 11n) we have

N2 + 2N3 ≥ N5 + 2M1,

2N3 +N4 ≥ 2N5 +M1,

3M1 ≥ N2 +N4 +N5,

N3 + 2M1 ≥ N2 + 2N5.

For Ni = N(i, 11, 11n+ 1) and Mi = M(i, 11, 11n+ 1) we have

2N1 +N3 ≥ N2 + 2N4,

2N1 +N4 ≥ N2 + 2N5,

N1 + 2N4 ≥ 2N5 +M0,

N1 +N3 +N5 ≥ 3N4,

2N2 +N4 ≥ 2N5 +M0.

For Ni = N(i, 11, 11n+ 2) and Mi = M(i, 11, 11n+ 2) we have

N0 +N1 +N4 ≥ N2 +M0 +M2,

3M0 ≥ N2 +N3 +N4,

N1 +N2 +N5 ≥ 2M0 +M2,

3M0 ≥ N0 +N4 +N5,

N1 +N3 +M0 ≥ N0 + 2N5,

N1 +N3 +M0 ≥ N2 +N5 +M2,

N1 + 2M0 ≥ N2 +N4 +M2,

N1 +N2 +N3 ≥ N0 +N5 +M2,

N1 +N2 +M0 ≥ N0 +N4 +M2.

For Ni = N(i, 11, 11n+ 3) and Mi = M(i, 11, 11n+ 3) we have

2N1 +N4 ≥ N3 +N5 +M1,

N0 +N1 +N5 ≥ M0 + 2M1,

N0 +N1 +N4 ≥ N2 + 2M1,

M0 + 2M1 ≥ N2 +N3 +N5,

2N0 +N5 ≥ 2N2 +N4,

N0 +N3 +N5 ≥ N4 +M0 +M1,

3M1 ≥ N1 + 2N4,

2N2 +N5 ≥ N4 + 2M0,

N0 +N3 +M1 ≥ N1 + 2N4,

N0 + 2N3 ≥ M0 + 2M1.

For Ni = N(i, 11, 11n+ 4) and Mi = M(i, 11, 11n+ 4) we have

2N0 +M0 ≥ N1 + 2N3,

2N0 +N2 ≥ N1 +N3 +M1,

N0 +N2 +M1 ≥ N1 +N4 +N5,

N0 +N2 +N3 ≥ N4 +N5 +M0,

N0 + 2M1 ≥ 2N2 +N3,

3M1 ≥ N2 +N4 +N5.
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For Ni = N(i, 11, 11n+ 5) and Mi = M(i, 11, 11n+ 5) we have

2N3 +M0 ≥ 2N5 +M2,

N2 + 2N3 ≥ N0 + 2N5,

N3 +M0 +M2 ≥ N0 + 2N5,

N3 + 2M0 ≥ N1 +N4 +N5,

2N2 +N3 ≥ N0 +N5 +M0,

N1 +N2 +N5 ≥ N3 + 2M0,

M0 + 2M2 ≥ N0 +N3 +N5,

N1 +N2 +N4 ≥ 3M0,

N0 +N2 +N5 ≥ 2M0 +M2.

For Ni = N(i, 11, 11n+ 7) and Mi = M(i, 11, 11n+ 7) we have

N1 +N2 +M1 ≥ N0 +N5 +M0,

N1 +N2 +M1 ≥ N0 +N3 +N4,

M0 + 2M1 ≥ N0 + 2N5,

N0 + 2N3 ≥ M0 + 2M1,

N1 +N2 +N4 ≥ 2M0 +M1.

For Ni = N(i, 11, 11n+ 8) and Mi = M(i, 11, 11n+ 8) we have

N1 +N5 +M1 ≥ N2 +N3 +N4,

M0 + 2M1 ≥ N0 + 2N4,

N1 +N2 +N5 ≥ N0 + 2N4,

N1 +N3 +N5 ≥ N4 +M0 +M1,

N1 +N5 +M0 ≥ N2 + 2N4,

N0 +N1 +N5 ≥ 2N2 +N3,

N2 +N3 +M0 ≥ N0 + 2N4,

N2 +M0 +M1 ≥ N0 +N3 +N4,

N1 +N2 +N5 ≥ M0 + 2M1,

N0 +N1 +N5 ≥ N2 + 2M1,

2N2 +M0 ≥ N0 +N4 +M1,

N0 +N3 +M0 ≥ N2 + 2M1,

2N2 +M0 ≥ N0 + 2N3,

N0 +N4 +M0 ≥ N2 +N3 +M1,

N0 +N3 +N4 ≥ 3M1,

2N2 +N4 ≥ 3M1.
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For Ni = N(i, 11, 11n+ 9) and Mi = M(i, 11, 11n+ 9) we have

2N1 +M1 ≥ N0 +N3 +N4,

N0 +N3 +N4 ≥ N2 +N5 +M1,

M0 + 2M1 ≥ N2 +N3 +N4,

N0 +N5 +M0 ≥ N2 +N3 +N4,

N1 +N2 +N5 ≥ M0 + 2M1,

N0 +N3 +N4 ≥ 3M1,

N0 + 2M0 ≥ N1 +N2 +N5,

N0 +N2 +N5 ≥ 3M1,

N0 + 2M0 ≥ N1 +N3 +N4,

N2 +M0 +M1 ≥ N1 +N3 +N4,

N0 +N2 +M0 ≥ N1 + 2M1,

N0 +N2 +M0 ≥ 2N1 +N5.

For Ni = N(i, 11, 11n+ 10) and Mi = M(i, 11, 11n+ 10) we have

N0 +N2 +N3 ≥ N1 +N4 +M0,

2M0 +M3 ≥ N1 +N4 +N5,

N2 +N3 +M3 ≥ N1 +N4 +N5,

N4 +M0 +M3 ≥ N0 + 2N5,

N2 +N3 +M3 ≥ N0 +N5 +M0,

2M0 +M3 ≥ N2 +N3 +N4,

N0 +N1 +N5 ≥ N2 +N3 +N4,

M0 + 2M3 ≥ N0 +N4 +N5,

2N1 +N5 ≥ N2 +N3 +M0,

N1 + 2M3 ≥ N0 +N5 +M0,

2N1 +N5 ≥ 3M0.

Remark 2.4. Note that the four-term and six-term inequalities in Corollary 2.2 and Corollary 2.3
are selected so that they are corollaries of inequalities in Theorem 2.1 but they are not corollaries
of Conjecture 6.15 and they cannot be obtained from each other using Conjecture 6.15.

For residue 6 we have the following results.

Theorem 2.5. Consider n ≥ 0. For Ni = N(i, 11, 11n+ 6) we have

2N1 +N2 + 2N4 ≥ 2N3 + 3N5,

2N0 +N2 + 2N5 ≥ 2N1 +N3 + 2N4,

N0 +N1 + 3N3 +N4 ≥ 4N2 + 2N5,

N0 + 6N1 + 4N2 ≥ 2N3 + 5N4 + 4N5.

Corollary 2.6. Consider n ≥ 0. For Ni = N(i, 11, 11n+ 6) we have

N0 ≥
p(11n+ 6)

11
and

p(11n+ 6)

11
≥ N5.
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Corollary 2.7. Consider n ≥ 0. For Ni = N(i, 11, 11n+ 6) we have

N0 +N3 ≥ N1 +N4,

N1 +N2 +N4 ≥ N3 + 2N5,

N2 + 2N3 ≥ N1 +N4 +N5,

N0 +N1 +N4 ≥ N2 + 2N5,

3N3 ≥ N2 + 2N5,

N0 + 2N3 ≥ 2N2 +N5.

We prove Theorem 2.1, Corollary 2.2, Corollary 2.3, Theorem 2.5, Corollary 2.6 and Corollary
2.7 in Section 6.3. In the spirit of Corollary 2.2 and Corollary 2.6 we introduce new conjectural
rank-crank inequalities in Section 6.4.

Recall

Pi := Ji,11.

Define the following sums of theta quotients.

Definition 2.8. We define

[c1, c2, c3, c4, c5] :=
J2
11

J3
1

(
c1P

2
5P4 + c2q

2P 2
1P3 + c3qP

2
4P1 + c4qP

2
2P5 + c5qP

2
3P2

)
.

Definition 2.9. We define

[c1, c2, c3, c4, c5; c6]0 :=
1

P1
[c1, c2, c3, c4, c5] + c6

J2
11

J3
1

qP1P3P4P5

P 2
2

,

[c1, c2, c3, c4, c5; c6]1 :=
P5

P2P3
[c1, c2, c3, c4, c5] + c6

J2
11

J3
1

qP 2
2P4

P1
,

[c1, c2, c3, c4, c5; c6]2 :=
P3

P1P4
[c1, c2, c3, c4, c5] + c6

J2
11

J3
1

q3P 2
1P2

P5
,

[c1, c2, c3, c4, c5; c6]3 :=
P2

P1P3
[c1, c2, c3, c4, c5] + c6

J2
11

J3
1

qP 2
3P5

P4
,

[c1, c2, c3, c4, c5; c6]4 :=
1

P2
[c1, c2, c3, c4, c5] + c6

J2
11

J3
1

q2P1P2P3P5

P 2
4

,

[c1, c2, c3, c4, c5; c6]5 :=
P4

P2P5
[c1, c2, c3, c4, c5] + c6

J2
11

J3
1

qP1P
2
5

P3
,

[c1, c2, c3, c4, c5; c6]7 :=
1

P3
[c1, c2, c3, c4, c5] + c6

J2
11

J3
1

q2P1P2P3P4

P 2
5

,

[c1, c2, c3, c4, c5; c6]8 :=
qP1

P4P5
[c1, c2, c3, c4, c5] + c6

J2
11

J3
1

P3P
2
4

P2
,

[c1, c2, c3, c4, c5; c6]9 :=
1

P4
[c1, c2, c3, c4, c5] + c6

J2
11

J3
1

qP1P2P4P5

P 2
3

,

[c1, c2, c3, c4, c5; c6]10 :=
1

P5
[c1, c2, c3, c4, c5] + c6

J2
11

J3
1

q−1P2P3P4P5

P 2
1

.

Recall the following notation:

ϑ(a1, a2, a3, a4, a5) :=
J6
11

J2
1

[
a1

q2

P4P 2
5

+ a2
1

P 2
1P3

+ a3
q

P1P 2
4

+ a4
q

P 2
2P5

+ a5
q

P2P 2
3

]
.
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Rank and crank moments are defined as [5]

Nk(n) :=

∞∑
m=−∞

mkN(m,n),

Mk(n) :=
∞∑

m=−∞
mkM(m,n)

for even k ∈ N. Define Ta,m(q) to be the elements of the 11-dissection of the generating functions
for rank and crank moments:

∞∑
n=0

Nk(n)q
n =:

10∑
m=0

Tk,m(q11)qm,

∞∑
n=0

Mk(n)q
n =:

10∑
m=0

TC
k,m(q11)qm.

The reformulation of this definition then reads

Tk,m(q) :=

∞∑
n=0

Nk(11n+m)qn, (2.1)

TC
k,m(q) :=

∞∑
n=0

Mk(11n+m)qn. (2.2)

As an another application of Theorem 1.2 and Theorem 1.3 we derive new congruences for the
rank and crank moments and for the Andrews’ smallest parts function spt(n), where spt(n) denotes
the number of smallest parts in the partitions of n. For example, the partitions of the number 4 are
(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1) with 1, 1, 2, 2, 4 being the number of smallest parts respectively,
so we see spt(4) = 10. Garvan [19, Theorem 5.1] considered congruences for Tk,6(q) in terms of

Eisenstein series. We will provide congruences for TC
k,m(q) for residues m ̸= 6 and congruences

for Tk,m(q) for residues m ∈ {1, 2, 3, 5, 6, 8} in terms of theta quotients ϑ(a1, a2, a3, a4, a5) from
Definition 1.1 and [c1, c2, c3, c4, c5; c6]m from Definition 2.9.

Theorem 2.10. Using the notation of Definition 1.1 and Definition 2.9, we have

∞∑
n=0

spt(11n+ 1)qn ≡ [1, 5,−4, 1,−5; 1]1 (mod 11),

∞∑
n=0

spt(11n+ 2)qn ≡ [3,−5, 3,−2, 5;−5]2 (mod 11),

∞∑
n=0

spt(11n+ 3)qn ≡ [5, 2,−2,−4, 4; 4]3 (mod 11),

∞∑
n=0

spt(11n+ 5)qn ≡ [3, 1, 3, 4,−4;−3]5 (mod 11),

∞∑
n=0

spt(11n+ 6)qn ≡ ϑ(2, 4, 5, 3, 1) (mod 11),

∞∑
n=0

spt(11n+ 8)qn ≡ [−1,−2, 2,−1, 3; 2]8 (mod 11).
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Theorem 2.11. Using the notation of Definition 1.1 and Definition 2.9, for residue 1 modulo 11
we have

T2,1(q) ≡ [0,−1,−5,−4,−3;−2]1 (mod 11),

T4,1(q) ≡ 0 (mod 11),

T6,1(q) ≡ [0,−1,−4, 2, 5; 3]1 (mod 11),

T8,1(q) ≡ [0, 5, 1, 4,−4;−3]1 (mod 11).

For residue 2 modulo 11 we have

T2,2(q) ≡ [2, 2,−3,−4, 4;−1]2 (mod 11),

T4,2(q) ≡ [2, 5,−1, 0, 3; 1]2 (mod 11),

T6,2(q) ≡ [2, 4,−2, 2, 5; 3]2 (mod 11),

T8,2(q) ≡ [2,−1, 2, 4, 1; 5]2 (mod 11).

For residue 3 modulo 11 we have

T2,3(q) ≡ [−3, 0,−3, 1,−4; 3]3 (mod 11),

T4,3(q) ≡ [−1,−4, 2, 5, 4; 5]3 (mod 11),

T6,3(q) ≡ [−4, 0, 3, 3,−2; 5]3 (mod 11),

T8,3(q) ≡ [−5, 2, 0, 4,−5; 5]3 (mod 11).

For residue 5 modulo 11 we have

T2,5(q) ≡ [−2, 5, 1,−1, 4;−5]5 (mod 11),

T4,5(q) ≡ [−4, 3,−3, 5,−4;−2]5 (mod 11),

T6,5(q) ≡ [−5, 2,−1, 0, 2; 1]5 (mod 11),

T8,5(q) ≡ [4, 0,−2, 2, 5;−3]5 (mod 11).

For residue 6 modulo 11 we have

T2,6(q) ≡ ϑ(−4, 3, 1, 5,−2) (mod 11),

T4,6(q) ≡ ϑ(−2,−4,−5,−3,−1) (mod 11),

T6,6(q) ≡ ϑ(1, 5,−5, 4, 2) (mod 11),

T8,6(q) ≡ ϑ(−5,−5, 1,−2,−2) (mod 11).

For residue 8 modulo 11 we have

T2,8(q) ≡ [−1,−4,−1, 5,−3;−4]8 (mod 11),

T4,8(q) ≡ [−3, 5,−5,−3,−2;−5]8 (mod 11),

T6,8(q) ≡ [3, 4, 3,−3, 1; 3]8 (mod 11),

T8,8(q) ≡ [0, 2,−1, 5,−1; 5]8 (mod 11).
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Theorem 2.12. We have

TC
2,0(q) ≡ TC

4,0(q) ≡ TC
6,0(q) ≡ TC

8,0(q) ≡ 0 (mod 11),

TC
2,1(q) ≡ TC

4,1(q) ≡ TC
6,1(q) ≡ TC

8,1(q) ≡ 2
J2
11P5

P2P3
(mod 11),

7TC
2,2(q) ≡ 10TC

4,2(q) ≡ 8TC
6,2(q) ≡ 2TC

8,2(q) ≡
J2
11P3

P1P4
(mod 11),

8TC
2,3(q) ≡ 7TC

4,3(q) ≡ 2TC
6,3(q) ≡ 10TC

8,3(q) ≡
J2
11P2

P1P3
(mod 11),

8TC
2,4(q) ≡ 9TC

4,4(q) ≡ 3TC
6,4(q) ≡ 6TC

8,4(q) ≡
J2
11

P2
(mod 11),

3TC
2,5(q) ≡ 2TC

4,5(q) ≡ 8TC
6,5(q) ≡ 5TC

8,5(q) ≡
J2
11P4

P2P5
(mod 11),

TC
2,7(q) ≡ 7TC

4,7(q) ≡ 10TC
6,7(q) ≡ 5TC

8,7(q) ≡
J2
11

P3
(mod 11),

7TC
2,8(q) ≡ 9TC

4,8(q) ≡ 9TC
6,8(q) ≡ 7TC

8,8(q) ≡
J2
11qP1

P4P5
(mod 11),

TC
2,9(q) ≡ 9TC

4,9(q) ≡ 4TC
6,9(q) ≡ 3TC

8,9(q) ≡
J2
11

P4
(mod 11),

3TC
2,10(q) ≡ 4TC

4,10(q) ≡ 9TC
6,10(q) ≡ TC

8,10(q) ≡
J2
11

P5
(mod 11).

