MORAVA-ORIENTABLE ORIENTABLE THEORIES

PAVEL SECHIN

ABSTRACT. We prove that there are many generalized orientable cohomology theories in algebraic geometry
for which there exist Chern class-like operations from Morava K-theories K(n)*. We call these theories
p™-typical. These operations generate all operations to those p™-typical theories whose ring of coefficients is
free as a Z(p)-module. Examples of such theories are mn-th Morava K-theories K (nm)* for all m € N and
CH* ® Z(p)- There is also the universal p"-typical orientable theory which we call BP{n}*.

Chern classes from Morava K-theory K(n)* to itself allow us to introduce the gamma filtration on K(n)*
which satisfies properties analogous to the gamma-filtration on Kjp.

As an application of constructed operations we give a new estimate on the torsion in Chow groups of
codimension less than 2™ + 1 of quadrics in ™12 following an idea of N. Semenov.

INTRODUCTION

Complex orientable cohomology theories appeared in algebraic topology as rigid examples of the objects
in the stable homotopy category. The definition of orientability is strongly connected to the notion of Chern
classes: all invarivants of vector bundles in such theories are expressed in terms of Chern classes. Moreover
all relations between these invariants can be expressed in terms of relations coming from vector bundles.

In algebraic geometry the notion of an orientable cohomology theory did not seem to appear until the
fundamental work of F.Morel and V.Voevodsky on the motivic homotopy theory. The setting developed by
them allowed geometers to ’borrow’ many notions and constructions from topology in a clear conceptual
(but technically uneasy) way. In particular, V.Voevodsky has performed a motivic construction of the Thom
spectrum to introduce the theory of algebraic cobordisms M GL** which was later proved to be the universal
orientable theory.

The notion of orientability of more general cohomology theories than those which are representable in the
stable motivic homotopy category was studied by I.Panin and A.Smirnov. They observed that orientability
has three equivalent avatars: it can be specified either by Thom classes of line bundles, Chern classes of line
bundles or pushforward maps for proper morphisms. Perhaps, it shows crucial importance of Chern classes
in defining orientable theories.

While the study of oriented motivic spectra is not easy, any motivic-representable cohomology theory has
a pure part, sometimes referred to as a small theory as opposite to the whole big theory. Small theories are
presheaves of graded rings which often allow a more geometric description in comparison with big theories.
For example, the pure part of motivic cohomology is Chow groups, and the pure part of algebraic K-theory
is the Grothendieck group of vector bundles Ky[3, 371].

The pure part of algebraic cobordisms M GL** has been developed in a seminal paper by M.Levine and
F.Morel. It is usually denoted as Q* and is reffered to as Levine-Morel algebraic cobordisms. (However, the
comparison of Q* and MGL** turned out to be difficult and was proved only years later). They also gave
a definition of an orientable theory which is more restrictive than that of Panin-Smirnov, for which they
proved that Q* is the universal oriented theory. This allowed to introduce the whole bunch of orientable
theories which were investigated before in algebraic topology and are in some vague sense freely generated
by Chern classes. More precisely, for any formal group law Fr over any ring R there exist an oriented theory
" ®q« 1) R with the ring of coefficients R and the corresponding formal group law Fg. These theories are
called free theories.

In particular, in this way one may introduce algebraic Morava K-theories K (n)* defined by specific formal
group laws over Z,. In the definition we use in the paper for each prime p and each number n there is a
whole bunch of Morava K-theories K (n)* which are not multiplicatively isomorphic. Nevertheless we prove
that these theories are additively isomorphic, however, non-canonically.

Theorem. Let K(n)*, K(n)* be two n-th Morava K-theories over Zy, i.e. localisations of algebraic cobor-

disms defined by FGLs Fy, Fy with logarithms of the form > ;o a;x?" , ag =1, a; € %Z(Xp).

Then there exist an isomorphism of presheaves of abelian groups K(n)* = K(n)*.
1
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The goal of this paper is to show that Morava K-theories behave in similar ways to the K-theory. Consider
Chern classes as (not neccesarily additive) operations from Ky, then one can prove that for any orientable
theory A* all operations from Kj to it are freely generated by Chern classes as A*(pt)-algebra. In this paper
we define so called p™-typical orientable theories and construct operations ¢; : K(n)* — A* to them. If
A*(pt) is a free Z,)-module, then these operations generate all operations to A*.

