
CHOW DILOGARITHM AND RECIPROCITY LAWS

VASILY BOLBACHAN

Abstract. We prove a conjecture of A. Goncharov concerning so-called strong reci-
procity laws. The main idea of the proof is the construction of the norm map on these
strong reciprocity laws. This construction is similar to the construction of the norm
map on Milnor K-theory. As an application, we express Chow dilogarithm in terms
of Bloch-Wigner dilogarithm. Also we obtain a new reciprocity law for four rational
functions on arbitrary proper surface with values in the pre-Bloch group.

1. Introduction

1.1. Summary. Fix some algebraically closed field k of characteristic zero. We recall
that for x ∈ X(k) and f, g ∈ k(X)× the tame-symbol of unctions f and g at x is defined
by the following formula:

(f, g)x = (−1)ordx(f) ordx(g)
gordx(f)

f ordx(g)
.

We have interchanged f and g in this formula for convenience with the further defini-
tions.

The famous Weil reciprocity law states that for any f, g ∈ k(X)× the following product
is equal to zero: ∏

x∈X(k)

(f, g)x = 1.

The tame symbol map induces a well-defined map Λ2k(X)× → k× which we denote by

∂
(2)
x . In a similar way one can define the map Λ3k(X)× → Λ2k× which we denote by ∂

(3)
x .

Unlike the previous case, the total residue map∑
x∈X(k)

∂(3)x : Λ3k(X)× → Λ2k×

is not equal to zero. A. Suslin [13] proved that the image of this map is generated by
the elements of the form c ∧ (1 − c), c ∈ k×. This result is called Suslin reciprocity law.
Denote the element c ∧ (1− c) by δ2(c). Between elements of the form δ2(c) there are a
lot of relations. The following proposition is true:

Proposition 1.1. For any x, y ∈ k\{0, 1}, x 6= y the following formula holds:

δ2(x) + δ2(y/x) + δ2 ((1− x)/(1− y)) = δ2(y) + δ2

(
1− x−1

1− y−1

)
,

This proposition motivates the following definition:

Definition 1.2 (the pre-Bloch group). For a field F denote by B2(F ) the pre-Bloch
group of F . It is an abelian group generated by the elements {x}2, x ∈ F× modulo the
following relations:

(1.1) {x}2 − {y}2 + {y/x}2 −
{

1− x−1

1− y−1

}
2

+ {(1− x)/(1− y)}2 = 0, {1}2 = 0,

where x, y ∈ F\{0, 1}, x 6= y.
1



2 VASILY BOLBACHAN

Suslin reciprocity law implies that there is a map (Λ3k(X)×)⊗Q 99K B2(k)⊗Q making
the following diagramm commutative:

(1.2)

(Λ3k(X)×)⊗Q

B2(k)⊗Q (Λ2k×)⊗Q.δ2

∑
x∈X(k)

∂
(3)
x

The dotted map is called a strong reciprocity law, if it satisfies some natural properties
which will be explained bellow. Main result of this paper is that on any smooth projective
curve over k one can choose a strong reciprocity law functorial under arbitrary non-
constant morphism of curves. This statement is a solution of a conjecture formulated by
A. Goncharov in [4].

1.2. The organisation of the paper. The paper is organised as follows. In Section 2
we give some basic definitions and in Section 3 we present our main results. Section 4 has
three subsection. In the first subsection we prove some basic properties of strong reci-
procity laws. In the second subsection we give the definition of strictly regular elements
and prove for them some version of Parshin reciprocity law. In the third subsection we
prove some analogue of Bass and Tate exact sequence for Milnor K-theory before taking
the quotient by Steinberg elements.

Section 5 takes the most of this paper. In this section, using the results from the
previous two sections, we construct the functorial norm map on strong reciprocity laws.
It has three subsection. In the first subsection we gives the definition of a system of
strong reciprocity laws. In the second subsection we prove our key result stating that
systems of strong reciprocity laws on the field F (t) are in natural bijection with strong
reciprocity laws on the field F . As an application of this result in the third subsection we
construct the norm map on strong reciprocity laws. Finally, in the Section 6 we proves
our main results.

1.3. Acknowledgment. The author is grateful to A. Levin and D. Rudenko for setting
the problem and stimulating discussion. I also thank S. Gorchinskiy for his interest in
this paper.

2. Definitions

2.1. Truncated polylogarithmic complexes.

Definition 2.1. For n ≥ 2 define the following complex Γ2(F, n) placed in degrees [1, 2]:

B2(F )⊗ Λn−2F×
δn−→ ΛnF×.

The differential is defined by the formula: δn({ξ1}2 ∧ ξ3 ∧ · · · ∧ ξn) = ξ1 ∧ (1− ξ1)∧ ξ3 ∧
· · · ∧ ξn.

Up to shift these complexes coincide with the stupid truncation of the polylogarithmic
complexes defined by A. Goncharov in [3, Section 9], see also [12].

Let (F, ν) be a discrete valuation field. Denote Oν = {x ∈ F |ν(x) ≥ 0},mν = {x ∈
F |ν(x) > 0} and F ν = Oν/mν . We recall that an element a ∈ F× is called an uniformiser
if ν(a) = 1 and a unit if ν(a) = 0. For u ∈ Oν denote by u its residue class in F ν .
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Proposition 2.2 (Definition of the tame-symbol map). Let (F, ν) be a discrete valuation

field and n ≥ 3. There is a unique morphism of complexes ∂
(n)
ν : Γ2(F, n)→ Γ(F ν , n− 1):

B2(F )⊗ Λn−2F× ΛnF×

B2(F ν)⊗ Λn−3F
×
ν Λn−1F

×
ν ,

δn

δn−1

∂
(n)
ν∂

(n)
ν

satisfying the following conditions:

(1) For any units u1, . . . un we have ∂
(n)
ν (u1 ∧ · · · ∧ un) = 0.

(2) For any uniformiser π and units u2, . . . un ∈ F we have ∂
(n)
ν (π ∧ u2 ∧ · · · ∧ un) =

u2 ∧ . . . un.
(3) For any a ∈ F\{0, 1} with ν(a) 6= 0 and any b ∈ Λn−2F× we have ∂

(n)
ν ({u}2⊗b) =

0.
(4) For any unit u and b ∈ Λn−2F× we have ∂

(n)
ν ({u}2 ⊗ b) = {a} ⊗ ∂(n−2)ν (b).

The proof of this proposition can be found in [3, Section 14; 12, Subsection 2.1].

2.2. The category Fieldsd. We recall that we have fixed some algebraically closed field
k of characteristic zero. Denote by Fieldsd the category of finitely generated extensions
of k of transcendent degree d. Any morphism in this category is a finite extension. For
F ∈ Fieldsd, denote by dval(F ) the set of discrete valuations given by a Cartier divisor
on some birational model of F . When F ∈ Fields1 this set is equal to the set of all
1-dimensional valuations that are trivial on k. We denote this set by val(F ).