Remark 2.13. The congruences among Mk(11n+m) given by Theorem 2.12 were initially found
by Chern [14, (5.6)-(5.15)] using general formulas found by Atkin and Garvan [5, (6.6)-(6.8)].
In Theorem 2.12 we extend Chern’s results to congruences among generating functions of crank
moments and theta quotients.

Using [19, Theorem 5.1] we can also deduce congruences for Eisenstein series E4 and E6 defined
as

Ej(q) := 1− 2n

Bn

∞∑
n=1

σj−1(n)q
n,

where Bn is the n-th Bernoulli number and σk(n) =
∑

d|n d
k.

Corollary 2.14. Using the notation of Definition 1.1, we have

E4(q) ≡
1

J2
1J11

ϑ(−1, 1, 1, 1, 1) (mod 11),

E6(q) ≡
1

J2
1J11

ϑ(−3, 1, 5, 4,−2) (mod 11).

3. Proof of Theorem 1.2

In this section we demonstrate how to obtain the 11-dissection for the crank deviation as stated
in Theorem 1.2.

Proof of Theorem 1.2. From [3] we know that the two-variable generating function for the crank
has the form

F (z; q) :=
∞∑
n=0

∞∑
m=−∞

M(m,n)zmqn =
(q)∞

(zq)∞(z−1q)∞
.
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Here for n ≤ 1 we set

M(m,n) :=


−1, if (m,n) = (0, 1),

1, if (m,n) = (0, 0), (1, 1), (−1, 1),

0, otherwise.

From this we can find the formula for the deviation of crank, which was also mentioned in [29,
(2.12)]:

DC(a, r) =
1

r

r−1∑
j=1

ζ−aj
r

(q)∞

(ζjrq)∞(ζ−j
r q)∞

=
1

r

r−1∑
j=1

ζ−aj
r F (ζjr ; q) (3.1)

Let us take the 11-dissection for F (ζ11; q), which is given in [9, Theorem 7.1] and apply an identity,
which can be verified by rearranging terms:

X1X2X3X4X5 = J11J
4
121,

where Xi is defined in (1.1). Then we will obtain

F (ζj11; q) = J2
121

( 1

X1
+ (A1 − 1)q

X5

X2X3
+A2q

2 X3

X1X4
+ (A3 + 1)q3

X2

X1X3

+ (A2 +A4 + 1)q4
1

X2
− (A2 +A4)q

5 X4

X2X5
+ (A1 +A4)q

7 1

X3

− (A2 +A5 + 1)q19
X1

X4X5
− (A4 + 1)q9

1

X4
−A3q

10 1

X5

)
,

where An = ζjn11 +ζ−jn
11 and ζr := e2πi/r is a primitive root of unity. We put the previous expressions

into (3.1) with r = 11 and directly obtain Theorem 1.2. □

4. 11-dissection for the deviation of the rank

Define Qa,m(q) to be the elements of the 11-dissection of the deviation of the rank:

D(a, 11) =:

10∑
m=0

Qa,m(q11)qm.

The reformulation of this definition then reads

Qa,m(q) :=
∞∑
n=0

(
N(a, 11, 11n+m)− p(11n+m)

11

)
qn. (4.1)

For convenience we will decompose

Qa,m(q) = Qth
a,m(q) +Qmck

a,m(q),

where Qmck
a,m is a mock part of Qa,m, that is, it corresponds to the terms in G11. Note that Qmck

a,m

can be non-zero only for (a,m) ∈ {(0, 0), (1, 0), (4, 4), (5, 4), (1, 7), (2, 7), (3, 9), (4, 9), (2, 10), (3, 10)}
as stated in Theorem 1.3. For residue 0 we have

Qmck
0,0 (q) = −2q2g(q2; q11), (4.2)

Qmck
1,0 (q) = q2g(q2; q11). (4.3)

For residue 4 we have

Qmck
4,4 (q) = q3g(q4; q11), (4.4)

Qmck
5,4 (q) = −q3g(q4; q11). (4.5)
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For residue 7 we have

Qmck
1,7 (q) = −q3g(q5; q11), (4.6)

Qmck
2,7 (q) = q3g(q5; q11). (4.7)

For residue 9 we have

Qmck
3,9 (q) = q2g(q3; q11), (4.8)

Qmck
4,9 (q) = −q2g(q3; q11). (4.9)

For residue 10 we have

Qmck
2,10(q) = −[q−1 + g(q; q11)], (4.10)

Qmck
3,10(q) = q−1 + g(q; q11). (4.11)

Remark 4.1. We can establish mock parts of Qa,m by using [23, Theorem 4.1].

The remainder Qa,m − Qmck
a,m we will call the theta part and denote Qth

a,m. Also recall a useful
identity found by O’Brien [30, p. 6]:

J3
1 = P 2

5P4 − q2P 2
1P3 − qP 2

4P1 − qP 2
2P5 − qP 2

3P2.

By Definition 2.8 this identity is transformed to

J2
11 = [1,−1,−1,−1,−1]. (4.12)

Note that by using identity (4.12) we can convert v11-term of Qa,m to the form [c1, c2, c3, c4, c5; c6]m.
For example we know

J2
11P5

P2P3
= [1,−1,−1,−1,−1; 0]1.

Then we can formulate Theorem 1.3 in its full form, that is, write ϑa,m(q) explicitly. The mock
parts of the dissection elements for residue 0 are stated in (4.2) and (4.3). The theta parts of the
dissection elements for residue 0 are

Qth
0,0(q) =

1

11
[10, 56,−32,−10,−10; 22]0 =

10

11

J2
11

P1
+ [0, 6,−2, 0, 0; 2]0 =:

10

11

J2
11

P1
+ ϑ0,0(q),

Qth
1,0(q) =

1

11
[−1,−10, 23, 1, 1;−11]0 = − 1

11

J2
11

P1
+ [0,−1, 2, 0, 0;−1]0 =: − 1

11

J2
11

P1
+ ϑ1,0(q),

Qth
2,0(q) =

1

11
[−1,−32, 1, 12, 1; 0]0 = − 1

11

J2
11

P1
+ [0,−3, 0, 1, 0; 0]0 =: − 1

11

J2
11

P1
+ ϑ2,0(q),

Qth
3,0(q) =

1

11
[−1, 23,−21, 1, 12; 0]0 = − 1

11

J2
11

P1
+ [0, 2,−2, 0, 1; 0]0 =: − 1

11

J2
11

P1
+ ϑ3,0(q),

Qth
4,0(q) =

1

11
[−1,−10, 23,−21, 1; 0]0 = − 1

11

J2
11

P1
+ [0,−1, 2,−2, 0; 0]0 =: − 1

11

J2
11

P1
+ ϑ4,0(q),

Qth
5,0(q) =

1

11
[−1, 1,−10, 12,−10; 0]0 = − 1

11

J2
11

P1
+ [0, 0,−1, 1,−1; 0]0 =: − 1

11

J2
11

P1
+ ϑ5,0(q).
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Dissection elements for residue 1 are

Q0,1(q) =
1

11
[10, 12, 12, 12,−10;−22]1 = −12

11

J2
11P5

P2P3
+ [2, 0, 0, 0,−2;−2]1 =: −12

11

J2
11P5

P2P3
+ ϑ0,1(q),

Q1,1(q) =
1

11
[−1,−10,−10, 1, 23; 0]1 =

10

11

J2
11P5

P2P3
+ [−1, 0, 0, 1, 3; 0]1 =:

10

11

J2
11P5

P2P3
+ ϑ1,1(q),

Q2,1(q) =
1

11
[−1, 12, 1,−10, 1; 11]1 = − 1

11

J2
11P5

P2P3
+ [0, 1, 0,−1, 0; 1]1 =: − 1

11

J2
11P5

P2P3
+ ϑ2,1(q),

Q3,1(q) =
1

11
[−1,−10, 12, 1,−21; 11]1 = − 1

11

J2
11P5

P2P3
+ [0,−1, 1, 0,−2; 1]1 =: − 1

11

J2
11P5

P2P3
+ ϑ3,1(q),

Q4,1(q) =
1

11
[−1, 1,−10, 12,−10; 0]1 = − 1

11

J2
11P5

P2P3
+ [0, 0,−1, 1,−1; 0]1 =: − 1

11

J2
11P5

P2P3
+ ϑ4,1(q),

Q5,1(q) =
1

11
[−1, 1, 1,−10, 12;−11]1 = − 1

11

J2
11P5

P2P3
+ [0, 0, 0,−1, 1;−1]1 =: − 1

11

J2
11P5

P2P3
+ ϑ5,1(q).

Dissection elements for residue 2 are

Q0,2(q) =
1

11
[−2,−20, 24, 2, 2;−22]2 = − 2

11

J2
11P3

P1P4
+ [0,−2, 2, 0, 0;−2]2 =: − 2

11

J2
11P3

P1P4
+ ϑ0,2(q),

Q1,2(q) =
1

11
[9, 13,−31, 2, 2; 11]2 = − 2

11

J2
11P3

P1P4
+ [1, 1,−3, 0, 0; 1]2 =: − 2

11

J2
11P3

P1P4
+ ϑ1,2(q),

Q2,2(q) =
1

11
[−2,−9, 24,−9, 2; 11]2 =

9

11

J2
11P3

P1P4
+ [−1, 0, 3, 0, 1; 1]2 =:

9

11

J2
11P3

P1P4
+ ϑ2,2(q),

Q3,2(q) =
1

11
[−2, 13, 13, 2,−9;−22]2 = − 2

11

J2
11P3

P1P4
+ [0, 1, 1, 0,−1;−2]2 =: − 2

11

J2
11P3

P1P4
+ ϑ3,2(q),

Q4,2(q) =
1

11
[−2,−9,−20, 13, 2; 22]2 = − 2

11

J2
11P3

P1P4
+ [0,−1,−2, 1, 0; 2]2 =: − 2

11

J2
11P3

P1P4
+ ϑ4,2(q),

Q5,2(q) =
1

11
[−2, 2, 2,−9, 2;−11]2 = − 2

11

J2
11P3

P1P4
+ [0, 0, 0,−1, 0;−1]2 =: − 2

11

J2
11P3

P1P4
+ ϑ5,2(q).

Dissection elements for residue 3 are

Q0,3(q) =
1

11
[8, 36,−8,−8, 14;−22]3 =

8

11

J2
11P2

P1P3
+ [0, 4, 0, 0, 2;−2]3 =:

8

11

J2
11P2

P1P3
+ ϑ0,3(q),

Q1,3(q) =
1

11
[−3,−30, 3, 3, 3; 22]3 = − 3

11

J2
11P2

P1P3
+ [0,−3, 0, 0, 0; 2]3 =: − 3

11

J2
11P2

P1P3
+ ϑ1,3(q),

Q2,3(q) =
1

11
[8, 14, 3, 3,−8;−22]3 = − 3

11

J2
11P2

P1P3
+ [1, 1, 0, 0,−1;−2]3 =: − 3

11

J2
11P2

P1P3
+ ϑ2,3(q),

Q3,3(q) =
1

11
[−3, 3,−8, 3,−8; 22]3 = − 3

11

J2
11P2

P1P3
+ [0, 0,−1, 0,−1; 2]3 =: − 3

11

J2
11P2

P1P3
+ ϑ3,3(q),

Q4,3(q) =
1

11
[−3, 14, 14,−8, 3;−11]3 = − 3

11

J2
11P2

P1P3
+ [0, 1, 1,−1, 0;−1]3 =: − 3

11

J2
11P2

P1P3
+ ϑ4,3(q),

Q5,3(q) =
1

11
[−3,−19,−8, 3, 3; 0]3 = − 3

11

J2
11P2

P1P3
+ [0,−2,−1, 0, 0; 0]3 =: − 3

11

J2
11P2

P1P3
+ ϑ5,3(q).
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The mock parts of the dissection elements for residue 4 are stated in (4.4) and (4.5). The theta
parts of the dissection elements for residue 4 are

Qth
0,4(q) =

1

11
[6,−6, 16,−28, 16; 0]4 =

6

11

J2
11

P2
+ [0, 0, 2,−2, 2; 0]4 =:

6

11

J2
11

P2
+ ϑ0,4(q),

Qth
1,4(q) =

1

11
[6, 5,−17, 5, 5; 0]4 = − 5

11

J2
11

P2
+ [1, 0,−2, 0, 0; 0]4 =: − 5

11

J2
11

P2
+ ϑ1,4(q),

Qth
2,4(q) =

1

11
[−5,−6, 5, 27,−6; 0]4 =

6

11

J2
11

P2
+ [−1, 0, 1, 3, 0; 0]4 =:

6

11

J2
11

P2
+ ϑ2,4(q),

Qth
3,4(q) =

1

11
[6, 5, 16,−17,−17; 0]4 =

17

11

J2
11

P2
+ [−1, 2, 3, 0, 0; 0]4 =:

17

11

J2
11

P2
+ ϑ3,4(q),

Qth
4,4(q) =

1

11
[−5,−6,−17, 27,−6;−11]4 =

6

11

J2
11

P2
+ [−1, 0,−1, 3, 0;−1]4 =:

6

11

J2
11

P2
+ ϑ4,4(q),

Qth
5,4(q) =

1

11
[−5, 5, 5,−28, 16; 11]4 = − 5

11

J2
11

P2
+ [0, 0, 0,−3, 1; 1]4 =: − 5

11

J2
11

P2
+ ϑ5,4(q).

Dissection elements for residue 5 are

Q0,5(q) =
1

11
[4, 18,−4,−4,−4; 22]5 =

4

11

J2
11P4

P2P5
+ [0, 2, 0, 0, 0; 2]5 =:

4

11

J2
11P4

P2P5
+ ϑ0,5(q),

Q1,5(q) =
1

11
[4,−15, 7, 7,−4; 0]5 =

4

11

J2
11P4

P2P5
+ [0,−1, 1, 1, 0; 0]5 =:

4

11

J2
11P4

P2P5
+ ϑ1,5(q),

Q2,5(q) =
1

11
[4, 7,−4, 7, 7;−22]5 = − 7

11

J2
11P4

P2P5
+ [1, 0,−1, 0, 0;−2]5 =: − 7

11

J2
11P4

P2P5
+ ϑ2,5(q),

Q3,5(q) =
1

11
[−7,−4,−4, 7, 7; 11]5 = − 7

11

J2
11P4

P2P5
+ [0,−1,−1, 0, 0; 1]5 =: − 7

11

J2
11P4

P2P5
+ ϑ3,5(q),

Q4,5(q) =
1

11
[4, 7, 7,−37,−4; 11]5 =

4

11

J2
11P4

P2P5
+ [0, 1, 1,−3, 0; 1]5 =:

4

11

J2
11P4

P2P5
+ ϑ4,5(q),

Q5,5(q) =
1

11
[−7,−4,−4, 18,−4;−11]5 =

4

11

J2
11P4

P2P5
+ [−1, 0, 0, 2, 0;−1]5 =:

4

11

J2
11P4

P2P5
+ ϑ5,5(q).