Definition. A formal group law over a torsion-free Z,-algebra A is called p"-typical if its logarithm is of

the form Y 5 a;a?"’, a; € A® Q.
Orientable theory A* is called p™-typical if the corresponding FGL is p™-typical.

There is a universal p™-typical theory which we denote by BP{n}*. It is a factor of BP* by an ideal in
BP = Zy)[vi, vz, . .., vi] generated by v; with i { n.

*

Theorem. For any Morava K-theory K(n)* and any p™-typical theory A* there exist a series of non-additive
operations c; : K(n)* — A* ®Zy,) fori > 1 (which we call Chern classes) satisfying the following conditions.

i) Operation ¢; is supported on K(n)* ™4 "= "je ¢;(x) =0 for x € K(n)J, where j #4 mod p" — 1.
it) Denote by cior = 2121 ¢; the total Chern class. Then the Cartan’s formula holds:

crot(x +y) = FE (cro4(2), cror ().

i) If A is a free Zy)-module, then any operation R(n)* — CH* @ Z(y,) can be written uniquely as a series
m {Cj}jzl over Z(p) N

[K(n)*, A* @ Zy] = Allc, .., i, .. ]l.

It should be mentioned that operations ci,...,c,n from a particular K(n)* to CH* ® Z,) were intro-
duced by V. Petrov and N. Semenov ([6]). Their methods were different and allowed these operations to be
constructed only to CH* ® Z,) modulo torsion.

Now let us explain which tools we use to construct Chern classes from Morava K-theories. At the moment
there seems to be no easy way to construct operations between big theories like M GL**, motivic cohomology
vat* and other representable motivic theories. The method we use does not allow to construct operations
between big theories either. Note also that there is a mystery both shared by topology and algebraic geometry
of a geometric or intrinsic description of Morava K-theories. The only way constructing values of Morava
K-theories on an arbitrary variety at the moment is the localisation of cobordisms which is rarely amenable
for computations. Thus, no geometric interepretation of constructed Chern classes seems possible for the
time being. Nevertheless, operations can be constucted by purely algebraic methods with the use of the
recent work of A. Vishik.

Vishik has developed a definition of orientable theories of rational type, for which it is possible to construct
the value of a theory on a particular variety by induction on its dimension. It turned out that these theories
are precisely free theories appearing above. The inductive description allows to classify completely all oper-
ations from a free theory to any orientable theory. More precisely, operation can be uniquely reconstructed
by its restriction to the values on products of projective spaces which commutes with pullbacks along sev-
eral morphisms between them. These morphisms are the Segre embeddings, the diagonal maps, the point
inclusions, the projections and the permutations. Using the projective bundle theorem (over a point) one
can make a 1-to-1 correspondence between operations and solutions of a certain system of linear equations
which depends solely on formal group laws of theories in consideration.

To construct Chern classes from Morava K-theories to a p™-typical theory A* we first consider the case
A* = CH” ® Zp). Using the Cartan’s formula we look for a formula relating these conjectural operations to
the *Chern character’ ch : K(n)* — CH* ® Q. For example, one may define usual Chern classes using the
formulas chy = ¢, chy = %(C% —c¢g), chg = %(C‘;’ —3c1e2 + 3e3) and so on, provided that operations ¢; defined
by these formulas in terms of ch act integrally on products of projective spaces. Thus, by Vishik’s theorem
they define operations to CH*.

However, we do not give explicit formulas relating ch; and ¢y, ..., ¢;. Instead of ch; we work with ¢; — an
integral generator of a free rank one Z,)-module of additive operations to CH® ® Z,). We express ¢; as a
polynomial in ¢1, ..., ¢; and prove that it acts integrally on products of projective spaces.