Let j : K ↪→ F be an extension from Fieldsd and ν ∈ dval(K). Denote by ext(ν, F ) the
set of extensions of the valuation ν to F . Let ν ′ ∈ ext(ν, F ). Denote by jν′|ν the natural

embedding Kν ↪→ F ν′ . The inertia degree fν′|ν is defined as deg jν′|ν . The ramification

index eν′|ν is defined by the formula πK = uπ
eν′|ν
F , where πK , πF are uniformisers of K,F

and u is some unit. By [9, Chapter II, §8] the set ext(ν, F ) is finite and moreover the
following formula holds:

(2.1)
∑

ν′∈ext(ν,F )

eν′|νfν′|ν = [F : K].

By Theorem of O. Zariski [14, Chapter VI, §14, Theorem 31] a discrete valuation on
F is divisorial if and only if the corresponding residue field is finitely generated and has
transcendence degree 1. It implies that for any ν ′ ∈ ext(ν, F ) we have ν ′ ∈ dval(F ).

For any n ≥ 0 there is the natural map j∗ : ΛnK× → ΛnF×, given by the formula
j∗(a) = a. It is easy to see that for any ν ′ ∈ ext(ν, F ) the following formula holds:

(2.2) ∂
(n)
ν′ j∗(a) = eν′|ν · (jν′|ν)∗(∂(n)ν (a)).

2.3. Strong reciprocity laws.

Definition 2.3 (Strong reciprocity law). Let F ∈ Fields1. A strong reciprocity law on
the field F is a map h : Λ3F× → B2(k) satisfying the following conditions:
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(1) The following diagram is commutative:

(2.3)

B2(F )⊗ F× Λ3F×

B2(k) Λ2(k×)

δ3

h

δ2

∑
ν∈val(F )

∂
(3)
ν

∑
ν∈val(F )

∂
(3)
ν

(2) The map h vanishes on the image of the multiplication map Λ2F×⊗k× → Λ3F×.

The set of all strong reciprocity laws has a structure of affine space over Q. The
corresponding vector space is the set of all Q-linear maps Λ3F× → ker(δ2) vanishing on
the image of the maps δ3 and Λ2F× ⊗ k× → Λ3F×.

Denote by Set the category of sets. Define a contravariant functor

SRL: Fields1 → Set

as follows. For any F ∈ Fields1 the set SRL(F ) is equal to the set of all strong reciprocity

laws on F . If j : K ↪→ F then SRL(j)(hF ) is defined by the formula hK :=
1

deg j
hF (j∗(a)).

In Section 4.1 we will show that in this way we indeed get a functor.

2.4. Conventions. Everywhere we work over Q. This means that any abelian group is
supposed to be tensored by Q. For example when we write Λ2k×, this actually means
(Λ2k×)⊗Q. All exterior powers and tensor products are over Q.

If C is a chain complex denote by Cd the elements lying in degree d. The symbol δn
means the differential in the truncated polylogarithmic complex Γ2(F, n). Although it
depends on the field F we will omit the corresponding sign from the notation. In the

same way, when (F, ν) is a discrete valuation field we denote by ∂
(n)
ν the tame-symbol

map Γ2(F, n)→ Γ2(F ν , n− 1).

3. Main results

The following result is a solution of Conjecture 6.2 from [4]:

Theorem 3.1. On any field F ∈ Fields1 one can choose a strong reciprocity law HF

such that for any embedding j : F1 → F2 we have SRL(j)(HF2) = HF1. Such a collection
of strong reciprocity laws is unique.

Remark 3.2. One of the main results of [12] states that for any field F ∈ Fields1 there
is a map Λ3F× → B2(k) satisfying all but the second condition of Definition 2.3. It is
not clear why this map can be chosen functorial.

In particular the proof of Corollary 1.5 from loc. cit. is not correct, because it relies
on remark after Conjecture 6.2 from [4], which uses functorial property.

Remark 3.3. In [4, Section 6] A. Goncharov formulated his conjecture for some quotient
B2(k) of the group B2(k). In this setting he proved that for any elliptic curve E over k
there is a B2(k)-valued strong reciprocity law on k(E). From the proof of Theorem 5.3 it
is not difficult to show that his map coincides with i ◦Hk(E), where i is the natural map
B2(k)→ B2(k).
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3.1. Chow dilogarithm. The definition of Chow dilogarithm can be found in Section
6 of [4]. This function associate to any smooth projective curve X over C and three
non-zero rational functions f1, f2, f3 on X the value P2(X; f1, f2, f3) ∈ R. Remark after
Conjecture 6.2 in loc. cit. implies that Theorem 3.1 has the following corollary:

Corollary 3.4. For any smooth projective curve X over C and three non-zero rational
functions f1, f2, f3 on X the following formula holds:

P2(X; f1, f2, f3) = L̃2(HC(X)(f1 ∧ f2 ∧ f3)).

Here L̃2 : B2(C)→ R is a map given on the generators {x}2 by the formula

L̃2({x}2) = L2(x),

where L2 is Bloch-Wigner dilogarithm.

3.2. Two-dimensional reciprocity law. For a field L ∈ Fields2 denote by dval(L)
the set of all divisorial valuations of L. A valuation is called divisorial if it is given by
an irreducible Cartier divisor on some smooth model of L. For a valuation ν ∈ dval(L)

denote by ∂
(4)
ν the corresponding tame-symbol map Λ4L× → Λ3L

×
ν . From the proof of

Theorem 3.1 we get the following corollary:

Corollary 3.5. Let L ∈ Fields2. For any b ∈ Λ4L× and all but finite number ν ∈ dval(L)

we have HLν
∂
(4)
ν (b) = 0. Moreover the following sum is equal to zero:∑

ν∈dval(L)

HLν
∂(4)ν (b) = 0.

This corollary is a natural generalisation of Weil reciprocity law to algebraic surfaces.

3.3. The norm map. The proof of Theorem 3.1 takes most of this paper. Uniqueness is
easy. It is non-trivial to prove that such a family of strong reciprocity laws exists. On the
field k(t) there is a unique strong reciprocity law, which we denote by Hk(t). To construct
the strong reciprocity law HF , for any embeddings of fields j : F1 ↪→ F2 we define the
canonical norm map NF2/F1 : SRL(F1)→ SRL(F2). We will prove the following theorem:

Theorem 3.6. The map N satisfies the following properties:

(1) Let j : F1 ↪→ F2 be an embedding. We have SRL(j) ◦NF2/F1 = id.
(2) If F1 ⊂ F2 ⊂ F3 is a tower of extension from Fields1 then NF3/F1 = NF3/F2 ◦

NF2/F1.
(3) Let F ∈ Fields1. For any a ∈ F\k we have a finite extension k(a) ⊂ F . The

element HF := NF/k(a)(Hk(a)) ∈ SRL(F ) does not depend on a.

Existence in Theorem 3.1 follows immediately from the above theorem. The proof of
Theorem 3.6 is similar to the construction of the norm map on Milnor K-theory [1,6,8,13].