The mock parts of the dissection elements for residue 7 are stated in (4.6) and (4.7). The theta
parts of the dissection elements for residue 7 are

Qth
0,7(q) =

1

11
[18, 26, 4,−18,−18; 0]7 =

18

11

J2
11

P3
+ [0, 4, 2, 0, 0; 0]7 =:

18

11

J2
11

P3
+ ϑ0,7(q),

Qth
1,7(q) =

1

11
[−4,−29,−7, 4, 37; 11]7 = − 4

11

J2
11

P3
+ [0,−3,−1, 0, 3; 1]7 =: − 4

11

J2
11

P3
+ ϑ1,7(q),

Qth
2,7(q) =

1

11
[7, 26, 4, 15,−29;−11]7 = − 4

11

J2
11

P3
+ [1, 2, 0, 1,−3;−1]7 =: − 4

11

J2
11

P3
+ ϑ2,7(q),

Qth
3,7(q) =

1

11
[−4,−18, 4,−7, 15; 0]7 = − 4

11

J2
11

P3
+ [0,−2, 0,−1, 1; 0]7 =: − 4

11

J2
11

P3
+ ϑ3,7(q),

Qth
4,7(q) =

1

11
[−4, 15,−7,−7, 4; 0]7 = − 4

11

J2
11

P3
+ [0, 1,−1,−1, 0; 0]7 =: − 4

11

J2
11

P3
+ ϑ4,7(q),

Qth
5,7(q) =

1

11
[−4,−7, 4, 4,−18; 0]7 = − 4

11

J2
11

P3
+ [0,−1, 0, 0,−2; 0]7 =: − 4

11

J2
11

P3
+ ϑ5,7(q).
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Dissection elements for residue 8 are

Q0,8(q) =
1

11
[38, 6, 6,−16, 6; 0]8 = − 6

11

J2
11qP1

P4P5
+ [4, 0, 0,−2, 0; 0]8 =: − 6

11

J2
11qP1

P4P5
+ ϑ0,8(q),

Q1,8(q) =
1

11
[−17,−5,−5, 6, 6; 11]8 = − 6

11

J2
11qP1

P4P5
+ [−1,−1,−1, 0, 0; 1]8 =: − 6

11

J2
11qP1

P4P5
+ ϑ1,8(q),

Q2,8(q) =
1

11
[16, 6,−5, 6,−5; 0]8 =

5

11

J2
11qP1

P4P5
+ [1, 1, 0, 1, 0; 0]8 =:

5

11

J2
11qP1

P4P5
+ ϑ2,8(q),

Q3,8(q) =
1

11
[−6,−5, 17,−5,−5; 0]8 =

5

11

J2
11qP1

P4P5
+ [−1, 0, 2, 0, 0; 0]8 =:

5

11

J2
11qP1

P4P5
+ ϑ3,8(q),

Q4,8(q) =
1

11
[−17, 6,−16,−5,−5; 0]8 =

5

11

J2
11qP1

P4P5
+ [−2, 1,−1, 0, 0; 0]8 =:

5

11

J2
11qP1

P4P5
+ ϑ4,8(q),

Q5,8(q) =
1

11
[5,−5, 6, 6, 6;−11]8 = − 6

11

J2
11qP1

P4P5
+ [1,−1, 0, 0, 0;−1]8 =: − 6

11

J2
11qP1

P4P5
+ ϑ5,8(q).

The mock parts of the dissection elements for residue 9 are stated in (4.8) and (4.9). The theta
parts of the dissection elements for residue 9 are

Qth
0,9(q) =

1

11
[14, 8,−36, 8, 8; 0]9 = − 8

11

J2
11

P4
+ [2, 0,−4, 0, 0; 0]9 =: − 8

11

J2
11

P4
+ ϑ0,9(q),

Qth
1,9(q) =

1

11
[3,−14, 19,−3, 8; 0]9 =

3

11

J2
11

P4
+ [0,−1, 2, 0, 1; 0]9 =:

3

11

J2
11

P4
+ ϑ1,9(q),

Qth
2,9(q) =

1

11
[3, 19, 8,−3,−3; 0]9 =

3

11

J2
11

P4
+ [0, 2, 1, 0, 0; 0]9 =:

3

11

J2
11

P4
+ ϑ2,9(q),

Qth
3,9(q) =

1

11
[3,−14, 19,−3,−14;−11]9 =

3

11

J2
11

P4
+ [0,−1, 2, 0,−1;−1]9 =:

3

11

J2
11

P4
+ ϑ3,9(q),

Qth
4,9(q) =

1

11
[−8, 8,−14, 8,−3; 11]9 = − 8

11

J2
11

P4
+ [0, 0,−2, 0,−1; 1]9 =: − 8

11

J2
11

P4
+ ϑ4,9(q),

Qth
5,9(q) =

1

11
[−8,−3,−14,−3, 8; 0]9 =

3

11

J2
11

P4
+ [−1, 0,−1, 0, 1; 0]9 =:

3

11

J2
11

P4
+ ϑ5,9(q).

The mock parts of the dissection elements for residue 10 are stated in (4.10) and (4.11). The theta
parts of the dissection elements for residue 10 are

Qth
0,10(q) =

1

11
[2,−24, 20, 20,−2; 0]10 =

2

11

J2
11

P5
+ [0,−2, 2, 2, 0; 0]10 =:

2

11

J2
11

P5
+ ϑ0,10(q),

Qth
1,10(q) =

1

11
[13, 20,−13,−2,−2; 0]10 =

2

11

J2
11

P5
+ [1, 2,−1, 0, 0; 0]10 =:

2

11

J2
11

P5
+ ϑ1,10(q),

Qth
2,10(q) =

1

11
[−42,−13,−2,−24,−2; 11]10 =

2

11

J2
11

P5
+ [−4,−1, 0,−2, 0; 1]10 =:

2

11

J2
11

P5
+ ϑ2,10(q),

Qth
3,10(q) =

1

11
[46, 9, 9, 9, 9;−11]10 = − 9

11

J2
11

P5
+ [5, 0, 0, 0, 0;−1]10 =: − 9

11

J2
11

P5
+ ϑ3,10(q),

Qth
4,10(q) =

1

11
[−9,−13,−13, 20,−2; 0]10 =

13

11

J2
11

P5
+ [−2, 0, 0, 3, 1; 0]10 =:

13

11

J2
11

P5
+ ϑ4,10(q),

Qth
5,10(q) =

1

11
[−9, 9, 9,−13,−2; 0]10 = − 9

11

J2
11

P5
+ [0, 0, 0,−2,−1; 0]10 =: − 9

11

J2
11

P5
+ ϑ5,10(q).

In the next proof we will show how to obtain these formulas.
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Proof of Theorem 1.3. Recall that the rank generating function has the form

R(z; q) :=

∞∑
n=0

∞∑
m=−∞

N(m,n)zmqn =

∞∑
n=0

qn
2

(zq)n(z−1q)n
.

Let the Pj,m(q) to be elements of the 11-dissection of R(ζj11; q):

R(ζj11; q) =:
10∑

m=0

Pj,m(q11)qm.

So reformulation of this definition is

Pj,m(q) :=
∞∑
n=0

(
10∑
k=0

N(k, 11, 11n+m)ζkj11

)
qn.

Note that Pj,m(q) can be found from P1,m(q) by taking ζj11 instead of ζ11. Recall the definition of
the Dedekind eta-function

η(z) := q
1
24

∞∏
n=1

(1− qn)

and the notation of Biagioli [10]

fp,k(z) := q
(p−2k)2

8p (qk; qp)∞(qp−k; qp)∞(qp; qp)∞,

j(p,−→n , z) := η(pz)n0

1
2
(p−1)∏
k=1

fp,k(z)
nk .

where p ≥ 1, p ∤ k, −→n ∈ Z
1
2
(p+1). In [21, (6.13)] Garvan found P1,6(q)

(q11; q11)∞

∞∑
n=0

(
10∑
k=0

N(k, 11, 11n+ 6)ζk11

)
qn+1 =

5∑
r=1

c6,rj(11, πr(
−→n ), z) (4.13)

where c6,r ∈ Z[ζ11] are given explicitly in [21, Section 6.4], −→n = (15,−4,−2,−3,−2,−2) and πr is
the permutation on {1, 2, 3, 4, 5}, defined as πr(i) = i′, where ri′ ≡ ±i (mod 11). As described in
[22, (1.9)] for p > 3 prime, 1 ≤ a ≤ 1

2(p− 1) we denote

Φp,a(q) :=


∞∑
n=0

qpn
2

(qa;qp)n+1(qp−a;qp)n
, if 0 < 6a < p,

−1 +
∞∑
n=0

qpn
2

(qa;qp)n+1(qp−a;qp)n
, if p < 6a < 3p.

Recently Garvan and Sarma found P1,7(q) [22, (7.5)]

q
1
11 (q11; q11)∞

( ∞∑
n=0

(
10∑
k=0

N(k, 11, 11n+ 7)ζk11

)
qn+1 + a7q

−1Φ11,5(q)

)

=
f11,5(z)

f11,1(z)

5∑
r=1

c7,rj(11, πr(
−→n ), z) +

f11,4(z)

f11,5(z)

5∑
r=1

d7,rj(11, πr(
−→n ), z) (4.14)
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where a7, c7,r, d7,r ∈ Z[ζ11] are given explicitly in [22, Section 7.1.2]. Also they found P1,8(q) [22,
(7.6)]

q
2
11 (q11; q11)∞

∞∑
n=0

(
10∑
k=0

N(k, 11, 11n+ 8)ζk11

)
qn+1

=
f11,4(z)

f11,1(z)

5∑
r=1

c8,rj(11, πr(
−→n ), z) +

f11,3(z)

f11,4(z)

5∑
r=1

d8,rj(11, πr(
−→n ), z), (4.15)

where c8,r, d8,r ∈ Z[ζ11] are given explicitly in [22, Section 7.1.3]. Then using [22, Theorem 4.11]
we can find other P1,m(q) using formulas for P1,7(q) and P1,8(q). We derive

q
5
11 (q11; q11)∞

( ∞∑
n=0

(
10∑
k=0

N(k, 11, 11n)ζk11

)
qn + a0Φ11,2(q)

)

=
f11,2(z)

f11,4(z)

5∑
r=1

c0,rj(11, πr(
−→n ), z) +

f11,5(z)

f11,2(z)

5∑
r=1

d0,rj(11, πr(
−→n ), z), (4.16)

q
6
11 (q11; q11)∞

∞∑
n=0

(
10∑
k=0

N(k, 11, 11n+ 1)ζk11

)
qn

=
f11,2(z)

f11,5(z)

5∑
r=1

c1,rj(11, πr(
−→n ), z) +

f11,4(z)

f11,2(z)

5∑
r=1

d1,rj(11, πr(
−→n ), z), (4.17)

q
7
11 (q11; q11)∞

∞∑
n=0

(
10∑
k=0

N(k, 11, 11n+ 2)ζk11

)
qn

=
f11,1(z)

f11,3(z)

5∑
r=1

c2,rj(11, πr(
−→n ), z) +

f11,2(z)

f11,1(z)

5∑
r=1

d2,rj(11, πr(
−→n ), z), (4.18)

q
8
11 (q11; q11)∞

∞∑
n=0

(
10∑
k=0

N(k, 11, 11n+ 3)ζk11

)
qn

=
f11,3(z)

f11,2(z)

5∑
r=1

c3,rj(11, πr(
−→n ), z) +

f11,5(z)

f11,3(z)

5∑
r=1

d3,rj(11, πr(
−→n ), z), (4.19)

q
9
11 (q11; q11)∞

( ∞∑
n=0

(
10∑
k=0

N(k, 11, 11n+ 4)ζk11

)
qn + a4q

−1Φ11,4(q)

)

=
f11,4(z)

f11,3(z)

5∑
r=1

c4,rj(11, πr(
−→n ), z) +

f11,1(z)

f11,4(z)

5∑
r=1

d4,rj(11, πr(
−→n ), z), (4.20)

q
10
11 (q11; q11)∞

∞∑
n=0

(
10∑
k=0

N(k, 11, 11n+ 5)ζk11

)
qn

=
f11,5(z)

f11,4(z)

5∑
r=1

c5,rj(11, πr(
−→n ), z) +

f11,1(z)

f11,5(z)

5∑
r=1

d5,rj(11, πr(
−→n ), z), (4.21)
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q
3
11 (q11; q11)∞

( ∞∑
n=0

(
10∑
k=0

N(k, 11, 11n+ 9)ζk11

)
qn+1 + a9Φ11,3(q)

)

=
f11,3(z)

f11,5(z)

5∑
r=1

c9,rj(11, πr(
−→n ), z) +

f11,2(z)

f11,3(z)

5∑
r=1

d9,rj(11, πr(
−→n ), z), (4.22)

q
4
11 (q11; q11)∞

( ∞∑
n=0

(
10∑
k=0

N(k, 11, 11n+ 10)ζk11

)
qn+1 + a10Φ11,1(q)

)

=
f11,1(z)

f11,2(z)

5∑
r=1

c10,rj(11, πr(
−→n ), z) +

f11,3(z)

f11,1(z)

5∑
r=1

d10,rj(11, πr(
−→n ), z), (4.23)

where ai, ci,r, di,r ∈ Z[ζ11] can be found explicitly from a7, c7,r, d7,r and c8,r, d8,r by [22, Theorem
4.11].

Then we transfer formulas (4.13)-(4.23) to a different notation using

fp,k(z) = q
(p−2k)2

8p Jk,p

and

Φp,a(q) =

{
1 + qag(qa; qp), if 0 < 6a < p,

qag(qa; qp), if p < 6a < 3p.

Recall the formula for the deviation of the rank [29, (2.10)]

D(a, r) =
1

r

r−1∑
j=1

ζ−aj
r

(
1− ζjr

)(
1 + ζjrg(ζ

j
r ; q)

)
=

1

r

r−1∑
j=1

ζ−aj
r R(ζjr ; q).

As with the crank, if we know the 11-dissection elements Pj,m(q) for R(ζjr ; q), we can deduce the
11-dissection elements Qa,m(q) for D(a, r) using the previous formula. We defined earlier

ϑ(a1, a2, a3, a4, a5) :=
J6
11

J2
1

[
a1

q2

P4P 2
5

+ a2
1

P 2
1P3

+ a3
q

P1P 2
4

+ a4
q

P 2
2P5

+ a5
q

P2P 2
3

]
. (4.24)

Also recall an important identity, which can be obtained by rearranging terms:

P1P2P3P4P5 = J1J
4
11. (4.25)

Note that (4.24) corresponds to the right-hand side of (4.13) after changing the notation and
applying (4.25):

j(11, π1(
−→n ), z) =

qJ15
11

P 4
1P

2
2P

3
3P

2
4P

2
5

=
J7
11

J2
1

· q

P 2
1P3

,

j(11, π2(
−→n ), z) =

q2J15
11

P 2
1P

4
2P

2
3P

2
4P

3
5

=
J7
11

J2
1

· q2

P 2
2P5

,

j(11, π3(
−→n ), z) =

q2J15
11

P 2
1P

3
2P

4
3P

2
4P

2
5

) =
J7
11

J2
1

· q2

P2P 2
3

,

j(11, π4(
−→n ), z) =

q2J15
11

P 3
1P

2
2P

2
3P

4
4P

2
5

=
J7
11

J2
1

· q2

P1P 2
4

,

j(11, π5(
−→n ), z) =

q3J15
11

P 2
1P

2
2P

2
3P

3
4P

4
5

=
J7
11

J2
1

· q3

P4P 2
5

.



24 NIKOLAY E. BOROZENETS

By calculations we see from (4.13) that

Q0,6(q) =
1

11

10∑
j=1

Pj,6(q) = ϑ(0, 0, 2, 2,−2),

Q1,6(q) =
1

11

10∑
j=1

ζ−j
11 Pj,6(q) = ϑ(−1, 1,−1,−2, 1),

Q2,6(q) =
1

11

10∑
j=1

ζ−2j
11 Pj,6(q) = ϑ(1, 0,−1, 2, 0),

Q3,6(q) =
1

11

10∑
j=1

ζ−3j
11 Pj,6(q) = ϑ(1, 0, 1,−1,−1),

Q4,6(q) =
1

11

10∑
j=1

ζ−4j
11 Pj,6(q) = ϑ(0,−1, 1, 0, 2),

Q5,6(q) =
1

11

10∑
j=1

ζ−5j
11 Pj,6(q) = ϑ(−1, 0,−1, 0,−1).