To deal with the general case we introduce Chern filtration F*® on the space [A*, B*] of all operations from
a free theory A* to any orientable theory B*. There is a natural injective map gri.[A*, B*] — [A*, CH* ® B*]
which allows to reduce the general case to the case of Chow groups. The condition that the target theory
has to be p™-typical is needed for a nice classification of additive operations.
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Using constructed Chern classes we are able to give an application of Morava K-theories to torsion in
Chow groups of quadrics. Recall that A. Grothendieck has introduced the gamma filtration on Ky with the
use of Chern classes ¢; : Ky — K. The definition is the following:

Y Ko(X) =< ¢, (1) - - - ¢, ()] Zij >m,a; € Ko(X) >.
J

Having constructed Chern classes cf((n) : K(n)* — K(n)* we define the gamma filtration on K(n)*
verbatim as for K.

Theorem. The gamma filtration on K(n)* satisfies the following properties:

i) the gamma filtration is strictly compatible with additive isomorphisms between different n-th Morava
K-theories;
ii) CH YK (n)* = 0;
iii) the operation c¢$'H is additive when restricted to v K(n)
spaces;
w) H when resrticted to 'K (n)* is surjective for 1 <i < p";
v) gri}K(n)* = griK(n)i mod p"—1

* and it induces an isomorphism of Q-vector

It seems interesting to note that historically a kind of ‘loop’ is made. The gamma filtration was introduced
as a tool for the proof Riemann-Roch theorem, and the key ingredient of the Vishik’s classification theorem
is the general Riemann-Roch theorem which thus allows us to introduce the gamma filtration on K (n)*. Of
course, the end of this ‘loop’ does not coincide with the beginning which perhaps makes our considerations
not so uninteresting.

The gamma filtration on K (n)* may be used to estimate Chow groups in codimensions less or equal to
p™. For p = 2 we provide such an estimate for quadrics of special type.

Recall that algebraic Morava K-theories (with p = 2) first appeared in the Voevodsky’s plan of the proof
of the Milnor conjecture. The reason was an observation of Voevodsky that Pfister quadrics in I"*2 are ’seen
as split quadrics’ by Morava K-theories K(m) with m < n and p = 2. Later N. Semenov generalized this
result to all quadrics in I™+2.

This allows to calculate the gamma filtration on the n-th Morava K-theory of such quadrics with the use
of the general Riemann-Roch theorem. Using the surjectivity of several first Chern classes from K(n)* to
CH* ® Z3) we are able then to prove the following result.

Theorem. Let g € I"2 be an anisotropic quadratic form, Q a corresponding smooth quadric of dimension
2d. Let je[l1,2" —1] be s.t. d=j mod (2™ —1).

Then CH'(Q) is torsion-free for all i: 1 < i < 2" except for i = 2" when j = 1 and for i = j in the other
case.

Parts of this paper can be found in the preprint [7] and were reported at the MFO conference ” Algebraic
Cobordism and Projective Homogenous Varieties” (2016).
This paper is written specifically for the 2016 Moebius contest.
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1. PRELIMINARIES

In this section we recall the notions of a generalized orientable cohomology theory, a theory of rational
type and state the main tool needed for our paper, Vishik’s Classification of Operations Theorem.
Fix a field k with char k = 0.
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1.1. Orientable theories.

Definition 1.1 (Vishik, [9, 2.1]; ¢f. Panin-Smirnov, [5, 2.0.1], Levine-Morel, [4, 1.1.2]). A generalized
oriented cohomology theory (g.o.c.t.) is a presheaf A* of commutative rings on a category of smooth varieties
over k supplied with the data of push-forward maps for proper morphisms.

The structure of push-forwards has to satisfy the following axioms: projection formula, projective bundle
theorem, Al-homotopy invariance and the localisation axiom (sometimes called excision).

Notation. Star in the superscript of a g.o.c.t. does not mean neccessarily that the theory is graded. How-
ever, if it is, then we will freely replace the star by a number or a variable, e.g. CH? or CH'. In non-graded
cases we do not drop the superscript in order to distinguish the theory itself with its ring of coefficients, i.e. A*
is a presheaf of rings, and A is usually the corresponding value on a point, A = A*(Spec(k)). Nevertheless, we
always write Ky to denote the Grothendieck group of vector bundles as a g.o.c.t. with the ring of coefficients Z.

We would like to present an exact form of the localisation axiom here as it varies among definitions in
the literature. Let X be a smooth variety over k, let j : U — X be an open embedding and let ¢ : Z — X
be its closed complement. Define A*(Z) as a direct limit of A*(V') over the system of projective morhisms
f:V — Z from smooth varieties V. Push-forward maps (i o f). induce the map i, : A*(Z) — A*(V).