4. The preliminary results

4.1. Strong reciprocity laws.

Proposition 4.1. SRL is indeed a functor.

Proof. If j1, j2 are some embeddings from Fields1 then the formula SRL(j2 ◦ j1) =
SRL(j1) ◦ SRL(j2) follows from the fact that the ramification index is multiplicative.
So it is enough to show that for any embedding j : K ↪→ F and hF ∈ SRL(F ) the map
hK := SRL(j)(hF ) : Λ3K× → B2(k) is a strong reciprocity laws on K.

The statement that hK is zero on the image of the map K×⊗Λ2k× → Λ3K× is obvious.
Let us prove that diagram 2.3 is commutative.
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For any ν ∈ val(K) and any ν ′ ∈ ext(ν, F ) we have fν′|ν = 1. So Formula (2.1) is

simplified to
∑

ν′∈ext(ν,F )

eν′|ν = [F : K]. Since in our case Kν
∼= F ν′

∼= k, the formula (2.2)

takes the form eν′|ν∂
(3)
ν (a) = ∂

(3)
ν′ j∗(a).

For any a ∈ Λ3K×, we have:

δ2(hK(a)) =
1

[F : K]
δ2(hF (j∗(a))) =

1

[F : K]

∑
ν′∈val(F )

∂
(3)
ν′ j∗(a) =

=
1

[F : K]

∑
ν∈val(K)

∑
ν′∈ext(ν,F )

∂
(3)
ν′ j∗(a) =

=
1

[F : K]

∑
ν∈val(K)

∑
ν′∈ext(ν,F )

eν′|ν∂
(3)
ν (a) =

∑
ν∈val(K)

∂(3)ν (a).

Here in the fourth equality we have used the formula ∂
(3)
ν′ (j∗(a)) = eν′|ν∂

(3)
ν (a) and in

the last formula we have used the formula
∑

ν′∈ext(ν,F )

eν′|ν = [F : K]. So the lower right

triangle is commutative. The commutativity of the upper left triangle is similar. �

Proposition 4.2. On the field k(t) there is a unique reciprocity law. We will denote it
by Hk(t)

Proof. Elementary calculation shows that the group Λ3k(t)× is generated by the image of
the group k(t)× ⊗Λ2k× and by the image of δ3. Uniqueness follows from this statement.
Existence was proved in [3, Theorem 6.5]. We remark that although the proof of Propo-
sition 6.6 from [3] uses rigidity argument, this proposition can be easily deduced from [2]
where it was proved that B2(k(t)) is generated by elements of the form {at+ b}2 , a, b ∈ k.

�

4.2. Parshin reciprocity laws.

Definition 4.3. Let X be a smooth algebraic variety of dimension n and x ∈ X. A
Cartier divisor D on X is called supported on a simple normal crossing divisor if there
is some open affine neighborhood of the point x such that D is cut out by the function
n∏
i=1

xnii where ni ≥ 0 and xi is a regular system of parameters at x.

We have the following statement [7]:

Theorem 4.4. Let X be a variety over an algebraically closed field of characteristic zero

and D an effective Weil divisor on X. There is a birational morphism f : X̃ → X, such

that X̃ is smooth and f ∗(D) is supported on a simple crossing divisor at all points of X̃.

Definition 4.5 (Strictly regular element). Let ξ ∈ k(X). Write D0(ξ), D∞(ξ) for the
divisors of zeros and poles of ξ and let |ξ| = D0(ξ) + D∞(ξ). An element Γ2(k(X), 4)1
(resp. Γ2(k(X), 4)2) is called strictly regular at x ∈ X if it can be represented as a linear
combination of elements of the form ξ1 ∧ ξ2 ∧ ξ3 ∧ ξ4 (resp. {ξ1}2 ⊗ ξ3 ∧ ξ4) such that
all the divisors |ξ1| + |ξ2| + |ξ3| + |ξ4| (resp. |ξ1| + |ξ3| + |ξ4|) are supported on a simple
crossing divisor at x.

Theorem 4.4 has the following corollary:

Corollary 4.6. Let S be a smooth surface and j ∈ {1, 2}. For any element a ∈
Γ2(k(S), 4)j there is a birational morphism p : S̃ → S such that the element p∗(a) is
strictly regular at all points.
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The following lemma characterises strictly regular elements:

Lemma 4.7. Let S be a smooth algebraic surface and x ∈ S.

(1) The subgroup of strictly regular elements of Γ2(k(S), 4)1 is generated by elements
of the following form:
(a) {πn1πm2 ξ1} ⊗ π1 ∧ π2.
(b) {πn1πm2 ξ1} ⊗ π1 ∧ ξ4.
(c) {πn1πm2 ξ1} ⊗ ξ3 ∧ ξ4.

Here all the functions ξi take non-zero values at x and πi is a regular system of
parameters.

(2) The subgroup of strictly regular elements of Γ2(k(S), 4)2 is generated by elements
of the following form:
(a) π1 ∧ π2 ∧ ξ3 ∧ ξ4.
(b) π1 ∧ ξ2 ∧ ξ3 ∧ ξ4.
(c) ξ1 ∧ ξ2 ∧ ξ3 ∧ ξ4.

The functions ξi, πi satisfy the same conditions as in item (1).

Proof. Follows from the fact that if π1, π2 is a regular system of parameters at x, then
any function f ∈ k(S) can be written in the form πn1

1 π
n2
2 ξ where ni ∈ Z and ξ is a regular

function at x such that ξ(x) 6= 0. �

The following result is a version of the classical Parshin reciprocity law for strictly
regular elements (see [5, 10,11]).

Theorem 4.8 (Strict Parshin reciprocity law). Let S be a surface smooth at some point
x ∈ S and j ∈ {1, 2}. For any strictly regular element b of the group Γ2(k(S), 4)j at x
the following sum is equal to zero:

(4.1)
∑
C⊂S
C3x

∂(3)νx,C
∂(4)νC

(b) = 0.

Here the sum is taken over all irreducible curves C ⊂ S containing x that are smooth at
this point, νC is the valuation corresponding to C and νx,C is a valuation of the residue

field k(S)νC corresponding to x ∈ C.

Proof. It is enough to prove this theorem for any of the generators from Lemma 4.7.
We will only consider the most interesting case (1), (a). We can assume that S is a
smooth surface, x ∈ S and π1, π2 is a system of regular parameters at x. Passing to some
open affine neighborhood of the point x, we can assume that the following conditions are
satisfied:

(1) ξ1 is invertible and
(2) For any i ∈ {1, 2} the divisor of the function πi is equal to some irreducible curve

Ci passing through x. In particular, these functions are regular.