In the same way from (4.14) we see that

Q0,7(q) = q−1 P5

11P1
ϑ(−18, 0,−18, 26, 10) +

P4

11P5
ϑ(0, 0, 0, 0, 4),

Q1,7(q) = −q3g(q5; q11) + q−1 P5

11P1
ϑ(37, 0, 4,−29, 21) +

P4

11P5
ϑ(11, 0, 0, 0,−7),

Q2,7(q) = q3g(q5; q11) + q−1 P5

11P1
ϑ(−29, 0, 15, 26,−34) +

P4

11P5
ϑ(−11, 0, 0, 0, 4),

Q3,7(q) = q−1 P5

11P1
ϑ(15, 0,−7,−18, 21) +

P4

11P5
ϑ(0, 0, 0, 0, 4),

Q4,7(q) = q−1 P5

11P1
ϑ(4, 0,−7, 15,−12) +

P4

11P5
ϑ(0, 0, 0, 0,−7),

Q5,7(q) = q−1 P5

11P1
ϑ(−18, 0, 4,−7,−1) +

P4

11P5
ϑ(0, 0, 0, 0, 4).

(4.26)

From (4.15) we see that

Q0,8(q) = q−1 P4

11P1
ϑ(6, 0, 42,−36,−6) +

P3

11P4
ϑ(0, 0,−16, 6, 0),

Q1,8(q) = q−1 P4

11P1
ϑ(6, 0,−24, 30, 5) +

P3

11P4
ϑ(0, 0, 6,−5, 0),

Q2,8(q) = q−1 P4

11P1
ϑ(−5, 0, 9,−14, 5) +

P3

11P4
ϑ(0, 0, 6, 6, 0),

Q3,8(q) = q−1 P4

11P1
ϑ(−5, 0, 9, 8,−17) +

P3

11P4
ϑ(0, 0,−5,−5, 0),

Q4,8(q) = q−1 P4

11P1
ϑ(−5, 0,−13,−3, 16) +

P3

11P4
ϑ(0, 0,−5, 6, 0),

Q5,8(q) = q−1 P4

11P1
ϑ(6, 0,−2,−3,−6) +

P3

11P4
ϑ(0, 0, 6,−5, 0).

(4.27)
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Formulas for Qa,m(q) in terms of ϑ(a1, a2, a3, a4, a5) for other residues can be also of interest, so we
write them explicitly. From (4.16) we see that

Q0,0(q) = −2q2g(q2, q11) + q
P2

11P4
ϑ(−10,−52, 0, 56, 32) +

P5

11P2
ϑ(0, 10, 0, 22, 0),

Q1,0(q) = q2g(q2, q11) + q
P2

11P4
ϑ(1, 25, 0,−10,−23) +

P5

11P2
ϑ(0,−1, 0,−11, 0),

Q2,0(q) = q
P2

11P4
ϑ(1, 14, 0,−32,−1) +

P5

11P2
ϑ(0,−1, 0, 0, 0),

Q3,0(q) = q
P2

11P4
ϑ(12,−8, 0, 23, 21) +

P5

11P2
ϑ(0,−1, 0, 0, 0),

Q4,0(q) = q
P2

11P4
ϑ(1, 3, 0,−10,−23) +

P5

11P2
ϑ(0,−1, 0, 0, 0),

Q5,0(q) = q
P2

11P4
ϑ(−10,−8, 0, 1, 10) +

P5

11P2
ϑ(0,−1, 0, 0, 0).

From (4.17) we see that

Q0,1(q) = q
P2

11P5
ϑ(0,−6,−12,−4,−12) +

P4

11P2
ϑ(0, 10, 0,−12, 0),

Q1,1(q) = q
P2

11P5
ϑ(0, 5,−1,−4, 10) +

P4

11P2
ϑ(0,−1, 0, 10, 0),

Q2,1(q) = q
P2

11P5
ϑ(0, 16, 10,−15,−1) +

P4

11P2
ϑ(0,−1, 0,−12, 0),

Q3,1(q) = q
P2

11P5
ϑ(0,−6,−1, 18,−12) +

P4

11P2
ϑ(0,−1, 0, 10, 0),

Q4,1(q) = q
P2

11P5
ϑ(0,−6,−12, 18, 10) +

P4

11P2
ϑ(0,−1, 0,−1, 0),

Q5,1(q) = q
P2

11P5
ϑ(0,−6, 10,−15,−1) +

P4

11P2
ϑ(0,−1, 0,−1, 0).

From (4.18) we see that

Q0,2(q) = q
P1

11P3
ϑ(−12, 30, 2,−20, 0) +

P2

11P1
ϑ(2,−2, 0, 0, 0),

Q1,2(q) = q
P1

11P3
ϑ(−12,−36, 2, 13, 0) +

P2

11P1
ϑ(2, 9, 0, 0, 0),

Q2,2(q) = q
P1

11P3
ϑ(21, 19,−9,−9, 0) +

P2

11P1
ϑ(2,−2, 0, 0, 0),

Q3,2(q) = q
P1

11P3
ϑ(−1, 8, 2, 13, 0) +

P2

11P1
ϑ(−9,−2, 0, 0, 0),

Q4,2(q) = q
P1

11P3
ϑ(10,−3, 13,−9, 0) +

P2

11P1
ϑ(2,−2, 0, 0, 0),

Q5,2(q) = q
P1

11P3
ϑ(−12,−3,−9, 2, 0) +

P2

11P1
ϑ(2,−2, 0, 0, 0).
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From (4.19) we see that

Q0,3(q) =
P3

11P2
ϑ(14, 8, 4, 0,−12) +

P5

11P3
ϑ(0, 0,−8, 0,−8),

Q1,3(q) =
P3

11P2
ϑ(3,−3, 4, 0, 21) +

P5

11P3
ϑ(0, 0, 3, 0, 3),

Q2,3(q) =
P3

11P2
ϑ(−8, 8,−18, 0,−12) +

P5

11P3
ϑ(0, 0, 3, 0, 3),

Q2,3(q) =
P3

11P2
ϑ(−8,−3, 15, 0,−1) +

P5

11P3
ϑ(0, 0, 3, 0,−8),

Q2,4(q) =
P3

11P2
ϑ(3,−3, 15, 0,−23) +

P5

11P3
ϑ(0, 0,−8, 0, 14),

Q2,5(q) =
P3

11P2
ϑ(3,−3,−18, 0, 21) +

P5

11P3
ϑ(0, 0, 3, 0,−8).

From (4.20) we see that

Q0,4(q) =
P4

11P3
ϑ(16, 6,−28, 26, 0) + q

P1

11P4
ϑ(0, 0, 0,−6, 0),

Q1,4(q) =
P4

11P3
ϑ(5, 6, 5,−18, 0) + q

P1

11P4
ϑ(0, 0, 0, 5, 0),

Q2,4(q) =
P4

11P3
ϑ(−6,−5, 27, 4, 0) + q

P1

11P4
ϑ(0, 0, 0,−6, 0),

Q3,4(q) =
P4

11P3
ϑ(−17, 6,−17,−7, 0) + q

P1

11P4
ϑ(0, 0, 0, 5, 0),

Q4,4(q) = q3g(q4; q11) +
P4

11P3
ϑ(−6,−5, 27,−18, 0) + q

P1

11P4
ϑ(0, 0,−11,−6, 0),

Q5,4(q) = −q3g(q4; q11) +
P4

11P3
ϑ(16,−5,−28, 26, 0) + q

P1

11P4
ϑ(0, 0, 11, 5, 0).

From (4.21) we see that

Q0,5(q) =
P5

11P4
ϑ(6, 4, 0,−18, 24) + q

P1

11P5
ϑ(−4, 0, 0, 0, 4),

Q1,5(q) =
P5

11P4
ϑ(−5, 4, 0, 15,−9) + q

P1

11P5
ϑ(−4, 0, 0, 0,−7),

Q2,5(q) =
P5

11P4
ϑ(17, 4, 0,−7,−9) + q

P1

11P5
ϑ(7, 0, 0, 0, 4),

Q3,5(q) =
P5

11P4
ϑ(6,−7, 0, 4, 24) + q

P1

11P5
ϑ(7, 0, 0, 0, 4),

Q4,5(q) =
P5

11P4
ϑ(−27, 4, 0,−7,−20) + q

P1

11P5
ϑ(−4, 0, 0, 0,−7),

Q5,5(q) =
P5

11P4
ϑ(6,−7, 0, 4, 2) + q

P1

11P5
ϑ(−4, 0, 0, 0, 4).
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From (4.22) we see that

Q0,9(q) =
P3

11P5
ϑ(0, 14, 2,−8,−36) +

P2

11P3
ϑ(0, 0, 8, 0, 0),

Q1,9(q) =
P3

11P5
ϑ(0, 3,−9, 14, 19) +

P2

11P3
ϑ(0, 0,−3, 0, 0),

Q2,9(q) =
P3

11P5
ϑ(0, 3, 13,−19, 8) +

P2

11P3
ϑ(0, 0,−3, 0, 0),

Q3,9(q) = q2g(q3; q11) +
P3

11P5
ϑ(0, 3,−31, 14, 19) +

P2

11P3
ϑ(0, 0,−3, 0,−11),

Q4,9(q) = −q2g(q3; q11) +
P3

11P5
ϑ(0,−8, 13,−8,−14) +

P2

11P3
ϑ(0, 0, 8, 0, 11),

Q5,9(q) =
P3

11P5
ϑ(0,−8, 13, 3,−14) +

P2

11P3
ϑ(0, 0,−3, 0, 0).

From (4.23) we see that

Q0,10(q) =
P1

11P2
ϑ(16, 2, 20, 0, 20) + q−1 P3

11P1
ϑ(−2, 0, 0, 0, 0),

Q1,10(q) =
P1

11P2
ϑ(5, 13,−2, 0,−13) + q−1 P3

11P1
ϑ(−2, 0, 0, 0, 0),

Q2,10(q) = −[q−1 + g(q; q11)] +
P1

11P2
ϑ(−39,−42,−24, 0,−2) + q−1 P3

11P1
ϑ(−2, 11, 0, 0, 0),

Q3,10(q) = q−1 + g(q; q11) +
P1

11P2
ϑ(27, 46, 9, 0, 9) + q−1 P3

11P1
ϑ(9,−11, 0, 0, 0),

Q4,10(q) =
P1

11P2
ϑ(−6,−9, 20, 0,−13) + q−1 P3

11P1
ϑ(−2, 0, 0, 0, 0),

Q5,10(q) =
P1

11P2
ϑ(5,−9,−13, 0, 9) + q−1 P3

11P1
ϑ(−2, 0, 0, 0, 0).

To obtain Qa,m in the form [c1, c2, c3, c4, c5; c6]m, we need to use the three-term Weierstrass relation
for theta functions [24, Proposition 2.1]

Pa+cPa−cPb+dPb−d = Pa+dPa−dPb+cPb−c + qb−cPa+bPa−bPc+dPc−d.

Let us consider ten cases of the three-term Weierstrass relation, mentioned in [7, (4.6)-(4.10)] and
[17, (b1)-(b5)]:

P2P4P
2
5 − P 2

3P4P5 + q2P 2
1P2P3 = 0, (4.28)

P1P4P
2
5 − P2P3P

2
4 + qP1P2P

2
3 = 0, (4.29)

P1P3P
2
5 − P 2

2P4P5 + qP 2
1P3P4 = 0, (4.30)

P1P
2
4P5 − P2P

2
3P5 + qP1P

2
2P4 = 0, (4.31)

P1P3P
2
4 − P 2

2P3P5 + qP 2
1P2P5 = 0, (4.32)

and

P3P
3
5 − P5P

3
4 + q3P2P

3
1 = 0, (4.33)

P2P
3
5 − P3P

3
4 + q2P1P

3
2 = 0, (4.34)

P2P
3
4 − P5P

3
3 + q2P4P

3
1 = 0, (4.35)

P1P
3
5 − P4P

3
3 + qP3P

3
2 = 0, (4.36)

P1P
3
3 − P4P

3
2 + qP5P

3
1 = 0. (4.37)
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Also note that another form of ϑ can be obtained by applying (4.25):

ϑ(a1, a2, a3, a4, a5) =
J2
11

J3
1

[
a1

q2P1P2P3

P5
+ a2

P2P4P5

P1
+ a3

qP2P3P5

P4
+ a4

qP1P3P4

P2
+ a5

qP1P4P5

P3

]
.

Let us consider the case residue 7. From (4.26) we have

Qth
a,7(q) = q−1 P5

11P1
ϑ(a1, 0, a3, a4, a5) +

P4

11P5
ϑ(b1, 0, 0, 0, b5) =

J2
11

J3
1

(
a1qP2P3 + a3

P2P3P
2
5

P1P4
+ a4

P3P4P5

P2
+ a5

P4P
2
5

P3
+ b1

q2P1P2P3P4

P 2
5

+ b5
qP1P

2
4

P3

)
.

Then we consider

(4.31)× P5

P1P3P4
:

P2P3P
2
5

P1P4
=

P4P
2
5

P3
+

qP 2
2P5

P3
,

(4.28)× 1

P2P3
:

P3P4P5

P2
= q2P 2

1 +
P4P

2
5

P3
.

After changing the terms to the new ones using the above expressions, we obtain

Qth
a,7(q) =

J2
11

J3
1

(
c1
P4P

2
5

P3
+ c2q

2P 2
1 + c3

qP1P
2
4

P3
+ c4

qP 2
2P5

P3
+ c5qP2P3 + c6

q2P1P2P3P4

P 2
5

)
.

As a result, we obtain [c1, c2, c3, c4, c5; c6]7. Similar calculations can be done for residues 0, 4, 9, 10.
Another case we are going to consider as an example is residue 8. From (4.27) we have

Qa,8(q) = q−1 P4

11P1
ϑ(a1, 0, a2, a3, a4) +

P3

11P4
ϑ(0, 0, b3, b4, 0) =

J2
11

J3
1

(
a1

qP2P3P4

P5
+ a2

P2P3P5

P1
+ a3

P3P
2
4

P2
+ a4

P 2
4P5

P3
+ b3

qP2P
2
3P5

P 2
4

+ b4
qP1P

2
3

P2

)
.

Then we consider

(4.29)× q

P4P5
:

qP2P3P4

P5
= qP1P5 +

q2P1P2P
2
3

P4P5
,

(4.32)× 1

P1P2
:

P2P3P5

P1
=

P3P
2
4

P2
+ qP1P5,

(4.28)× P4

P2P3P5
:

P 2
4P5

P3
=

P3P
2
4

P2
− q2P 2

1P4

P5
,

(4.31)× q

P 2
4

:
qP2P

2
3P5

P 2
4

= qP1P5 +
q2P1P

2
2

P4
,

(4.28)× qP1

P2P4P5
:

qP1P
2
3

P2
=

q3P 3
1P3

P4P5
+ qP1P5.

After changing the terms to the new ones using the above expressions, we obtain

Qa,8(q) = c1qP1P5 + c2
q3P 3

1P3

P4P5
+ c3

q2P 2
1P4

P5
+ c4

q2P1P
2
2

P4
+ c5

q2P1P2P
2
3

P4P5
+ c6

P3P
2
4

P2
.

As a result, we obtain [c1, c2, c3, c4, c5; c6]8. Similar calculations can be done for residues 1, 2, 3, 5.
□
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5. Properties of partition function, crank and rank modulo 11

5.1. Equalities between cranks modulo 11. Garvan [20, (1.51)-(1.67)] found equalities between
cranks modulo 11. We present his results in the following theorem.

Theorem 5.1 ([20, (1.51)-(1.67)]). Consider n ≥ 0. For Mi = M(i, 11, 11n) we have

M1 = M2 = M3 = M4 = M5.

For Mi = M(i, 11, 11n+ 1) we have

M0 +M1 = 2M2 and M2 = M3 = M4 = M5.

For Mi = M(i, 11, 11n+ 2) we have

M0 = M1 = M3 = M4 = M5.

For Mi = M(i, 11, 11n+ 3) we have

M0 = M3 and M1 = M2 = M4 = M5.