The localisation axiom says that the following sequence of abelian groups is exact:

(LOC) AR(Z) = A% (X) LAY U) = 0

For any g.o.c.t. one can define Chern classes of vector bundles in a usual way ([5]) as follows. Let X
be a smooth variety, Lx be a line bundle over X, denote by s : X — Lx the zero section of Lx. Then
e (Lx) = s*s.(1x) is the first Chern class. Higher Chern classes are defined using the projective bundle
theorem and are uniquely determined by the Cartan’s formula and the property that ¢ (V) = 0 for i > rk(V).

One may associate with each g.o.c.t. a formal group law (FGL) over its ring of coefficients via the following
formula: c¢{'(L ® L') = Fa(c{(L), i (L")).

Example. The universal g.o.c.t. is the algebraic cobordisms of Levive-Morel Q* ([4, Ch. II]). Other examples
of g.o.c.t. are the Grothendieck group of vector bundles Ky and Chow groups CH*.

The corresponding formal groups are the universal FGL over the Lazard ring L, the multiplicative FGL
F,.(z,y) = 2+ y + zy, the additive FGL F,(z,y) = x + y, respectively.

Note that the (unique) morphism of oriented theories Q* — A* preserves Chern classes, and since ¢§*(Vy) =
0 when ¢ > dim X for dimension reasons the same is true for any g.o.c.t. The same argument shows that
Chern classes are nilpotent in any g.o.c.t.

One can construct a g.o.c.t. with any FGL in the following way.

Definition 1.2 (Levine-Morel, [4, Rem. 2.4.14]). Let R be a ring, let L — R be a ring morphism classifying
a formal group law Fp over R.

Then Q* ®1, R is a g.o.c.t. which is called a free theory. Its ring of coefficients is R, and its associated
FGL is Fg.

Remark 1.3. Note that any formal group law yields a g.o.c.t, which is mainly due to the kind of localisation
axiom in the definition. The tensor product is exact on the right and it suffices for the property (LOC) to
stay true after the change of coefficients.

This shows the difference with orientable theories in topology or in the stable motivic homotopy category
where additional conditions on the formal group law are imposed in order for it to be realized.

Theorem 1.4 (Levine-Morel, [4, Th. 1.2.2 and 1.2.3]). Chow groups CH* and K-theory of vector bundles
Ky are free theories, i.e. natural morphisms

QF ®]L,FaZ‘>CH*, QF ®]L,FMZ4>KO
are isomorphisms.

Theories of rational type were introduced by A.Vishik in [9] and are those g.o.c.t. which satisfy an
additional axiom (CONST) and a really strong ’inductive’ property (but rather technical to state it here
precisely). One crucial feature of this property is that values on varieties can be described by induction on
dimension.
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Definition 1.5. The axiom (CONST) for a g.o.c.t. A* says that for any smooth irreducible variety X
value of the theory in its generic point A*(k(X)) := limycx A*(U) is canonically isomorphic to the value on
the base field point A := A*(Spec(k)).

This allows to split A* as presheaf of abelian groups into two summands: A* = A* & A, where A is a
constant presheaf and A* is an ideal subpresheaf of elements which are trivial in generic points.

The following theorem allows us to skip the definition of a theory of rational type, which we will not use
explicitly.

Theorem 1.6 (Vishik, [9, Prop. 4.9]). Theories of rational type are precisely free theories.

1.2. Operations between theories of rational type. Though the notion of a theory of rational type
does not yield new examples of cohomology theories, their intrinsic inductive description allows to study
operations and poly-operations between them in a very efficient way.

Definition 1.7. Let A*, B* be presheaves of abelian groups (or rings, or graded rings) on the category of
smooth varieties over a field.

An operation ¢ : A* — B* is a morphism of presheaves of sets. The set of operations is denoted by
[A*, B*]. If B* is a presheaf of rings, the set [A*, B*] has the natural ring structure given by the multiplication
on the target theory.

An additive operation ¢ : A* — B* is a morphism of presheaves of abelian groups. The set of additive
operations is denoted by [A*, B*]add.