In general if X is a subvariety of algebraic variety Y and f is a regular function on Y
we denote its restriction to X by f |X . Let b = {πn1πm2 ξ1} ⊗ π1 ∧ π2. Obviously the only

curves on S satisfying ∂
(4)
νC (b) 6= 0 are C1 and C2. Consider the following cases:

Case n,m 6= 0: In this case both of the tame symbols ∂
(4)
νC1

(b) and ∂
(4)
νC2

(b) vanish
and the statement is obvious.

Case n 6= 0,m = 0 or m 6= 0, n = 0: Consider, say, the first case. Obviously,

∂(4)νC1
(b) = 0.
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So it is enough to prove that ∂
(3)
νx,C2

∂
(4)
νC2

(b) = 0. This follows the following formula:

ordx((πn1 ξ1)|C2
) = n 6= 0.

Case n = m = 0: In this case the statement follows from the following formula:

∂(3)νx,C1
∂(4)νC1

(b) = −∂(3)νx,C2
∂(4)νC2

(b) = ξ1(x).

�

We have the following corollary:

Corollary 4.9. Let L ∈ Fields2 and j ∈ {1, 2}. For any b ∈ Γ2(L, 4)j and all but finite
µ ∈ dval(L) the following sum is zero:∑

µ′∈val(Lµ)

∂
(3)
µ′ ∂

(4)
µ (b) = 0.

Moreover the following sum is zero:∑
µ∈dval(L)

∑
µ′∈val(Lν)

∂
(3)
µ′ ∂

(4)
µ (b) = 0.

This corollary can be interpreted as the statement that the composition of the vertical
arrows in the following diagram is zero:

(4.2)

Γ2(L, 4)1 Γ2(L, 4)2

⊕
µ∈dval(L)

Γ2(Lµ, 3)1
⊕

µ∈dval(L)
Γ2(Lµ, 3)2

Γ2(k, 2)1 Γ2(k, 2)2

(∂
(4)
µ )

∑
∂
(3)

µ′

δ4

(∂
(4)
µ )

∑
∂
(3)

µ′

δ2

δ3

Proof. Let S be an algebraic surface with k(S) ∼= L. Denote by dval(L)S the subset of
divisorial valuations coming from divisors on S. Choose S in such a way that b would be
strictly regular at all points of S. Theorem 4.8 implies the following formula:∑

µ∈dval(L)S

∑
µ′∈val(Lµ)

∂
(3)
µ′ ∂

(4)
µ (b) = 0.

It remains to prove that for any µ ∈ dval(L)\ dval(L)S the following sum vanishes:∑
µ′∈val(Lµ)

∂
(3)
µ′ ∂

(4)
µ (b) = 0.

There is a birational morphism p : S̃ → S such that µ is given by a divisor on S̃ contracted
under p. The morphism p is a sequence of blow-ups pm ◦ · · · ◦ p1, pi : Si → Si−1, Sm =

S̃, S0 = S. Let Di ⊂ Si be the corresponding exceptional curve. Denote by νi the
corresponding valuation. It is enough to show that for any i the following formula holds:∑

µ′∈val(Lµi )

∂
(3)
µ′ ∂

(4)
µi

(b) = 0.

This formula follows from Theorem 4.8 for the element b and the surfaces Si and Si−1. �
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4.3. Results of D.Rudenko. Results of this section in a different form are contained
in [12].

Let F ∈ Fields1. A valuation ν ∈ dval(F (t)) is called general if it corresponds to some
irreducible polynomial over F . The set of general valuations are in bijection with the set
of all closed points on the affine line over F , which we denote by A1

F,(0). A valuation is

called special if it is not general. Denote the set of general (resp. special) valuations by
dval(F (t))gen (resp. dval(F (t))sp). Denote by Γsp2 (F (t), 4)1 the subgroup of Γ2(F (t), 4)1
lying in the kernel of all the maps ∂

(3)
ν where ν ∈ dval(F (t))gen.

The following theorem is the main result of this subsection:

Theorem 4.10. The following sequence is exact:

(4.3) Λ4F× ⊕ Γsp2 (F (t), 4)1 → Λ4F (t)× →
⊕

ν∈dval(F (t))gen

Λ3F (t)
×
ν → 0.

Here the first component of the first map is the natural embedding, the second component

is induced by δ4 and the second map is given by (∂
(4)
ν )ν∈dval(F (t))sp.

For a point p ∈ A1
F,(0) denote by fp the corresponding monic irreducible polynomial

over F . By definition, deg p = deg fp. Denote by F (p) the residue field of point p ∈ A1
F,(0)

and by νp the corresponding valuation.

Lemma 4.11. Let m ≥ 3 be an integer. The following map is surjective:

Γ2(F (t),m)

(
∂
(m)
νP

)
−−−−→

⊕
p∈A1

F,(0)

Γ2(F (p),m− 1).

The proof of this lemma is completely similar to the proof of surjectivity in the Bass-
Tate exact sequence for Milnor K-theory [1, 8].

Proof. For simplicity, we will only consider the case m = 4. The general case is completely
similar. Denote by Γ2(F (t), 4)≤d the set of elements lying in the kernels of all the maps

∂
(4)
νP with degP > d. It is enough to prove that for any d ≥ 0 the following map is

surjective:

Γ2(F (t), 4)≤d →
⊕

p∈A1
F,(0)

deg p≤d

Γ2(F (p), 3).

The proof is by induction on d. The case d = −1 is trivial. Let us prove the inductive
step. It is enough to show that for any a ∈ Γ2(F (p), 3)j, j ∈ {1, 2} there is an element
ã ∈ Γ2(F (x), 4)j with the following properties:

(1) for any p′ 6= p with deg p′ ≥ deg p we have

∂(4)νp′
(ã) = 0

(2) ∂
(4)
νp (ã) = a.

For an element ξ ∈ F (p) there is a unique polynomial lp(ξ) of degree < deg p such that
the image of lp(ξ) under the natural projection F [x]→ F [x]/fp ∼= F (p) is equal to ξ.

The following formulas for ã are taken from [12, Section 5.2].

Case j = 1: Choose a representation a =
∑
α

nα · ({ξα1 }2 ⊗ ξα3 ). Define the element

ã by the formula

ã =
∑
α

nα · ({lP (ξα1 )}2 ⊗ fP ∧ lP (ξα3 )).
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Case j = 2: Choose a representation a =
∑
α

nα · (ξα1 ∧ ξα2 ∧ ξα3 ). The element ã is

defined by the formula

ã =
∑
α

nα · (fP ∧ lP (ξα1 ) ∧ lP (ξα2 ) ∧ lP (ξα3 )).

It is easy to see that these elements satisfy the conditions stated above. �

Proposition 4.12. The following sequence is exact for j = 2 and exact in the third term
for j = 1:

0→ Hj(Γ2(F, 4))→ Hj(Γ2(F (t), 4))
(∂

(4)
ν )−−−→

(∂
(4)
ν )−−−→

⊕
p∈A1

F,(0)

Hj(Γ2(F (p), 3))→ 0.
(4.4)

Proof. The case j = 2 was proven in [8] (see also [1]). The exactness in the last term for
j = 1 is a particular case of the main result of [12]. �

The proof of Theorem 4.10. We need to prove that the following sequence is exact:

(4.5) Λ4F× ⊕ Γsp2 (F (t)), 4)1 → Λ4F (t)× →
⊕

p∈A1
F,(0)

Λ3F (p)× → 0.