For Mi = M(i, 11, 11n+ 4) we have

M0 = M2 = M4 and M1 = M3 = M5.

For Mi = M(i, 11, 11n+ 5) we have

M0 = M1 = M3 = M5 and M2 = M4.

For Mi = M(i, 11, 11n+ 6) we have

M0 = M1 = M2 = M3 = M4 = M5 =
p(11n+ 6)

11
.

For Mi = M(i, 11, 11n+ 7) we have

M0 = M2 = M3 = M5 and M1 = M4.

For Mi = M(i, 11, 11n+ 8) we have

M0 = M2 = M5 and M1 = M3 = M4.

For Ni = N(i, 11, 11n+ 9) and Mi = M(i, 11, 11n+ 9) we have

M0 = M4 and M1 = M2 = M3 = M5.

For Ni = N(i, 11, 11n+ 10) and Mi = M(i, 11, 11n+ 10) we have

M0 = M1 = M2 = M4 = M5.

Proof of Theorem 5.1. By comparing respective coefficients in the 11-dissections in Theorem 1.2
we can directly deduce the following equalities. Also note that there is no element corresponding to
q6 in 11-dissection of the deviation of the crank, so we have the corresponding equality for residue
6. □
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5.2. Partition function congruences modulo 11. Atkin and Swinnerton-Dyer in [7, Theorem
3] realised the following congruences.

Theorem 5.2 ([7, Theorem 3]). We have
∞∑
n=0

p(11n)qn ≡ J2
11

P1
(mod 11),

∞∑
n=0

p(11n+ 1)qn ≡ J2
11P5

P2P3
(mod 11),

∞∑
n=0

p(11n+ 2)qn ≡ 2
J2
11P3

P1P4
(mod 11),

∞∑
n=0

p(11n+ 3)qn ≡ 3
J2
11P2

P1P3
(mod 11),

∞∑
n=0

p(11n+ 4)qn ≡ 5
J2
11

P2
(mod 11),

∞∑
n=0

p(11n+ 5)qn ≡ 7
J2
11P4

P2P5
(mod 11)

∞∑
n=0

p(11n+ 7)qn ≡ 4
J2
11

P3
(mod 11),

∞∑
n=0

p(11n+ 8)qn ≡ 6
J2
11qP1

P4P5
(mod 11),

∞∑
n=0

p(11n+ 9)qn ≡ 8
J2
11

P4
(mod 11),

∞∑
n=0

p(11n+ 10)qn ≡ 9
J2
11

P5
(mod 11).

Proof of Theorem 5.2. Using Theorem 1.2 it is obvious how to obtain such congruences. For ex-
ample, we can take

∞∑
n=0

(
M(0, 11, 11n)− p(11n)

11

)
qn =

10

11

J2
11

P1
,

multiply it by −11 and take modulo 11. □

Remark 5.3. Elements of 11-dissection for p(n) can be obtained using [25, Lemma 4] and they
are found explicitly in terms of theta quotients by Bilgici and Ekin [11]. Another forms for the
11-dissection element

∑
n≥0 p(11n+6)qn, which represent explicitly its modular properties, can be

found in [31].

5.3. Linear rank congruences modulo 11. Atkin and Hussain [6] studied the rank modulo 11
and for each residue they found linear congruences between ranks [6, (9.16)]. We present their
results in the following theorem.

Theorem 5.4 ([6, (9.16)]). Consider n ≥ 0. For Ni = N(i, 11, 11n) we have

N2 − 5N3 − 2N4 + 6N5 ≡ 0 (mod 11).

For Ni = N(i, 11, 11n+ 1) we have

N1 − 6N2 + 4N3 + 3N4 − 2N5 ≡ 0 (mod 11).
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For Ni = N(i, 11, 11n+ 2) we have

N0 + 4N2 − 6N4 +N5 ≡ 0 (mod 11).

For Ni = N(i, 11, 11n+ 3) we have

N0 + 3N1 −N2 + 2N3 −N4 − 4N5 ≡ 0 (mod 11).

For Ni = N(i, 11, 11n+ 4) we have

N0 + 3N1 − 2N2 − 4N3 +N4 +N5 ≡ 0 (mod 11).

For Ni = N(i, 11, 11n+ 5) we have

N0 − 5N1 −N2 +N3 + 5N4 −N5 ≡ 0 (mod 11).

For Ni = N(i, 11, 11n+ 6) we have

N1 − 5N2 −N3 +N4 + 4N5 ≡ 0 (mod 11).

For Ni = N(i, 11, 11n+ 7) we have

N0 − 2N1 − 2N2 + 5N3 + 2N4 − 4N5 ≡ 0 (mod 11).

For Ni = N(i, 11, 11n+ 8) we have

N0 + 5N1 + 2N2 +N3 − 3N4 − 6N5 ≡ 0 (mod 11).

For Ni = N(i, 11, 11n+ 9) we have

N0 − 4N1 + 3N2 −N3 −N4 + 2N5 ≡ 0 (mod 11).

For Ni = N(i, 11, 11n+ 10) we have

N0 − 6N1 +N4 + 4N5 ≡ 0 (mod 11).

Proof of Theorem 5.4. It is straightforward now to obtain such congruences by using the calcu-
lations of the 11-dissection of the deviation of the rank found in Section 4. For example, let us
consider the case of residue 0. We find that

Q2,0(q)− 5Q3,0(q)− 2Q4,0(q) + 6Q5,0(q) = 11[0,−1, 0, 1,−1; 0]0.

As the sum of coefficients in the above sum is zero, we see that the coefficient of qn on the left-hand
side of the previous sum is

N(2, 11, 11n)− 5N(3, 11, 11n)− 2N(4, 11, 11n) + 6N(5, 11, 11n).

Taking expression modulo 11 we obtain the desired result. □

6. Rank-crank inequalities, positivity techniques, and positivity conjectures

Firstly we give new proofs of work of Ekin [16] in order to motivate our use of positivity techniques
and to give context to our positivity conjectures.
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6.1. Inequalities between cranks modulo 11. Ekin [16, (21)-(28)] considered inequalities be-
tween cranks modulo 11. We state the results in the following theorem and conjecture.

Theorem 6.1 ([16, (21)-(28)]). For n ≥ 0 we have

M(0, 11, 11n) ≥ p(11n)

11
≥ M(1, 11, 11n),

M(1, 11, 11n+ 1) ≥ p(11n+ 1)

11
≥ M(2, 11, 11n+ 1) ≥ M(0, 11, 11n+ 1),

M(2, 11, 11n+ 2) ≥ p(11n+ 2)

11
≥ M(0, 11, 11n+ 2),

M(0, 11, 11n+ 3) ≥ p(11n+ 3)

11
≥ M(1, 11, 11n+ 3),

M(0, 11, 11n+ 4) ≥ p(11n+ 4)

11
≥ M(1, 11, 11n+ 4),

M(0, 11, 11n+ 5) ≥ p(11n+ 5)

11
≥ M(2, 11, 11n+ 5),

M(1, 11, 11n+ 7) ≥ p(11n+ 7)

11
≥ M(0, 11, 11n+ 7),

M(1, 11, 11n+ 9) ≥ p(11n+ 9)

11
≥ M(0, 11, 11n+ 9),

M(0, 11, 11n+ 10) ≥ p(11n+ 10)

11
≥ M(3, 11, 11n+ 10).

Conjecture 6.2. For n ≥ 0, n ̸= 2 we have

M(1, 11, 11n+ 8) ≥ p(11n+ 8)

11
≥ M(0, 11, 11n+ 8).

Lemma 6.3. We have
J2
11

Pa
≥ 0

for a ∈ {1, 2, 3, 4, 5} and
J2
11P2a

PaP3a
≥ 0

for a ∈ {1, 2, 3, 4}.

Proof of Lemma 6.3. By the Jacobi’s triple product identity we see that for a ∈ {1, 2, 3, 4, 5}
J2
11

Pa
=

(q11; q11)∞
(qa; q11)∞(q11−a; q11)∞

=
(−qa; q11)∞(−q11−a; q11)∞(q11; q11)∞

(q2a; q22)∞(q22−2a; q22)∞

=
1

(q2a; q22)∞(q22−2a; q22)∞

∞∑
n=−∞

q11(
n
2)+an.

By the quintuple product identity [16, (42)] we see that for a ∈ {1, 2, 3}
J2
11P2a

PaP3a
=

J3
33

J3a,33J11−3a,33
+

qaJ3
33

J3a,33J22−3a,33
. (6.1)

In the same way as in the previous case but with change q → q3 we see that both of the terms
in the right-hand side of the expression above have non-negative Fourier coefficients. The case of

a = 4 is proved in [8, Corollary 4.8] using a different representation of
J2
11P3

P1P4
. □

Proof of Theorem 6.1. To obtain Theorem 6.1 we use Lemma 6.3 and refer to the positivity or
negativity of the coefficients in Theorem 1.2. □
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Remark 6.4. Conjecture 6.2 is partially solved. Using analytic methods it is known from [33] that
there is explicit N , such that for n > N we have

M(1, 11, 11n+ 8) ≥ M(0, 11, 11n+ 8).

6.2. Positivity of theta quotients. Denote

P̃a := (qa; q11)∞(q11−a; q11)∞ =
Pa

J11
.

Definition 6.5. We define the notation F (q) ≥ G(q) if the Fourier coefficients of F (q)−G(q) are
non-negative.

Lemma 6.6. We have
Ja
11q

bP̃α1
1 P̃α2

2 P̃α3
3 P̃α4

4 P̃α5
5 ≥ 0 (6.2)

where αi ≤ 0 for 1 ≤ i ≤ M , α1 + α2 + α3 + α4 + α5 = r and 0 ≤ a ≤ r, b ∈ Z.
Proof of Lemma 6.6. By Lemma 6.3 we see that for a ∈ {1, 2, 3, 4, 5}

J11

P̃a

≥ 0

and obviously
1

P̃a

≥ 0.

Lemma 6.6 follows directly from inequalities above. □

Remark 6.7. By Lemma 6.6 all terms in sums of theta quotients in (1.3), Definition 2.8 and
Definition 2.9 have non-negative Fourier coefficients. For example, by applying (4.25) we have

ϑ(1, 0, 0, 0, 0) =
J6
11

J2
1

· q2

P4P 2
5

= J14
11 · q2

P 2
1P

2
2P

2
3P

3
4P

4
5

= J11 ·
q2

P̃ 2
1 P̃

2
2 P̃

2
3 P̃

3
4 P̃

4
5

≥ 0.

Remark 6.8. Let α1 < 0 in (6.2). Then we can establish not just non-negativity of Fourier
coefficients of (6.2) but also that the coefficients of (6.2) are monotonically non-decreasing by
multiplying the expression by (1− q). In this sense we have that if

P (q) :=
∑
i∈Z

ciq
i

and
(1− q)P (q) =

∑
i∈Z

(ci − ci−1)q
i ≥ 0,

then we have ci ≥ ci−1 for any i ∈ Z.
Let us compare Fourier coefficients of theta quotients in [c1, c2, c3, c4, c5]. We have the following

inequalities

Proposition 6.9. We have

[0, 1, 0, 0, 0] ≤ [0, 0, 1, 0, 0] ≤ [0, 0, 0, 1, 0] ≤ [0, 0, 0, 0, 1]. (6.3)

Proof of Proposition 6.9. Inequalities can be proved using the three-term Weierstrass relations
(4.28)-(4.32) in the following form

[0,−1, 1, 0, 0] =
J2
11

J3
1

qP 2
3P2 −

J2
11

J3
1

qP 2
2P5 =

J2
11

J3
1

q3P 2
1P

2
2P3

P4P5
≥ 0,

[0, 0,−1, 1, 0] =
J2
11

J3
1

qP 2
2P5 −

J2
11

J3
1

qP 2
4P1 =

J2
11

J3
1

q2P 2
1P2P5

P3
≥ 0,

[0, 0, 0,−1, 1] =
J2
11

J3
1

qP 2
4P1 −

J2
11

J3
1

q2P 2
1P3 =

J2
11

J3
1

qP 2
1P4P

2
5

P2P3
≥ 0.
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Here we can see the positivity of the Fourier coefficients of the right-hand side of equations above by
Lemma 6.6 as the theta quotients in the right-hand side can be transformed into (6.2) by applying
(4.25). □

Remark 6.10. We can strengthen Proposition 6.9 to

J1[0, 1, 0, 0, 0] ≤ J1[0, 0, 1, 0, 0] ≤ J1[0, 0, 0, 1, 0] ≤ J1[0, 0, 0, 0, 1]. (6.4)

We are able to compare Fourier coefficients of theta quotients in [c1, c2, c3, c4, c5; c6]i which was
defined in Definition 2.9.

Proposition 6.11. For every residue i ̸= 6 we have

[0, 1, 0, 0, 0; 0]i ≤ [0, 0, 1, 0, 0; 0]i ≤ [0, 0, 0, 1, 0; 0]i ≤ [0, 0, 0, 0, 1; 0]i.

Proof of Proposition 6.11. For i ̸= 8 this result can directly obtained from Proposition 6.9. For
example for residue 0 we need to multiply (6.3) by 1

P1
≥ 0. For i = 8 we use Remark 6.10 and

multiply (6.4) by qP1

J1P4P5
≥ 0. □

For residue 6 we have the following comparison formulas.

Proposition 6.12. We have

ϑ(0, 0, 0, 0, 1) ≤ ϑ(0, 0, 0, 1, 0) ≤ ϑ(0, 0, 1, 0, 0) ≤ ϑ(0, 1, 0, 0, 0).

Proof of Proposition 6.12. Inequalities can be proved using the three-term Weierstrass relations
(4.28)-(4.37) in the following form.

ϑ(0, 0, 0, 1,−1) =
J2
11

J3
1

qP1P3P4

P2
− J2

11

J3
1

qP1P4P5

P3
=

J2
11

J3
1

q3P 3
1

P5
≥ 0,

ϑ(0, 0, 1,−1, 0) =
J2
11

J3
1

qP2P3P5

P4
− J2

11

J3
1

qP1P3P4

P2
=

J2
11

J3
1

q2P 2
1P5

P4
≥ 0,

ϑ(0, 1,−1, 0, 0) =
J2
11

J3
1

P2P4P5

P1
− J2

11

J3
1

qP2P3P5

P4
=

J2
11

J3
1

P 3
5

P3
≥ 0. □

We also provide some additional comparison formulas among theta quotients.

Lemma 6.13. We have

[0, 0, 0, 0,−1; 1]1 ≥ 0,

[0, 1, 0, 0, 0;−1]2 ≥ 0,

[0, 0, 0, 1, 0;−1]3 ≥ 0,

[0, 0,−1, 0, 0; 1]3 ≥ 0,

[0, 0, 1, 0, 0;−1]5 ≥ 0,

[0, 0, 0,−1, 0; 1]8 ≥ 0.
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Proof of Lemma 6.13. We need to use the three-term Weierstrass relations (4.28)-(4.37)

[0, 0, 0, 0,−1; 1]1 =
J2
11

J3
1

(
qP 2

2P4

P1
− P5

P2P3
· qP 2

3P2

)
=

J2
11

J3
1

q2P1P3P4

P5
≥ 0,

[0, 1, 0, 0, 0;−1]2 =
J2
11

J3
1

(
P3

P1P4
· q2P 2

1P3 −
q3P 2

1P2

P5

)
=

J2
11

J3
1

q2P 2
1P4

P2
≥ 0,

[0, 0, 0, 1, 0;−1]3 =
J2
11

J3
1

(
P2

P1P3
· qP 2

2P5 −
qP 2

3P5

P4

)
=

J2
11

J3
1

q2P 2
1P

2
5

P3P4
≥ 0,

[0, 0,−1, 0, 0; 1]3 =
J2
11

J3
1

(
qP 2

3P5

P4
− P2

P1P3
· qP 2

4P1

)
=

J2
11

J3
1

q3P 3
1

P3
≥ 0,

[0, 0, 1, 0, 0;−1]5 =
J2
11

J3
1

(
P4

P2P5
· qP 2

4P1 −
qP1P

2
5

P3

)
=

J2
11

J3
1

q3P 2
1P

2
2

P3P5
≥ 0,

[0, 0, 0,−1, 0; 1]8 =
J2
11

J3
1

(
P3P

2
4

P2
− qP1

P4P5
· qP 2

2P5

)
=

J2
11

J3
1

P 3
5

P4
≥ 0. □

6.3. Proofs of rank-crank inequalities. Define QC
a,m(q) to be the elements of the 11-dissection

of the deviation of the crank:

DC(a, 11) =:
10∑

m=0

QC
a,m(q11)qm.