We will need to consider not only operations, but poly-operations as well. There are two types of them:
external and internal ones. It is not hard to see that there is a 1-to-1 correspondence between these two
notions ([10, p.8]). As we will be concerned only with external operations, we omit the adjective in the
following definition.

Definition 1.8. Let A*, B* be presheaves of abelian groups (or rings, or graded rings) on the category of
smooth varieties over a field k.

An r-ary poly-operation from A* to B* is a moprhism of presheaves of sets on the r-product category
of smooth varieties over a field k from (A*)*" to B* o []".

Explicitly, for varieties X7, ..., X, poly-operation yields a map of sets

A*(X7) x A" (X9) x ... x A"(X,) = B*(X1 x Xo x ... x X,).
The set of r-ary poly-operations is denoted by [(A*)*", B* o []"].

Classification of Operations Theorem (COT) (Vishik, [9, Th. 5.1], [10, Th. 5.2]).
Let A* be a theory of rational type and let B* be a g.o.c.t.
Then the set of r-ary poly-operations from A* to B* is in 1-to-1 correspondence with the following data:
maps of sets xT_ A*((P>)*li) — B*(xI_;(P>)*k) for I; > 0 (restrictions of a poly-operation), which
commute with the pull-backs for:
(1) the permutation action of a product of symmetric groups xI_;%y,;
(2) the partial diagonals for each i;
(8) the partial Segre embeddings for each i;
(4) the partial point embeddings for each i;
(5) the partial projections for each i.

Remark 1.9. If the target theory is graded, then the theorem allows one to compute poly-operations to
each of the components of the target.

To see this note that grading on B* yields (additive) projectors p, : B* — B™ and an operation to a
component B™ is just an operation which is zero when composed with p,,, m # n. As follows from the
theorem, this property may be checked on products of projective spaces.

Remark 1.10. Analogous result was proved in topology by T.Kashiwabara, [3, Th. 4.2].

However, Kashiwabara’s theorem demands topological g.o.c. theories to satisfy several additional condi-
tions. We did not check these conditions and thus cannot claim that our results hold in topological context
as well.

The following straight-forward Proposition allows us to simplify statements about spaces of operations in
future considerations. Namely, we will claim several times that some operations from A* to B* generate all
operations meaning the space [A*, B*].
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Proposition 1.11. Let A* be a g.o.c.t. satisfying the (CONST) axiom, let B* be any g.o.c.t.
Then there are natural isomorphisms between spaces of operations:

(A%, B = [[1A*,B*],  [A*,B*]* = Hom(A, B) & [A*, B"].
A
Proof. As A* = A @® A* by the (CONST) property, there is a natural map HA[A*,B*] — [A*, B*] which
sends a set of operations (¢q).ca to an operation (a,z) — ¢4(x). The inverse map is just the restriction of
an operation to subspaces a ® A* for all a € A.
The case of additive operations is done likewise. O

1.3. Continuity of operations. Recall that by the projective bundle theorem for any g.o.c.t. A* the value
on the product of infinite projective spaces is a formal power series ring A*((P>)*!) = A[[c{(O(1)1), ..., cH(O(1))]],
where O(1); is the pull-back of the canonical line bundle from the i-th factor. Throughout the article we will
use the notation 2z := ¢{!(O(1);), or just z; if theory A* is clear from the context.
The restriction of any operation to products of projective spaces satisfies the property of continuity which
we now explain.
Let G : A* — B* be any operation from a theory of rational type A* to any g.o.c.t. B*.
By the COT G is determined by maps of sets Gy : A[[z{,...,2']] = B[[zF,...,2F]] for all | > 0. As
G1y’s have to commute with pull-backs along partial projections the following diagram is commutative for
any [ > 0:

Al 2 =SS BEE, L 2P

Al A S BB B )

This allows to use only one transform, the inductive limit of maps Gy

G:A[Z,...,2* .. ] = B[[zB,...,2",..]]
which uniquely determines G;y for any [.
Denote by F% an ideal in A[[2},..., 2}, ...]] of series of degree > k (F¥ is defined analogously). Without

loss of generality (as we may subtract G(0)), we may assume that G(0) = 0.
Proposition 1.12 (Vishik, [10, Prop. 5.3]).