Consider the following double complex:

Γ2(F, 4)1 Γ2(F, 4)2

Γ2(F (t), 4)1 Γ2(F (t), 4)2

⊕
p∈A1

F,(0)

Γ2(F (p), 3)1
⊕

p∈A1
F,(0)

Γ2(F (p), 3)2

δ4

⊕
δ3

δ4

Denote by Tot the total complex placed in degrees [1, 4]. Using Proposition 4.12, the
spectral sequence argument shows that Tot has no cohomology in degree 3. It follows
that the sequence (4.5) is exact in the second term. The exactness in the third term
follows from Lemma 4.11 for m = 4. �

5. The proof of Theorem 3.6

5.1. Systems of strong reciprocity laws. Let L ∈ Fields2. A pre-system of strong
reciprocity laws σ on L is a choice of a strong reciprocity law σν on the field Lν for any
ν ∈ dval(L).

We have the following lemma:

Lemma 5.1. Let L ∈ Fields2. For any b ∈ Λ4L× and all but finite number of ν ∈ dval(L)

the element ∂
(4)
ν (b) belongs to the image of the map L

×
ν ⊗ Λ2k× → Λ3L

×
ν .

In particular, if σ is a pre-system of strong reciprocity laws on L then for any b ∈ Λ4L×

and all but finite number of ν ∈ dval(L) we have σν∂
(4)
ν (b) = 0.

Proof. Choose a smooth proper algebraic surface S such that L = k(S) and b is strictly

regular at all points of S. Let ν ∈ dval(L)\ dval(L)S. We claim that ∂
(3)
ν (b) lies in the

subgroup indicated by the lemma. Let p : S̃ → S be a birational morphism such that ν
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correspond to some divisor D on S. The divisor D is contracted under p. We use Lemma
4.7. The restriction of all the functions ξi to D lie in k. Now the statement follows from
the definition of the tame symbol. �

It follows from the previous lemma that for any pre-system of strong reciprocity laws
on L and b ∈ Λ4L×, the following sum is well defined:∑

ν∈dval(L)

σν∂
(4)
ν (b).

Definition 5.2 (System of strong reciprocity laws). A pre-system of strong reciprocity
laws is called a system of strong reciprocity laws if this sum is zero for any b ∈ Λ4L×.

Define a functor
SOSRL: Fields2 → Set.

On objects it is equal to the set of all systems of strong reciprocity laws. On morphism it
is defined as follows. Assume that j : L ↪→M be an embedding of fields and σ is a system
of strong reciprocity laws on M . Define a system of strong reciprocity laws SOSRL(j)(σ)
on L by the following formula:

SOSRL(j)(σ)ν =
1

[M : L]

∑
ν′∈ext(ν,M)

eν′|νfν′|ν SRL(jν′|ν)(σν′).

We recall that eν′|ν , fν′|ν and jν′|ν was defined in Subsection 2.2. The proof of the fact
that SOSRL is indeed a functor is similar to the proof of Proposition 4.1.

Denote by
Rf : Fields1 → Fields2

a functor given by the formula F 7→ F (t).
Define the natural transformation res : SOSRL ◦Rf → SRL as follows. We need to

define a map resF : SOSRL(F (t)) → SRL(F ) for any F ∈ Fields1. We set resF (σ) =
σν∞ , where ν∞ is the valuation corresponding to the point ∞ ∈ P1

F . It is not difficult to
show that res is indeed a natural transformation.

Here is the main result of this subsection:

Theorem 5.3. The natural transformation res : SOSRL ◦Rf → SRL is an isomorphism
of functors.

5.2. Proof of Theorem 5.3.

Lemma 5.4. Let F ∈ Fields1. For any strong reciprocity law h on the field F , there is
a system of strong reciprocity laws σ on the field F (t) such that res(σ) = h.

Set L = F (t). We need to show that for any strong reciprocity law h on F there is
a strong reciprocity law σ on L satisfying resF (σ) = h. First, for any ν ∈ dval(L) we

construct a map σν : Λ3L
×
ν → B2(k). Then we will show that in this way we get a system

of strong reciprocity laws.
Let ν be special. If ν = ν∞ then define σν∞ = h (here we have used the identification

of Lν∞ with F ). In the other case we have F (t)ν ' k(t). In this case define σν to be a
unique strong reciprocity law from Proposition 4.2.

We have defined σν for any ν ∈ dval(L)sp. Define the map H : Λ4L× → B2(k) by the
following formula:

H(b) = −
∑

ν∈dval(L)sp

σν∂
(4)
ν (b).

This sum is well defined by lemma 5.1.
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Lemma 5.5. The map H is zero on the image of the map

Λ4F× ⊕ Γsp2 (L, 4)1 → Λ4L×.

Here the first map is the natural embedding and the second map is induced by δ4.

Proof of lemma 5.5. (1) Direct computation shows that for any a ∈ Λ4F× and any

ν ∈ dval(L) the element ∂
(4)
ν (a) lies in the subgroup Λ3k× ⊂ Λ3L

×
ν . It follows that

the map H vanishes on the image of the group Λ4F×.
(2) Let us prove that H is zero on the image of the group Γsp2 (L, 4)1. Consider the

following commutative diagram:

(5.1)

Γ2(L, 4)1 Γ2(L, 4)2

⊕
ν∈dval(L)sp

Γ2(Lν , 3)1
⊕

ν∈dval(L)sp
Γ2(Lν , 3)2

Γ2(k, 2)1 Γ2(k, 2)2

(∂
(4)
ν )

∑
∂
(3)

ν′

δ4

(∂
(4)
ν )

∑
σν ∑

∂
(3)

ν′

δ2

δ3

For any b ∈ Γsp2 (L, 4)1 we get∑
ν∈dval(L)sp

σν∂
(4)
ν δ4(b) =

∑
ν∈dval(L)sp

∑
ν′∈val(Lν)

∂
(3)
ν′ ∂

(4)
ν (b).

So by definition of H, we obtain:

H(δ4(b)) = −
∑

ν∈dval(L)sp

σν∂
(4)
ν δ4(b) = −

∑
ν∈dval(L)sp

∑
ν′∈val(Lν)

∂
(3)
ν′ ∂

(4)
ν (b) =

= −
∑

ν∈dval(L)

∑
ν′∈val(Lν)

∂
(3)
ν′ ∂

(4)
ν (b) = 0.

(5.2)

Here the third equality holds because the element b lies in the group Γsp2 (L, 4)1 and
has residues only to special valuations. The fourth equality follows from Corollary
4.9.

�

Therefore thanks to Theorem 4.10 we get a well-defined map⊕
ν∈dval(L)gen

Λ3L
×
ν → B2(k).