So the reformulation of this definition is

QC
a,m(q) :=

∞∑
n=0

(
M(a, 11, 11n+m)− p(11n+m)

11

)
qn. (6.5)

Proof of Theorem 2.1. As an example we consider inequalities corresponding to residue 0. For
n ≥ 0, Ni = N(0, 11, 11n) and Mi = M(i, 11, 11n) we want to establish

N0 + 2N1 +M1 ≥ 2N2 +N4 +M0,

N0 + 2N1 + 3N2 +M1 ≥ 3N3 + 3N5 +M0,

2N2 +N3 +N5 ≥ 4N4,

N2 + 5N3 + 3N4 +M0 ≥ N0 + 2N1 + 6N5 +M1.

We sum up

Q0,0(q) + 2Q1,0(q) +QC
1,0(q)− 2Q2,0(q)−Q4,0(q)−QC

0,0(q) = [0, 11, 0, 0, 0; 0]0 ≥ 0,

Q0,0(q) + 2Q1,0(q) + 3Q2,0(q) +QC
1,0(q)− 3Q3,0(q)− 3Q5,0(q)−QC

0,0(q) = [0,−11, 11, 0, 0; 0]0 ≥ 0,

2Q2,0(q) +Q3,0(q) +Q5,0(q)− 4Q4,0(q) = [0, 0,−11, 11, 0; 0]0 ≥ 0

and

Q2,0(q) + 5Q3,0(q) + 3Q4,0(q) +QC
0,0(q)−Q0,0(q)− 2Q1,0(q)− 6Q5,0(q)−QC

1,0(q)

= [0, 0, 0,−11, 11; 0]0 ≥ 0.

and apply Proposition 6.11. For other residues Lemma 6.13 is also used. □

Proof of Corollary 2.2. As an example let us consider the inequality

N(2, 11, 11n+ 1) ≥ M(2, 11, 11n+ 1),

where n ≥ 0. To prove it we sum up

Q2,1(q)−QC
2,1(q) = [0, 1, 0,−1, 0; 1]1 ≥ 0

and apply Proposition 6.11 and Lemma 6.13. □
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Proof of Corollary 2.3. As an example let us consider the inequality

N(1, 11, 11n+ 1) + 2N(4, 11, 11n+ 1) ≥ 2N(5, 11, 11n+ 1) +M(0, 11, 11n+ 1),

where n ≥ 0. To prove it we sum up

Q1,1(q) + 2Q4,1(q)−Q5,1(q)−QC
0,1(q) = [1,−2,−4, 3,−3; 2]1 =

= [1,−1,−1,−1,−1, 0]1 + [0,−1,−3, 4,−2; 2]1 ≥ 0

and apply Proposition 6.11, Lemma 6.13 and note that

[1,−1,−1,−1,−1; 0]1 =
J2
11P5

P2P3
≥ 0

by Lemma 6.3. □

Proof of Corollary 2.6. We consider

Q0,6(q) = ϑ(0, 0, 1, 1,−1) ≥ 0,

−Q5,6(q) = ϑ(1, 0, 1, 0, 1) ≥ 0,

where n ≥ 0 and apply Proposition 6.12. □

Proof of Corollary 2.7. As an example let us consider the inequality

N(0, 11, 11n+ 6) +N(3, 11, 11n+ 6) ≥ N(1, 11, 11n+ 6) +N(4, 11, 11n+ 6),

where n ≥ 0. To prove it we sum up

Q0,6(q) +Q3,6(q)−Q1,6(q)−Q4,6(q) = ϑ(2, 0, 3, 3,−6) ≥ 0

and apply Proposition 6.12. □

Remark 6.14. If it is known that

[c1, c2, c3, c4, c5; c6]m ≥ 0

with some ck ∈ Q, 1 ≤ k ≤ 6 and residue m ̸= 6, then you can construct some rank-crank inequality
with Ni = N(i, 11, 11n+m) and Mi = M(i, 11, 11n+m). We need to look at {Qa,m | 0 ≤ a ≤ 4}
and QC

0,m as linear independent vectors in R6 as described in Section 4, that is, we need to consider
equation

4∑
j=0

ajQj,m + b0Q
C
0,m = [c1, c2, c3, c4, c5; c6]m

as a linear system over unknowns {a0, a1, a2, a3, a4, b0} with a unique rational solution. The same
is true in case of residue 6. If it is known that

ϑ(c1, c2, c3, c4, c5) ≥ 0

with some ck ∈ Q, 1 ≤ k ≤ 5, then you can construct some rank inequality with Ni = N(i, 11, 11n+
6) and Mi = M(i, 11, 11n+6). We need to look at {ϑa,6 | 0 ≤ a ≤ 4} as linear independent vectors
in R5 as described in Theorem 1.3, that is, we need to consider equation

4∑
j=0

ajϑj,6 = ϑ(c1, c2, c3, c4, c5)

as a linear system over unknowns {a0, a1, a2, a3, a4} with a unique rational solution. Then we might
need to remove a partition function term by applying

p(n) = N(0, 11, n) + 2N(1, 11, n) + · · ·+ 2N(5, 11, n).
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6.4. Conjectural rank-crank inequalities. In the sense of rank-crank inequalities in Corollary
2.2 and Corollary 2.6 we can conjecture the following stronger two-term rank-crank inequalities.

Conjecture 6.15. For Ni = N(i, 11, 11n) and Mi = M(i, 11, 11n) we have

N0 ≥3 N1 ≥ N2 ≥1 M0 ≥
p(11n)

11
≥ M1 ≥ N3 ≥2 N4 ≥ N5.

For Ni = N(i, 11, 11n+ 1) and Mi = M(i, 11, 11n+ 1) we have

N0 ≥ N1 ≥ N2 ≥1 M1 ≥
p(11n+ 1)

11
≥ M2 ≥ M0 ≥1 N3 ≥ N4 ≥ N5.

For Ni = N(i, 11, 11n+ 2) and Mi = M(i, 11, 11n+ 2) we have

N0 ≥3 N1 ≥ N2 ≥1 M2 ≥
p(11n+ 2)

11
≥ M0 ≥ N3 ≥ N4 ≥ N5.

For Ni = N(i, 11, 11n+ 3) and Mi = M(i, 11, 11n+ 3) we have

N0 ≥2 N1 ≥1 N2 ≥ M0 ≥
p(11n+ 3)

11
≥ M1 ≥ N3 ≥ N4 ≥ N5.

For Ni = N(i, 11, 11n+ 4) and Mi = M(i, 11, 11n+ 4) we have

N0 ≥3 N1 ≥ N2 ≥1 M0 ≥
p(11n+ 4)

11
≥ M1 ≥1 N3 ≥ N4 ≥ N5.

For Ni = N(i, 11, 11n+ 5) and Mi = M(i, 11, 11n+ 5) we have

N0 ≥ N1 ≥ N2 ≥ M0 ≥
p(11n+ 5)

11
≥ M2 ≥ N3 ≥1 N4 ≥ N5.

For Ni = N(i, 11, 11n+ 6) and Mi = M(i, 11, 11n+ 6) we have

N0 ≥1 N1 ≥ N2 ≥
p(11n+ 6)

11
≥ N3 ≥ N4 ≥1 N5.

For Ni = N(i, 11, 11n+ 7) and Mi = M(i, 11, 11n+ 7) we have

N0 ≥ N1 ≥1 N2 ≥ M1 ≥
p(11n+ 7)

11
≥ M0 ≥ N3 ≥ N4 ≥ N5.

For Ni = N(i, 11, 11n+ 8) and Mi = M(i, 11, 11n+ 8) we have

N0 ≥3 N1 ≥ N2 ≥ M1 ≥3
p(11n+ 8)

11
≥3 M0 ≥ N3 ≥ N4 ≥ N5.

For Ni = N(i, 11, 11n+ 9) and Mi = M(i, 11, 11n+ 9) we have

N0 ≥2 N1 ≥ N2 ≥ M1 ≥
p(11n+ 9)

11
≥ M0 ≥1 N3 ≥ N4 ≥ N5.

For Ni = N(i, 11, 11n+ 10) and Mi = M(i, 11, 11n+ 10) we have

N0 ≥3 N1 ≥ N2 ≥ M0 ≥
p(11n+ 10)

11
≥ M3 ≥1 N3 ≥ N4 ≥ N5.

Notation An ≥ Bn means that An ≥ Bn for all n ≥ 0 and An ≥m Bn means that An ≥ Bn for all
n ≥ m.

Remark 6.16. Some of the inequalities of Conjecture 6.15 are proved in Corollary 2.2.

Remark 6.17. Inequalities between ranks where considered by Bringmann and Kane [12] by using
analytic methods. For 0 ≤ a < b ≤ 5 and for n > Na,b, where Na,b is an explicit constant, we have
the inequality

N(a, 11, n) > N(b, 11, n).

Recently, Conjecture 6.15 were fully proved using analytic methods by Bringmann and Pandey [13].



38 NIKOLAY E. BOROZENETS

As a generalization of rank-crank inequalities we can state the following conjectures in terms of
Definition 2.9 and Definition 1.1.

Definition 6.18. We define notation F (q) ≥m G(q) if for F (q) =
∑

n≥0 a(n)q
n and for G(q) =∑

n≥0 b(n)q
n we have a(n) ≥ b(n) for n ≥ m.

Conjecture 6.19. For any ck ∈ Q, 1 ≤ k ≤ 6 and residue i ̸= 6 modulo 11 there is N ∈ N0 such
that

[c1, c2, c3, c4, c5; c6]i ≥N 0 or [c1, c2, c3, c4, c5; c6]i ≤N 0,

For any ak ∈ Q, 1 ≤ k ≤ 5 there is N ∈ N0 such that

ϑ(a1, a2, a3, a4, a5) ≥N 0 or ϑ(a1, a2, a3, a4, a5) ≤N 0.

We have the following corollary of Conjecture 6.19.

Conjecture 6.20. For any ak, bk ∈ Z, 0 ≤ k ≤ 5, such that

5∑
k=0

(ak + bk) = 0,

and residue m modulo 11 there is N ∈ N0 such that

5∑
k=0

[
akN(k, 11, 11n+m) + bkM(k, 11, 11n+m)

]
≥N 0 or

5∑
k=0

[
akN(k, 11, 11n+m) + bkM(k, 11, 11n+m)

]
≤N 0.

Notation An ≥m Bn means that An ≥ Bn for all n ≥ m.

7. Proofs of new congruences

Proof of Theorem 2.12. By properties of the crank we are able to deduce

Mk(n) ≡
10∑

m=1

mkM(m, 11, n) (mod 11).

Then consider

M2(n) ≡ 2M(1, 11, n)− 3M(2, 11, n)− 4M(3, 11, n)−M(4, 11, n) + 6M(5, 11, n) (mod 11),

M4(n) ≡ 2M(1, 11, n)−M(2, 11, n)− 3M(3, 11, n) + 6M(4, 11, n)− 4M(5, 11, n) (mod 11),

M6(n) ≡ 2M(1, 11, n)− 4M(2, 11, n) + 6M(3, 11, n)− 3M(4, 11, n)−M(5, 11, n) (mod 11),

M8(n) ≡ 2M(1, 11, n) + 6M(2, 11, n)−M(3, 11, n)− 4M(4, 11, n)− 3M(5, 11, n) (mod 11).

Taking n = 11l + m in congruences above and using Theorem 1.2 we obtain Theorem 2.12. For
example using notation (2.2) with m = 1 we have

TC
2,1(q) =

∞∑
n=0

M2(11n+ 1)qn ≡ 2QC
1,1(q)− 3QC

2,1(q)− 4QC
3,1(q)−QC

4,1(q) + 6QC
5,1(q)

≡ 2
J2
11P5

P2P3
(mod 11). □

Proof of Theorem 2.11. By properties of the rank we are able to deduce

Nk(n) ≡
10∑

m=1

mkN(m, 11, n) (mod 11).
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Then consider

N2(n) ≡ 2N(1, 11, n)− 3N(2, 11, n)− 4N(3, 11, n)−N(4, 11, n) + 6N(5, 11, n) (mod 11),

N4(n) ≡ 2N(1, 11, n)−N(2, 11, n)− 3N(3, 11, n) + 6N(4, 11, n)− 4N(5, 11, n) (mod 11),

N6(n) ≡ 2N(1, 11, n)− 4N(2, 11, n) + 6N(3, 11, n)− 3N(4, 11, n)−N(5, 11, n) (mod 11),

N8(n) ≡ 2N(1, 11, n) + 6N(2, 11, n)−N(3, 11, n)− 4N(4, 11, n)− 3N(5, 11, n) (mod 11).

Taking n = 11l+m in congruences above and using Theorem 1.3 and calculations in Section 4 we
obtain Theorem 2.11. For example using notation (2.1) with m = 1 we have

T2,1(q) =
∞∑
n=0

N2(11n+ 1)qn ≡ 2Q1,1(q)− 3Q2,1(q)− 4Q3,1(q)−Q4,1(q) + 6Q5,1(q)

≡ [0,−1,−5,−4,−3;−2]1 (mod 11). □

Proof of Theorem 2.10. Andrews [2] showed that spt(n) is related to the second rank moment

spt(n) = np(n)− 1

2
N2(n). (7.1)

As an example let us consider congruence
∞∑
n=0

spt(11n+ 1)qn ≡ [1, 5,−4, 1,−5; 1]1 (mod 11).

We know that
∞∑
n=0

(11n+ 1)p(11n+ 1)qn ≡ [1,−1,−1,−1,−1; 0]1 (mod 11)

by Theorem 5.2 and
∞∑
n=0

N2(11n+ 1)qn ≡ [0,−1,−5,−4,−3;−2]1 (mod 11)

by Theorem 2.11. Using (7.1) we obtain the desired congruence. □

Proof of Corollary 2.14. In terms of notation (2.1) from [19, Theorem 5.1] we know

T2,6(q) ≡ 3J13
1 (mod 11),

T6,6(q) ≡ J13
1 (4 + E4(q)) (mod 11),

T8,6(q) ≡ J13
1 (5 + 6E4(q) + 6E6(q)) (mod 11).

Using Theorem 2.11 and applying

J13
1 ≡ J2

1J11 (mod 11),

we obtain Corollary 2.14. □

Remark 7.1. We also can deduce congruences modulo 11 for rank moments and spt(n) corre-
sponding to residues i ∈ {0, 4, 7, 9, 10}, but they consist of the universal mock theta functions
g(x; q). For example for residue 0 in terms of notation (2.1) we have

T2,0(q) ≡ T4,0(q) ≡ 2q2g(q2; q11) + [0, 0, 4, 5, 1;−2]0 (mod 11),

T6,0(q) ≡ 2q2g(q2; q11) + [0, 3,−2, 1,−4;−2]0 (mod 11),

T8,0(q) ≡ 2q2g(q2; q11) + [0, 4, 1, 0, 2;−2]0 (mod 11),

and
∞∑
n=0

spt(11n)qn ≡ −q2g(q2; q11) + [0, 0,−2, 3, 5; 1]0 (mod 11).
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8. Full proofs for new crank-rank inequalities

In this section we give the full account of calculations for the proofs of Theorem 2.1, Corollary
2.2, Corollary 2.3, Theorem 2.5 and Corollary 2.7.

Definition 8.1. Using the notation of (4.1) and (6.5), we define

(a0, a2, a3, a4, a5; b0, b1)0 :=

5∑
i=0

aiQi,0(q) + b0Q
C
0,0(q) + b1Q

C
1,0(q),

(a0, a2, a3, a4, a5; b0, b1, b2)1 :=
5∑

i=0

aiQi,1(q) +
2∑

i=0

biQ
C
i,1(q),

(a0, a2, a3, a4, a5; b0, b2)2 :=
5∑

i=0

aiQi,2(q) + b0Q
C
0,2(q) + b2Q

C
2,2(q),

(a0, a2, a3, a4, a5; b0, b1)3 :=
5∑

i=0

aiQi,3(q) + b0Q
C
0,3(q) + b1Q

C
1,3(q),

(a0, a2, a3, a4, a5; b0, b1)4 :=

5∑
i=0

aiQi,4(q) + b0Q
C
0,4(q) + b1Q

C
1,4(q),

(a0, a2, a3, a4, a5; b0, b2)5 :=

5∑
i=0

aiQi,5(q) + b0Q
C
0,5(q) + b2Q

C
2,5(q),

(a0, a1, a2, a3, a4, a5)6 :=

5∑
i=0

aiQi,6(q),

(a0, a1, a2, a3, a4, a5; b0, b1)7 :=
5∑

i=0

aiQi,7(q) + b0Q
C
0,7(q) + b1Q

C
1,7(q),

(a0, a1, a2, a3, a4, a5; b0, b1)8 :=
5∑

i=0

aiQi,8(q) + b0Q
C
0,8(q) + b1Q

C
1,8(q),

(a0, a1, a2, a3, a4, a5; b0, b1)9 :=
5∑

i=0

aiQi,9(q) + b0Q
C
0,9(q) + b1Q

C
1,9(q),

(a0, a1, a2, a3, a4, a5; b0, b3)10 :=

5∑
i=0

aiQi,10(q) + b0Q
C
0,10(q) + b3Q

C
3,10(q).

Full proof of Theorem 2.1. The calculations below can be derived directly from calculations of the
dissection elements Qa,m(q) from Section 4 and calculations of the dissection elements QC

a,m(q) from
Theorem 1.2. The positivity of sums of theta quotients can be derived from Proposition 6.11 and
Lemma 6.13. The inequalities with Ni = N(i, 11, 11n) and Mi = M(i, 11, 11n) are equivalent to

(1, 2,−2, 0,−1, 0;−1, 1)0 = [0, 11, 0, 0, 0; 0]0 ≥ 0,

(1, 2, 3,−3, 0,−3;−1, 1)0 = [0,−11, 11, 0, 0; 0]0 ≥ 0,

(0, 0, 2, 1,−4, 1; 0, 0)0 = [0, 0,−11, 11, 0; 0]0 ≥ 0,

(−1,−2, 1, 5, 3,−6; 1,−1)0 = [0, 0, 0,−11, 11; 0]0 ≥ 0.
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The inequalities with Ni = N(i, 11, 11n+ 1) and Mi = M(i, 11, 11n+ 1) are equivalent to

(1,−2, 4,−3, 1,−1; 1, 0,−1)1 = [0, 11, 0, 0, 0; 0]1 ≥ 0,

(1, 3,−4, 6,−6, 0; 1, 0,−1)1 = [0,−11, 11, 0, 0; 0]1 ≥ 0,

(0, 2,−1,−3, 6,−4; 0, 0, 0)1 = [0, 0,−11, 11, 0; 0]1 ≥ 0,

(−1, 1, 2,−1,−4, 3;−2,−1, 3)1 = [0, 0, 0,−11, 11; 0]1 ≥ 0,

(−1,−1, 3, 2, 1,−4;−2,−1, 3)1 = [0, 0, 0, 0,−11; 11]1 ≥ 0.

The inequalities with Ni = N(i, 11, 11n+ 2) and Mi = M(i, 11, 11n+ 2) are equivalent to

(−2, 0, 3, 0, 1,−2; 0, 0)2 = [0, 0, 0, 0, 0; 11]2 ≥ 0

(0, 2,−2, 2,−3, 1; 2,−2)2 = [0, 11, 0, 0, 0;−11]2 ≥ 0

(3,−1, 2,−1, 0,−3;−1, 1)2 = [0,−11, 11, 0, 0; 0]2 ≥ 0

(2, 1,−4, 1, 3,−3; 1,−1)2 = [0, 0,−11, 11, 0; 0]2 ≥ 0

(1, 3, 1,−8,−5, 8; 3,−3)2 = [0, 0, 0,−11, 11; 0]2 ≥ 0.

The inequalities with Ni = N(i, 11, 11n+ 3) and Mi = M(i, 11, 11n+ 3) are equivalent to

(1,−1, 0, 2, 0,−2;−1, 1)3 = [0, 11, 0, 0, 0; 0]3 ≥ 0,

(−2, 5, 2,−4, 2,−3; 0, 0)3 = [0,−11, 11, 0, 0; 0]3 ≥ 0,

(2,−1,−3, 4,−3, 1; 1,−1)3 = [0, 0,−11, 0, 0; 11]3 ≥ 0,

(−1,−1, 6,−2,−5, 3;−5, 5)3 = [0, 0, 0, 11, 0;−11]3 ≥ 0,

(4, 2,−7,−3, 4, 0; 3,−3)3 = [0, 0, 0,−11, 11; 0]3 ≥ 0.

The inequalities with Ni = N(i, 11, 11n+ 4) and Mi = M(i, 11, 11n+ 4) are equivalent to

(−2, 4,−3, 3,−1,−1;−5, 5)4 = [0, 11, 0, 0, 0; 0]4 ≥ 0,

(4,−5, 5,−2,−1,−1; 3,−3)4 = [0,−11, 11, 0, 0; 0]4 ≥ 0,

(−2, 3, 1,−2, 0, 0; 1,−1)4 = [0, 0,−11, 11, 0; 0]4 ≥ 0,

(3, 0,−3,−2, 1, 1;−1, 1)4 = [0, 0, 0,−11, 11; 0]4 ≥ 0.

The inequalities with Ni = N(i, 11, 11n+ 5) and Mi = M(i, 11, 11n+ 5) are equivalent to

(3,−2, 1,−3, 0, 1;−2, 2)5 = [0, 11, 0, 0, 0; 0]5 ≥ 0,

(−3, 7,−2,−1, 1,−2;−3, 3)5 = [0,−11, 11, 0, 0; 0]5 ≥ 0,

(2,−3, 1, 3,−4, 1; 4,−4)5 = [0, 0,−11, 11, 0; 0]5 ≥ 0,

(−4,−2, 4, 7, 2,−7; 0, 0)5 = [0, 0, 0,−11, 11; 0]5 ≥ 0,

(−2, 4, 1,−6, 2, 1;−5, 5)5 = [0, 0, 11, 0, 0;−11]5 ≥ 0.

The inequalities with Ni = N(i, 11, 11n+ 7) and Mi = M(i, 11, 11n+ 7) are equivalent to

(1, 0, 0,−2, 2,−1; 2,−2)7 = [0, 11, 0, 0, 0; 0]7 ≥ 0,

(3, 1, 1, 7,−5, 4;−4,−7)7 = [0,−11, 11, 0, 0; 0]7 ≥ 0,

(−4, 4, 4,−6, 3,−1;−4, 4)7 = [0, 0,−11, 11, 0; 0]7 ≥ 0,

(1,−2,−2, 5, 2,−4; 0, 0)7 = [0, 0, 0,−11, 11; 0]7 ≥ 0.
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The inequalities with Ni = N(i, 11, 11n+ 8) and Mi = M(i, 11, 11n+ 8) are equivalent to

(1,−3, 2, 0, 3,−3; 5,−5)8 = [0, 11, 0, 0, 0; 0]8 ≥ 0,

(−1, 2,−2, 4,−5, 2;−3, 3)8 = [0,−11, 11, 0, 0; 0]8 ≥ 0,

(−3, 2, 5,−5,−1, 2;−1, 1)8 = [0, 0,−11, 11, 0; 0]8 ≥ 0,

(7, 4,−8,−1, 5, 4;−4,−7)8 = [0, 0, 0,−11, 11; 0]8 ≥ 0,

(5, 6,−1, 4, 2,−5;−6,−5)8 = [0, 0, 0,−11, 0; 11]8 ≥ 0.

The inequalities with Ni = N(i, 11, 11n+ 9) and Mi = M(i, 11, 11n+ 9) are equivalent to

(0,−2, 4,−1,−1, 0; 1,−1)9 = [0, 11, 0, 0, 0; 0]9 ≥ 0,

(−1, 4,−3, 1, 1,−2; 0, 0)9 = [0,−11, 11, 0, 0; 0]9 ≥ 0,

(4,−2,−5, 3, 3,−3; 4,−4)9 = [0, 0,−11, 11, 0; 0]9 ≥ 0,

(−2, 3, 4,−6,−6, 7;−3, 3)9 = [0, 0, 0,−11, 11; 0]9 ≥ 0.

The inequalities with Ni = N(i, 11, 11n+ 10) and Mi = M(i, 11, 11n+ 10) are equivalent to

(0, 3,−2,−2,−1, 2;−2, 2)10 = [0, 11, 0, 0, 0; 0]10 ≥ 0,

(3,−3, 1, 1,−2, 0; 1,−1)10 = [0,−11, 11, 0, 0; 0]10 ≥ 0,

(−1, 2,−1,−1, 4,−3;−1, 1)10 = [0, 0,−11, 11, 0; 0]10 ≥ 0,

(−6,−6, 6, 6,−3,−8; 6, 5)10 = [0, 0, 0,−11, 11; 0]10 ≥ 0. □

Full proof of Corollary 2.2. The calculations below can be derived directly from calculations of the
dissection elements Qa,m(q) from Section 4 and calculations of the dissection elements QC

a,m(q) from
Theorem 1.2. The positivity of sums of theta quotients can be derived from Proposition 6.11 and
Lemma 6.13. The inequalities with Ni = N(i, 11, 11n) and Mi = M(i, 11, 11n) are equivalent to

(0, 0, 0, 0,−1, 0; 0, 1)0 = [0, 1,−2, 2, 0; 0]0 ≥ 0,

(0, 0, 1, 1,−1, 0; 0,−1)0 = [0, 0,−4, 3, 1; 0]0 ≥ 0.

The inequalities with Ni = N(i, 11, 11n+ 1) and Mi = M(i, 11, 11n+ 1) are equivalent to

(0, 0, 1, 0, 0, 0; 0, 0,−1)1 = [0, 1, 0,−1, 0; 1]1 ≥ 0,

(0, 0, 0, 0,−1, 0; 0, 0, 1)1 = [0, 0, 1,−1, 1; 0]1 ≥ 0,

(0, 0, 1,−1, 1,−1; 0, 0, 0)1 = [0, 2,−2, 1, 0; 1]1 ≥ 0.

The inequalities with Ni = N(i, 11, 11n+ 2) and Mi = M(i, 11, 11n+ 2) are equivalent to

(0, 1, 0, 0, 0, 0; 0,−1)2 = [0, 2,−2, 1, 1; 1]2 ≥ 0

(0, 0, 0, 0, 0,−1; 1, 0)2 = [0, 0, 0, 1, 0; 1]2 ≥ 0,

(0, 0,−1, 0, 0,−1; 2, 0)2 = [0, 1,−2, 2, 0; 0]2 ≥ 0,

(−1, 0, 1, 0, 0,−1; 1, 0)2 = [0, 1, 0, 0, 0; 4]2 ≥ 0,

(0, 1, 0, 1, 0, 0;−1,−1)2 = [0, 3,−1, 1, 0;−1]2 ≥ 0,

(0, 1, 0, 0,−1, 1; 0,−1)2 = [0, 3, 0,−1, 1;−2]2 ≥ 0.
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The inequalities with Ni = N(i, 11, 11n+ 3) and Mi = M(i, 11, 11n+ 3) are equivalent to

(1, 0, 0, 0, 0, 0;−1, 0)3 = [0, 4, 0, 0, 2;−2]3 ≥ 0,

(0, 0, 0, 0,−1, 0; 0, 1)3 = [0,−1,−1, 1, 0; 1]3 ≥ 0,

(1, 0,−2, 0, 0, 0; 1, 0)3 = [0, 0,−2,−2, 2; 2]3 ≥ 0,

(0, 0, 1, 0,−1, 0;−1, 1)3 = [0, 1, 0, 2, 0;−1]3 ≥ 0,

(1, 0,−1, 1, 0, 0; 0,−1)3 = [0, 2,−2,−1, 1; 2]3 ≥ 0.

The inequalities with Ni = N(i, 11, 11n+ 4) and Mi = M(i, 11, 11n+ 4) are equivalent to

(0, 1, 0, 0, 0, 0;−1, 0)4 = [0, 1,−1, 1, 1; 0]4 ≥ 0,

(−1, 2, 0, 0, 0, 0;−1, 0)4 = [0, 2,−4, 4, 0; 0]4 ≥ 0,

(0, 1,−1, 0, 0, 0;−1, 1)4 = [0, 2,−1,−1, 2; 0]4 ≥ 0,

(0, 1, 0, 1, 0, 0;−2, 0)4 = [0, 2, 1, 0, 0; 0]4 ≥ 0.

The inequalities with Ni = N(i, 11, 11n+ 5) and Mi = M(i, 11, 11n+ 5) are equivalent to

(0, 0, 1, 0, 0, 0;−1, 0)5 = [0, 1, 0, 1, 1;−2]5 ≥ 0,

(0, 0, 0, 0, 0,−1; 0, 1)5 = [0, 1, 1,−1, 1; 1]5 ≥ 0,

(0, 0, 1, 1, 0, 0;−1,−1)5 = [0, 0,−1, 1, 1;−1]5 ≥ 0,

(−1, 0, 1, 0, 0,−1; 0, 1)5 = [0, 0, 1, 0, 2;−3]5 ≥ 0,

(1,−1, 0, 0,−1, 0; 1, 0)5 = [0, 2,−2, 2, 0; 1]5 ≥ 0,

(0,−1, 1, 1, 0,−1; 0, 0)5 = [0, 2,−1,−1, 2; 0]5 ≥ 0,

(1,−1, 1, 0, 0, 0;−1, 0)5 = [0, 4,−1, 0, 1; 0]5 ≥ 0.

The inequalities with Ni = N(i, 11, 11n+ 7) and Mi = M(i, 11, 11n+ 7) are equivalent to

(1, 0, 0, 0, 0, 0; 0,−1)7 = [1, 3, 1,−1,−1; 0]7 ≥ 0,

(0, 0, 0, 0,−1, 0; 1, 0)7 = [0,−1, 1, 1, 0; 0]7 ≥ 0,

(0, 0, 0, 1, 1,−1;−1, 0)7 = [0, 0,−1,−2, 3; 0]7 ≥ 0.

The inequalities with Ni = N(i, 11, 11n+ 8) and Mi = M(i, 11, 11n+ 8) are equivalent to

(0, 0, 1, 0, 0, 0; 0,−1)8 = [1, 1, 0, 1, 0; 0]8 ≥ 0,

(0, 0, 0,−1, 0, 0; 1, 0)8 = [0, 1,−1, 1, 1; 0]8 ≥ 0,

(0, 0,−1, 0,−1, 0; 1, 1)8 = [0,−1, 2, 0, 1; 0]8 ≥ 0,

(0, 1, 0,−2, 0, 1; 0, 0)8 = [0, 0,−3, 2, 2; 0]8 ≥ 0,

(1, 0,−2, 0, 0, 0; 1, 0)8 = [0, 0, 2,−2, 2; 0]8 ≥ 0,

(0, 0, 0, 1,−1, 0; 1,−1)8 = [0, 0, 4, 1, 1; 0]8 ≥ 0,

(0, 0, 1, 1, 0, 0; 0,−2)8 = [0, 1, 2, 1, 0; 0]8 ≥ 0,

(0,−1, 0, 0, 0,−1; 2, 0)8 = [0, 2, 1, 0, 0; 0]8 ≥ 0.