Define σν for any ν ∈ dval(L)gen to be the restriction of this map to the subgroup Λ3L
×
ν .

For j ∈ {1, 2}, ν ∈ dval(L)gen and a ∈ Γ2(Lν , 3)j denote by L(a) the set of elements

b ∈ Γ2(L, 4)j such that ∂
(4)
ν (b) = a and ∂

(4)
ν′ = 0 for ν ′ 6= ν, ν ′ ∈ dval(L)gen. This set is

non-empty by Lemma 4.11.

Lemma 5.6. Let ν ∈ dval(L)gen and a ∈ Λ3L
×
ν . For any b ∈ L(a) the element σν(a) is

equal to H(b).

Proof. Follows from the definition of σν . �
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Lemma 5.7. Let j ∈ {1, 2}, ν ∈ dval(L), a ∈ Γ2(Lν)j and b ∈ L(a). The following
formula holds: ∑

µ′∈val(Lν))

∂
(3)
µ′ (a) = −

∑
µ∈dval(L)sp

∑
µ′∈val(Lµ)

∂
(3)
µ′ ∂

(4)
µ (b)

Proof. Corollary 4.9 implies the following formula:∑
µ∈dval(L)

∑
µ′∈val(Lµ)

∂
(3)
µ′ ∂

(4)
µ (b) = 0.

From the other side: ∑
µ∈dval(L)

∑
µ′∈val(Lµ)

∂
(3)
µ′ ∂

(4)
µ (b) =

=
∑

µ′∈val(Lν))

∂
(3)
µ′ (a) +

∑
µ∈dval(L)sp

∑
µ′∈val(Lµ)

∂
(3)
µ′ ∂

(4)
µ (b).

The statement of the lemma follows. �

Lemma 5.8. For any σ ∈ dval(L) σν is a strong reciprocity law.

Proof. Let us show the following diagram is commutative:

B2(Lν)⊗ L
×
ν Λ3L

×
ν

B2(k) Λ2(k×)

δ3

σν

δ2

∑
µ′∈val(Lν )

∂
(3)

µ′
∑

µ′∈val(Lν )
∂
(3)

µ′

The lower right triangle: Let a ∈ Λ3L
×
ν . Choose some b ∈ L(a). By Lemma 5.7,

we have: ∑
µ′∈dval(Lν))

∂
(3)
µ′ (a) = −

∑
µ∈dval(L)sp

∑
µ′∈val(Lµ)

∂
(3)
µ′ ∂

(4)
µ (b) =

= −
∑

µ∈dval(L)sp

δ2σµ∂
(4)
µ (b) = −δ2H(b) = δ2σν(a).

Here the last formula follows from Lemma 5.6.
The upper left triangle: Let a1 ∈ Γ2(Lν , 3)1. Choose b1 ∈ L(a1). We have
δ4(b1) ∈ L(δ3(a1)). By Lemma 5.7, we have:

∑
µ′∈val(Lν))

∂
(3)
µ′ (a1) = −

∑
µ∈dval(L)sp

∑
µ′∈val(Lµ)

∂
(3)
µ′ ∂

(4)
µ (b1) =

= −
∑

µ∈dval(L)sp

σµδ3∂
(4)
µ (b1) = −

∑
µ∈dval(L)sp

σµ∂
(4)
µ δ4(b1) =

= H(δ4(b1)) = σνδ3(a1).

Here the second equality holds because for any µ ∈ val(L)sp the map σµ is a strong

reciprocity law, the third equality holds because ∂
(4)
µ is a morphism of complexes

and the fifth equality holds by Lemma 5.6.
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To prove that σν is a strong reciprocity law it remains to show that it vanishes on

elements of the form a∧c, a ∈ Λ2L
×
ν , c ∈ k×. Lemma 4.11 for m = 3 in the degree 2 implies

that there is b ∈ Λ3L× such that ∂
(3)
ν (b) = a and ∂

(3)
ν′ (b) = 0 for any ν 6= ν, ν ′ ∈ dval(L)gen.

It follows that b ∧ c ∈ L(a ∧ c). Now the statement follows from the fact that for any

µ ∈ dval(L), we have ∂
(4)
µ (b ∧ c) = ∂

(4)
µ (b) ∧ c and so for any µ ∈ dval(L)sp, we have

σµ∂
(4)
µ (b ∧ c) = 0, since σµ is a strong reciprocity law. Now the statement follows from

the definition of σν . �

Proof of Lemma 5.4. Let us prove that σ is a system of strong reciprocity laws. We need
to show that for any b ∈ Λ4L× the following formula holds:

(5.3)
∑

ν∈dval(L)

σν∂
(4)
ν (b) = 0.

By Theorem 4.10 the group Λ4L× is generated by the subsets L(a), a ∈ Λ3Lν , ν ∈
dval(L)gen. So we may assume that b ∈ L(a) for some a ∈ Λ3Lν . In this case formula
(5.3) follows from the definition of σν . �

Proof of Theorem 5.3 . To prove that res is an isomorphism of functors, we need to show
that for any F ∈ Fields1 the map

resF : SOSRL(F (t))→ SRL(F )

is a bijection. By Lemma 5.4 this map is surjective. So we need to show that it is
injective.

Assume that h is a system of strong reciprocity laws on F and σ, σ′ be two systems
of strong reciprocity laws on L satisfying res(σ) = res(σ′) = h. We need to show that
σ = σ′.

By definition σν∞ = σ′ν∞ = h. If ν is special valuation different from ν∞ then Lν ∼= k(t)

and so by lemma 4.2 there is a unique strong reciprocity low on Lν . We conclude that
when ν is special σν = σ′ν .

Let ν ∈ be an arbitrary element of dval(L)gen. It remains to show that for any a ∈ Λ3L
×
ν

we have σν(a) = σ′ν(a).
Choose some b ∈ L(a). By definition of b and the fact that σ is a system of strong

reciprocity laws we have:

σν(a) +
∑

µ∈dval(L)sp

σµ∂
(4)
µ (b) = 0.

So

σν(a) = −
∑

µ∈dval(L)sp

σµ∂
(4)
µ (b) = 0.

In the same way

σ′ν(a) = −
∑

µ∈dval(L)sp

σ′µ∂
(4)
µ (b) = 0.

The right hand side of the last two formulas coincide because σ and σ′ coincide on
special valuations. We conclude that σν(a) = σ′ν(a) as well. �

5.3. The norm map. In this subsection we will use Theorem 5.3 to construct the norm
map on strong reciprocity laws. We follow ideas from [13, §1] (see also [1, 6, 8]).

Since res is an isomorphism of functors, it has an inverse. Denote it by N. Let
F ∈ Fields1 and ν ∈ dval(F (t)). Define the norm map Nν : SRL(F ) → SRL(F (t)ν) by
the formula Nν(h) = NF (h)ν .
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Let j : F ↪→ K be an extension of some fields from Fields1. Let a be some generator
of K over F . Consider a map F [t] → K given by the formula p(t) 7→ p(a). The kernel
of this map is an irreducible polynomial pa over F . Denote by νa the corresponding
valuation. The residue field F (t)νa is canonically isomorphic to K. So we get a map
Nνa : SRL(F )→ SRL(K) which we denote by NK/F,a. We will prove that this map does
not depend on a.

As a corollary from Theorem 5.3 we get the following lemma:

Lemma 5.9. (1) Let j : F ↪→ K be an extension of two fields from Fields1, ν ∈
dval(F (t)) and n = [K : F ]. The following diagram is commutative:

(5.4)

SRL(F ) SRL(F (t)ν)

SRL(K)
⊕

ν′∈ext(ν,K(t))

SRL(K(t)ν′)

Nν

(Nν′ )

SRL(j)
∑

ν′∈ext(ν,K(t))

eν′|νfν′|ν
n

SRL(jν′|ν)

(2) Let j : F1 ⊂ K,F1 ⊂ F2, be an extensions and F2 ⊗F1 K =
m⊕
i=1

F2,i. Denote by ji

the natural embedding F2 ↪→ F2,i. Let n = [K : F1] and ni = [F2,i : F2]. Let a be
generator of F2 over F1. Denote by ai the corresponding generators of F2,i over
K. The following diagram is commutative:

(5.5)

SRL(F1) SRL(F2)

SRL(K)
k⊕
i=1

SRL(F2,i)

NF2/F1,a

(NF2,i/K,ai )

SRL(j)

m∑
i=1

ni
n

SRL(ji)

Proof. (1) Denote by j′ the embedding F (t) ↪→ K(t). Since N is a natural transfor-
mation of functors, the following diagram is commutative:

SRL(F ) SOSRL(F (t))

SRL(K) SOSRL(K(t))

SRL(j)

NK

NF

SOSRL(j′)

So for any hK ∈ SRL(K) and any ν ∈ dval(F (t)), we get the following identity:

NF (SRL(j)(hK))ν = SOSRL(j′)(NK(hK))ν .

Writing out, we get:

NF (SRL(j)(hK))ν = Nν(SRL(j)(hK)),

SOSRL(j′)(NK(hK))ν =
∑

ν′∈ext(ν,K(t))

eν′|νfν′|ν
n

SRL(jν′|ν)(NK(hK)ν′) =

=
∑

ν′∈ext(ν,K(t))

eν′|νfν′|ν
n

SRL(jν′|ν)(Nν′(hK)).
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Here in the second formula we have used the definition of the functor SOSRL.
The statement follows.

(2) Let pa be the minimal polynomial of a over F1. We apply the previous state-

ment for F = F1, K = K and ν corresponding to pa. Let pa =
l∏
i

pa,i be the

decomposition of P in the field K(t). The set ext(ν,K(t)) are in bijection with
the irreducible factors of pa in K(t). Denote by νi ∈ ext(ν,K(t)) the valuation

corresponding to pa,i. We have F2,i
∼= K(t)νi . The embeddings ji correspond to

the embeddings jνi|ν . Since the polynomial pa is separable we have fν′|ν = 1 and
so eν′|νfν′|ν = [F2,i : F2]. So the diagram (5.4) can be identified with (5.5).

�

Lemma 5.10. We have SRL(j) ◦NF2/F1,a = id. In particular if F1 = F2 then NF2/F1,a is
identical and for any j : F1 ↪→ F2 the map SRL(j) is surjective.

Proof. Let h ∈ SRL(F1), σ = NF1(h) and x ∈ Λ3F×1 . Consider the element b = pa ∧ x ∈
Λ4F1(t)

×, where pa is the minimal polynomial of a over F1. Since σ is a structure of
strong reciprocity laws we have:∑

ν∈dval(F (t))gen

σν∂
(4)
ν (b) +

∑
ν∈dval(F (t))sp

σν∂
(4)
ν (b) = 0

We have ∂
(4)
νpa (b) = x and this this is the only general valuation such that ∂

(4)
ν (b) 6= 0. So

by the definition of the norm the first term is equal to NF2/F1,a(h)(x). From the other

side it is easy to see that there is only one special valuation ν such that σν∂
(4)
ν (b) 6= 0

namely ν∞. We have ∂
(4)
ν∞(b) = −na. The statement follows. �

Proposition 5.11. The map NF2/F1,a does not depend on a. Denote NF2/F1,a simply by
NF2/F1.

Proof. We need to show that NF2/F1,a does not depend on a. Let j : F1 ↪→ K be a field

extension of F1 satisfying F2⊗F1K
∼= K⊕[F2:F1]. We apply the second statement of Lemma

5.9. By definition of K for any n we have F2,i
∼= K. By item (1) of this theorem the maps

NF2,i/K,ai are identical. We conclude that in the diagram from Lemma 5.9 all the maps
except maybe NF2/F1,a do not depend on a. So the map NF2/F1,a does not depend on a
on the image of SRL(j). By the previous lemma this image coincides with SRL(F1). �

Proof of Theorem 3.6. (1) Follows from Lemma 5.10.
(2) Choose a field extension j : F1 ↪→ K. Denote F2 ⊗F1 K

∼=
⊕n2

i=1 F2,i and F3 ⊗F2

F2,i
∼=
⊕n3,i

s=1 F3,i,s. By associativity of tensor product we have F3⊗F1K
∼=
⊕
i,s

F3,i,s

Denote by ji,s the natural embeddings F3 ↪→ F3,i,s. Let ni,s = [F3,i,s : F3]. Let n
be the degree of F3 over F1. Repeated application of Lemma 5.9 together with
(2) of this theorem shows that the following diagram is commutative:

SRL(F1) SRL(F3)

SRL(K)
⊕
i,s

SRL(F3,i,s)

NF3/F2◦NF2/F1

(NF3,i,s/F2,i◦NF2,i/K)

SRL(j)
∑
i,s

ni,s
n

SRL(ji,s)

Choose K such that F3⊗F1 K
∼= K⊕[F3:F1]. It follows that F3,i,s

∼= F2,i
∼= K. So

the bottom maps in the above diagram are identical. Let us compare this diagram
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with diagram (5.5) for F2 = F3. We see that the left, right and bottom maps are
the same. Since SRL(j) is surjective, the statement of the proposition follows.

(3) Let a, b ∈ F\k be two functions generating F over k. We first prove this statement
for the functions satisfying these conditions.

Let pb ∈ k(a)[t] be the minimal polynomial of b ∈ F over k(a). Multiplying
pa on some rational function of a we can assume that pa lies in k[a, t] and that
pa is irreducible as a polynomial of two variables. Denote this polynomial of two
variables by h(a, t). It is easy to see that the polynomial h′(b, t) given by the
formula h′(b, t) = h(t, b) is a minimal polynomial of a over k(b).