The inequalities with Ni = N(i, 11, 11n+ 9) and Mi = M(i, 11, 11n+ 9) are equivalent to

(0, 0, 1, 0, 0, 0; 0,−1)9 = [0, 2, 1, 0, 0; 0]9 ≥ 0,

(0, 0, 0, 0, 0,−1; 1, 0)9 = [0, 1, 2, 1, 0; 0]9 ≥ 0,

(0, 0,−1, 0, 0,−1; 1, 1)9 = [0,−1, 1, 1, 0; 0]9 ≥ 0,

(1, 0,−1, 0, 0, 0; 1,−1)9 = [0, 0,−3, 2, 2; 0]9 ≥ 0,

(0, 0, 1,−1,−1, 1; 0, 0)9 = [0, 2,−1,−1, 2; 0]9 ≥ 0.
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The inequalities with Ni = N(i, 11, 11n+ 10) and Mi = M(i, 11, 11n+ 10) are equivalent to

(0, 1, 0, 0, 0, 0;−1, 0)10 = [1, 2,−1, 0, 0; 0]10 ≥ 0,

(0, 0, 0, 0,−1, 0; 0, 1)10 = [0, 2, 2,−1, 1; 0]10 ≥ 0,

(1,−1, 0, 0,−1, 0; 1, 0)10 = [0,−3, 4, 0, 0; 0]10 ≥ 0,

(0, 0, 1, 1, 0, 0;−2, 0)10 = [0, 0, 1,−1, 1; 0]10 ≥ 0,

(0, 1, 0, 0, 1, 0;−2, 0)10 = [0, 1,−2, 2, 0; 0]10 ≥ 0,

(0, 1,−1,−1, 0, 0; 0, 1)10 = [0, 3,−1, 2, 0; 0]10 ≥ 0. □

Full proof of Corollary 2.3. The calculations below can be derived directly from calculations of the
dissection elements Qa,m(q) found in Section 4 and calculations of the dissection elements QC

a,m(q)
found in Theorem 1.2. The positivity of sums of theta quotients can be derived from Proposition
6.11 and Lemma 6.13. The inequalities with Ni = N(i, 11, 11n) and Mi = M(i, 11, 11n) are
equivalent to

(0, 0, 1, 2, 0,−1; 0,−2)0 = [0, 1,−3, 0, 3; 0]0 ≥ 0,

(0, 0, 0, 2, 1,−2; 0,−1)0 = [0, 3, 0,−4, 4; 0]0 ≥ 0,

(0, 0,−1, 0,−1,−1; 0, 3)0 = [0, 4,−1, 0, 1; 0]0 ≥ 0,

(0, 0,−1, 1, 0,−2; 0, 2)0 = [0, 5, 0,−3, 3; 0]0 ≥ 0.

The inequalities with Ni = N(i, 11, 11n+ 1) and Mi = M(i, 11, 11n+ 1) are equivalent to

(0, 2,−1, 1,−2, 0; 0, 0, 0)1 = [0,−4, 1,−1, 4; 0]1 ≥ 0,

(0, 2,−1, 0, 1,−2; 0, 0, 0)1 = [0,−3,−3, 4, 1; 1]1 ≥ 0,

(0, 1, 0, 0, 2,−2;−1, 0, 0)1 = [1,−2,−4, 3,−3; 2]1 ≥ 0,

(0, 1, 0, 1,−3, 1; 0, 0, 0)1 = [0,−2, 3,−4, 4; 0]1 ≥ 0,

(0, 0, 2, 0, 1,−2;−1, 0, 0)1 = [1, 1,−2, 0,−4; 4]1 ≥ 0.

The inequalities with Ni = N(i, 11, 11n+ 2) and Mi = M(i, 11, 11n+ 2) are equivalent to

(1, 1,−1, 0, 1, 0;−1,−1)2 = [0, 0,−4, 3, 1; 0]2 ≥ 0,

(0, 0,−1,−1,−1, 0; 3, 0)2 = [0, 1,−1, 0, 1;−1]2 ≥ 0,

(0, 1, 1, 0, 0, 1;−2,−1)2 = [0, 1, 0,−1, 1; 1]2 ≥ 0,

(−1, 0, 0, 0,−1,−1; 3, 0)2 = [0, 3, 0, 0, 0; 1]2 ≥ 0,

(−1, 1, 0, 1, 0,−2; 1, 0)2 = [1, 4,−4, 2,−1; 3]2 ≥ 0,

(0, 1,−1, 1, 0,−1; 1,−1)2 = [0, 4,−3, 3, 0;−1]2 ≥ 0,

(0, 1,−1, 0,−1, 0; 2,−1)2 = [0, 4,−2, 1, 1;−2]2 ≥ 0,

(−1, 1, 1, 1, 0,−1; 0,−1)2 = [0, 4,−1, 1, 0; 3]2 ≥ 0,

(−1, 1, 1, 0,−1, 0; 1,−1)2 = [0, 4, 0,−1, 1; 2]2 ≥ 0.
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The inequalities with Ni = N(i, 11, 11n+ 3) and Mi = M(i, 11, 11n+ 3) are equivalent to

(0, 2, 0,−1, 1,−1; 0,−1)3 = [0,−3, 3,−1, 1; 1]3 ≥ 0,

(1, 1, 0, 0, 0, 1;−1,−2)3 = [0,−1,−1, 0, 2; 0]3 ≥ 0,

(1, 1,−1, 0, 1, 0; 0,−2)3 = [0, 0, 0,−2, 2; 1]3 ≥ 0,

(0, 0,−1,−1, 0,−1; 1, 2)3 = [0, 0, 1,−1, 1; 0]3 ≥ 0,

(2, 0,−2, 0,−1, 1; 0, 0)3 = [0, 1,−4,−1, 4; 1]3 ≥ 0,

(1, 0, 0, 1,−1, 1;−1,−1)3 = [0, 1,−3, 1, 1; 1]3 ≥ 0,

(0,−1, 0, 0,−2, 0; 0, 3)3 = [0, 1,−2, 2, 0; 0]3 ≥ 0,

(0, 0, 2, 0,−1, 1;−2, 0)3 = [0, 1, 0, 3, 0;−3]3 ≥ 0,

(1,−1, 0, 1,−2, 0; 0, 1)3 = [1, 4,−4, 1, 0; 0]3 ≥ 0,

(1, 0, 0, 2, 0, 0;−1,−2)3 = [0, 4,−2, 0, 0; 2]3 ≥ 0.

The inequalities with Ni = N(i, 11, 11n+ 4) and Mi = M(i, 11, 11n+ 4) are equivalent to

(2,−1, 0,−2, 0, 0; 1, 0)4 = [0,−3, 1,−3, 5; 0]4 ≥ 0,

(2,−1, 1,−1, 0, 0; 0,−1)4 = [0,−3, 3,−2, 3; 0]4 ≥ 0,

(1,−1, 1, 0,−1,−1; 0, 1)4 = [0,−1, 5, 0, 0; 0]4 ≥ 0,

(1, 0, 1, 1,−1,−1;−1, 0)4 = [1, 0, 5,−1,−1; 0]4 ≥ 0,

(1, 0,−2,−1, 0, 0; 0, 2)4 = [0, 1, 0,−5, 5; 0]4 ≥ 0,

(0, 0,−1, 0,−1,−1; 0, 3)4 = [0, 2, 2,−1, 1; 0]4 ≥ 0.

The inequalities with Ni = N(i, 11, 11n+ 5) and Mi = M(i, 11, 11n+ 5) are equivalent to

(0, 0, 0, 2, 0,−2; 1,−1)5 = [1,−1,−1,−3, 1; 4]5 ≥ 0,

(−1, 0, 1, 2, 0,−2; 0, 0)5 = [0,−1, 0,−1, 3; 0]5 ≥ 0,

(−1, 0, 0, 1, 0,−2; 1, 1)5 = [0,−1, 1,−2, 2; 1]5 ≥ 0,

(0,−1, 0, 1,−1,−1; 2, 0)5 = [0, 0,−2, 1, 1; 1]5 ≥ 0,

(−1, 0, 2, 1, 0,−1;−1, 0)5 = [0, 0, 0, 1, 3;−4]5 ≥ 0,

(0, 1, 1,−1, 0, 1;−2, 0)5 = [0, 0, 1, 3, 0;−4]5 ≥ 0,

(−1, 0, 0,−1, 0,−1; 1, 2)5 = [0, 0, 2,−1, 1;−2]5 ≥ 0,

(0, 1, 1, 0, 1, 0;−3, 0)5 = [0, 1, 2,−1, 1;−1]5 ≥ 0,

(1, 0, 1, 0, 0, 1;−2,−1)5 = [0, 2,−1, 2, 0;−1]5 ≥ 0.

The inequalities with Ni = N(i, 11, 11n+ 7) and Mi = M(i, 11, 11n+ 7) are equivalent to

(−1, 1, 1, 0, 0,−1;−1, 1)7 = [0,−3,−2, 2, 3; 0]7 ≥ 0,

(−1, 1, 1,−1,−1, 0; 0, 1)7 = [0,−3,−1, 4, 0; 0]7 ≥ 0,

(−1, 0, 0, 0, 0,−2; 1, 2)7 = [0,−2,−2, 0, 4; 0]7 ≥ 0,

(1, 0, 0, 2, 0, 0;−1,−2)7 = [0, 0, 2,−2, 2; 0]7 ≥ 0,

(0, 1, 1, 0, 1, 0;−2,−1)7 = [0, 1,−1, 1, 1; 0]7 ≥ 0.
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The inequalities with Ni = N(i, 11, 11n+ 8) and Mi = M(i, 11, 11n+ 8) are equivalent to

(0, 1,−1,−1,−1, 1; 0, 1)8 = [0,−2, 0, 1, 2; 0]8 ≥ 0,

(−1, 0, 0, 0,−2, 0; 1, 2)8 = [0,−2, 2, 2, 0; 0]8 ≥ 0,

(−1, 1, 1, 0,−2, 1; 0, 0)8 = [0,−2, 2, 4, 1; 0]8 ≥ 0,

(0, 1, 0, 1,−1, 1;−1,−1)8 = [0,−2, 3, 1, 1; 0]8 ≥ 0,

(0, 1,−1, 0,−2, 1; 1, 0)8 = [0,−2, 4, 2, 3; 0]8 ≥ 0,

(1, 1,−2,−1, 0, 1; 0, 0)8 = [0,−1, 0,−1, 3; 0]8 ≥ 0,

(−1, 0, 1, 1,−2, 0; 1, 0)8 = [0,−1, 4, 3, 0; 0]8 ≥ 0,

(−1, 0, 1,−1,−1, 0; 1, 1)8 = [0, 0,−1, 3, 0; 0]8 ≥ 0,

(0, 1, 1, 0, 0, 1;−1,−2)8 = [0, 0, 0, 2, 1; 0]8 ≥ 0,

(1, 1,−1, 0, 0, 1; 0,−2)8 = [0, 0, 2, 0, 3; 0]8 ≥ 0,

(−1, 0, 2, 0,−1, 0; 1,−1)8 = [0, 1, 1, 4, 0; 0]8 ≥ 0,

(1, 0,−1, 1, 0, 0; 1,−2)8 = [0, 1, 4,−1, 2; 0]8 ≥ 0,

(−1, 0, 2,−2, 0, 0; 1, 0)8 = [0, 2,−4, 4, 0; 0]8 ≥ 0,

(1, 0,−1,−1, 1, 0; 1,−1)8 = [0, 2,−1,−1, 2; 0]8 ≥ 0,

(1, 0, 0, 1, 1, 0; 0,−3)8 = [0, 2, 2,−1, 1; 0]8 ≥ 0,

(0, 0, 2, 0, 1, 0; 0,−3)8 = [0, 3,−1, 2, 0; 0]8 ≥ 0.

The inequalities with Ni = N(i, 11, 11n+ 9) and Mi = M(i, 11, 11n+ 9) are equivalent to

(−1, 2, 0,−1,−1, 0; 0, 1)9 = [0,−3, 6,−2, 2; 0]9 ≥ 0,

(1, 0,−1, 1, 1,−1; 0,−1)9 = [1,−1,−2, 2,−1; 0]9 ≥ 0,

(0, 0,−1,−1,−1, 0; 1, 2)9 = [0,−1,−1, 0, 2; 0]9 ≥ 0,

(1, 0,−1,−1,−1, 1; 1, 0)9 = [0, 0,−5, 1, 4; 0]9 ≥ 0,

(0, 1, 1, 0, 0, 1;−1,−2)9 = [0, 0, 1,−1, 1; 0]9 ≥ 0,

(1, 0, 0, 1, 1, 0; 0,−3)9 = [0, 1,−2, 2, 0; 0]9 ≥ 0,

(1,−1,−1, 0, 0,−1; 2, 0)9 = [0, 2,−3, 3, 1; 0]9 ≥ 0,

(1, 0, 1, 0, 0, 1; 0,−3)9 = [0, 3,−3, 1, 2; 0]9 ≥ 0,

(1,−1, 0,−1,−1, 0; 2, 0)9 = [0, 4,−4, 2, 3; 0]9 ≥ 0,

(0,−1, 1,−1,−1, 0; 1, 1)9 = [0, 4,−1, 0, 1; 0]9 ≥ 0,

(1,−1, 1, 0, 0, 0; 1,−2)9 = [0, 5,−3, 2, 1; 0]9 ≥ 0,

(1,−2, 1, 0, 0,−1; 1, 0)9 = [1, 6,−4, 2,−1; 0]9 ≥ 0.

The inequalities with Ni = N(i, 11, 11n+ 10) and Mi = M(i, 11, 11n+ 10) are equivalent to

(1,−1, 1, 1,−1, 0;−1, 0)10 = [0,−3, 5,−1, 1; 0]10 ≥ 0,

(0,−1, 0, 0,−1,−1; 2, 1)10 = [0,−1, 2, 0, 1; 0]10 ≥ 0,

(0,−1, 1, 1,−1,−1; 0, 1)10 = [0,−1, 3,−1, 2; 0]10 ≥ 0,

(−1, 0, 0, 0, 1,−2; 1, 1)10 = [0, 0,−4, 3, 1; 0]10 ≥ 0,

(−1, 0, 1, 1, 0,−1;−1, 1)10 = [0, 2,−1,−1, 2; 0]10 ≥ 0,
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(0, 0,−1,−1,−1, 0; 2, 1)10 = [0, 2, 1, 0, 0; 0]10 ≥ 0,

(1, 1,−1,−1,−1, 1; 0, 0)10 = [1, 2, 2, 0,−1; 0]10 ≥ 0,

(−1, 0, 0, 0,−1,−1; 1, 2)10 = [0, 4, 0,−1, 2; 0]10 ≥ 0,

(0, 2,−1,−1, 0, 1;−1, 0)10 = [1, 5,−2, 0,−1; 0]10 ≥ 0,

(−1, 1, 0, 0, 0,−1;−1, 2)10 = [0, 5,−2, 1, 2; 0]10 ≥ 0,

(0, 2, 0, 0, 0, 1;−3, 0)10 = [1, 5,−1,−1, 0; 0]10 ≥ 0. □

Full proof of Theorem 2.5. The calculations below can be derived directly from calculations of the
dissection elements Qa,m(q) from Theorem 1.3. The positivity of sums of theta quotients can be
derived from Proposition 6.12. The inequalities are equivalent to

(0, 2, 1,−2, 2,−3)6 = ϑ(0, 0, 0, 0, 11) ≥ 0,

(2,−2, 1,−1,−2, 2)6 = ϑ(0, 0, 0, 11,−11) ≥ 0,

(1, 1,−4, 3, 1,−2)6 = ϑ(0, 0, 11,−11, 0) ≥ 0,

(1, 6, 4,−2,−5,−4)6 = ϑ(0, 11,−11, 0, 0) ≥ 0. □

Full proof of Corollary 2.7. The calculations below can be derived directly from calculations of the
dissection elements Qa,m(q) from Theorem 1.3. The positivity of sums of theta quotients can be
derived from Proposition 6.12. The inequalities are equivalent to

(1,−1, 0, 1,−1, 0)6 = ϑ(2, 0, 3, 3,−6) ≥ 0,

(0, 1, 1,−1, 1,−2)6 = ϑ(1, 0, 0, 1, 6) ≥ 0,

(0,−1, 1, 2,−1,−1)6 = ϑ(5, 0, 2, 2,−4) ≥ 0,

(1, 1,−1, 0, 1,−2)6 = ϑ(0, 0, 5,−2, 3) ≥ 0,

(0, 0,−1, 3, 0,−2)6 = ϑ(4, 0, 6,−5,−1) ≥ 0,

(1, 0,−2, 2, 0,−1)6 = ϑ(1, 0, 7,−4,−3) ≥ 0. □
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