Let A = k[x][y] and L = k(x)(y). If we consider the polynomials h, h′ as
polynomials of x, y they gives two elements ν, ν ′ ∈ dval(L).

By Theorem 5.3 and Theorem 4.2 on the field L there is a unique system of
strong reciprocity laws. Denote it by σ. Denote by λ an automorphism of L
interchanging x and y. Since σ is a unique system of strong reciprocity laws
on L, it is invariant under λ. Since λ interchanges ν and ν ′ it induces a map
λ : Lν → Lν′ . Because σ is invariant under λ we have SRL(λ)(σν′) = σν .

A map A → F given by the formula x 7→ a, y 7→ b induces an isomorphism
θ : Lν → F . In the same way a map A → F given by the formula x 7→ b, y 7→ a
induces an isomorphism of θ : Lν′ → F . Since θ = θ′ ◦ λ, we have

SRL(θ−1)(σν) = SRL(λ−1 ◦ θ′−1)(σν) =

= SRL(θ′−1) ◦ SRL(λ
−1

)(σν) = SRL(θ′−1)(σν′).

Here in the last formula we have used the formula SRL(λ)(σν′) = σν . By
definition NF/k(a),b = SRL(θ−1)(σν) and NF/k(b),a = SRL(θ′−1)(σν′). So we have
proved that NF/k(a),b(Hk(a)) = NF/k(b),a(Hk(b)).

By Proposition 5.11 we have

NF/k(a),b = NF/k(a), NF/k(b),a = NF/k(b).

So we have proved that for any a, b ∈ F\k generating F over k we haveNF/k(a)(Hk(a)) =
NF/k(b)(Hk(b)). Now the statement follows from the following fact: for any a, b ∈
F\k, there is c ∈ F\k such that the pairs (a, c), (b, c) generate F over k.

�

6. The proof of Theorem 3.1 and Corollary 3.5

Proof of Theorem 3.1. Existence: Let F ∈ Fields1. Choose some embedding j : k(t) ↪→
F . Define the element HF by the formula

HF := NF/k(t)(Hk(t)).

By the fourth statement of Theorem 3.6 this element does not depend on j.
We need to show that if j′ : F1 ⊂ F2 is an embedding, then

SRL(j′)(HF2) = HF1 .

It follows from the first and the third statement of the same theorem:

SRL(j′)(HF2) = SRL(j′)NF2/k(t)(Hk(t)) = SRL(j′)NF2/F1NF1/k(t)(Hk(t)) =

= (SRL(j′) ◦NF2/F1)(NF1/k(t)Hk(t)) = HF1 .

Uniqueness: Let HF ,H
′
F , F ∈ Fields1 be two family of strong reciprocity laws

such that for any j : F1 ↪→ F2 we have SRL(j)(HF2) = HF1 and SRL(j)(H′F2
) =

H′F1
. We need to show that HF = H′F for any F ∈ Fields1. First of all it is true

when F = k(t). Let F be any field. There is a field F ′ ∈ Fields1 together with
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two embeddings F ⊂ F ′, k(t) ⊂ F ′ such that F ′/k(t) is Galois. It is enough to
prove the statement for F ′. Denote by G the Galois group of F ′ over k(t). Since
HF ′ and H′F ′ are invariant under the group G, it is enough to prove that they equal

on the subgroup (Λ3F ′×)
G

. We know that
(
KM

3 (F ′)
)G

= KM
3 (k(t)). It follows

that (Λ3F ′×)
G

is generated by the Steinberg elements and the elements coming
from k(t). On the Steinberg elements HF ′ and H′F ′ coincide because they are
strong reciprocity laws. On the elements coming from k(t) they coincide because
Hk(t) = H′k(t).

�

Let L ∈ Fields2. Define the map HL : Λ4L× → B2(k) by the formula:

HL(b) =
∑

ν∈dval(L)

HLν
∂(4)ν (b).

This formula is well defined by Lemma 5.1. The following lemma is corollary from
Theorem 3.1:

Lemma 6.1. If j : L ↪→ M is an extension of some fields from Fields2 then for any

b ∈ Λ4L× we have HL(b) =
1

[M : L]
HM(j∗(b)).

Proof. Let ν ∈ dval(L). It is enough to show the following formula:

(6.1) HLν
∂(4)ν (b) =

1

[M : L]

∑
ν′∈ext(ν,M)

HMν′
∂
(4)
ν′ (j∗(b))

We have
∂
(4)
ν′ (j∗(b)) = eν′|νjν′|ν · ∂(4)ν (b).

Theorem 3.1 implies that

HMν′
jν′|ν∂

(4)
ν (b) = fν′|νHLν

∂(4)ν (b).

So
1

[M : L]

∑
ν′∈ext(ν,M)

HMν′
∂
(4)
ν′ j∗(b) =

=
1

[M : L]

∑
ν′∈ext(ν,M)

eν′|νfν′|νHLν
∂(4)ν (b) =

= HLν
∂(4)ν (b)

1

[M : L]

∑
ν′∈ext(ν,M)

eν′|νfν′|ν = HLν
∂(4)ν (b).

(6.2)

The last equality follows from the formula
∑

ν′∈ext(ν,M)

eν′|νfν′|ν = [M : L]. �

Proof of Corollary 3.5. We need to show that HL = 0 for any L ∈ Fields2. Let us prove
that it is true when L = k(x)(y). By Theorem 5.3 and Proposition 4.2 in this case on L
there is a unique system σ of strong reciprocity laws. It is enough to show that for any
ν ∈ dval(L) we have σν = HLν

. When ν is special it is true by Proposition 4.2. When ν
is general it follows from the definition of HLν

.
Let us prove the statement for an arbitrary L. There are finite extensions

j : k(x)(y) ↪→ L′, j′ : L ↪→ L′

such that j is a Galois extension. Lemma 6.1 shows that it is enough to prove the state-
ment for L′. Denote the Galois group of j byG. SinceHL′ is invariant underG it is enough
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to prove that HL′ is zero on the subgroup (Λ4L′×)
G

. Since
(
KM

4 (L′)
)G

= KM
4 (k(x)(y)),

(Λ4L′×)
G

is generated by the Steinberg elements and by the elements coming from k(x)(y).
Vanishing of HL′ on the elements coming from k(x)(y) follows from Lemma 6.1 together
with the formula Hk(x)(y) = 0. Let us prove that HL′ is zero on the Steinberg elements.
For any b ∈ B2(L

′, 4)1 we have

HL′(δ4(b)) =
∑

ν∈dval(L′)

HL′ν
∂(4)ν δ4(b) =

∑
ν∈dval(L′)

HL′ν
δ3∂

(4)
ν (b) =

=
∑

ν∈dval(L′)

∑
ν′∈val(L′ν)

∂
(3)
ν′ ∂

(4)
ν (b) = 0.

Here the second formula is true because ∂
(4)
ν is morphism of complexes, the third formula

is true because HL′ν
is a strong reciprocity law and the fourth formula follows from

Corollary 4.9. �
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