Let P,P' € A[[z{,...,2,...]] be s.t. P =P mod FX. Then
G(P)=G(P') mod FE.

This Proposition allows to calculate approximation of G(P) approximating P. In particular, operation G
is determined by its restriction to the products of finite-dimensional projective spaces, or equivalently by the
maps

Grn AT (P = A[[21, .. .,ZZAH/FXJA — B*((P")*!) = B[z, .. .,zl]]/Fg"’l.
In other words, maps G ;3 or map G are determined by their restriction to the polynomial rings Al .., zlA] -
Al .., 2]
Analogous statements are true for poly-operations as well.

1.4. General Riemann-Roch theorem. Let A* be a theory of rational type, let B* be a g.o.c.t., ¢ : A* —
B* is an operation.
For a smooth variety X let i : Z — X be its closed smooth subvariety. Denote by G¢ the composition
2f2A
A*(Z) B A%(Z x (P)%¢) & BY(P®)*¢) o BX(Z)[[25,. .., 27]).

r~e

The following result is a general form of Riemann-Roch-type theorems for non-additive operations.

Theorem 1.13 (Vishik, [9, Prop. 5.19]). Let o € A*(Z), denote by pa,..., e the B-roots of the normal
bundle Nz;x .
Let L; be line bundles over Z for 1 <i <k, and denote x; = c{*(L;), y; = ¢2(L;) their first Chern classes.
Then . i
c A T7C A
GCZ+ (Hi:l Zi j=c+1 Z5 a)|z?:t+3pi,z§+j:yj

k
¢ (i*(o‘ 1;[1 m) ~ e t- I (i) "
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1.5. Classification of additive operations. The data of an additive operation specified in the COT can
be rewritten as a set of formal power series satisfying a system of linear equations. We specify this system
here.

Let A* be a theory of rational type, let B* be a g.o.c.t. and let ¢ be an additive operation from A* to B*.
For | > 0 define maps Gy € Homap(A, B[[z8,- -+, 2P]]) to be the values of the operation on ’basis’ monomials
of z-degree I:

Gi(a)(2B,. .. 2P) = plaz - 2).
It is clear that maps of abelian groups Gy : A*((P*)*!) — B*(((P>)*!)) are defined by maps G;.

Algebraic Classification of Additive Operations Theorem (CAOT) (Vishik, [9, Th. 6.2]).
Let A* be a theory of rational type and let B* be any g.o.c.t. Denote by Fa(x,y) = ZU aijxiyj, Fp =
Ez}j bijx'y’ the corresponding formal group laws.
Then the abelian group of additive operations [A*, B¥]%% is in 1-to-1 correspondence with the set of maps

G, € Homap(A, B[22, ,2P]]) for | > 0 which satisfy the following properties:

i) for any a € A series Gi(«) is divisible by 28 -+ 2P;

i) for any a € A series Gi(«) is symmetric;
iii) for any o € A the following system of equations is satisfied

(1) Gl(a)(lev 257 LR ZZB—l’FB(J:’y)) = Z Gl+i+j—1(aai7j)(le7 Z2Bv ceey ZlB—lvaivaj)
]
Here %% and y*7 denote i-tuple (x,x,...,x) and j-tuple (y,y,...,y) respectively.

Note that i) is an instance of continuity discussed in Section 1.3.

Remark 1.14. If theories A* and B* are graded, one can use Remark 1.9 to specify the data of additive
operations between graded components.

Additive operations from A" to B™ are in 1-to-1 correspondence with maps G; € Hom a,(A™ !, B[[z1, . . ., 2] (m))
satisfying properties i)-iii) of the CAOT.

1.6. Derivatives and products of poly-operations. There are two straight-forward ways to produce
some poly-operations from operations, or in other words to increase the arity of operations.

First, if ¢1, ¢o are ri-ary and rq-ary poly-operations, respectively, then we define an (r; + r2)-ary poly-
operation ¢1 ® ¢o as their external product:

(¢1 © ¢2)($1,$2, s Ty Y1,Y2, -4 ay’m) = ¢1($1,$2, e ;xr1)¢2(y17y2, R ay’r'z)'
This construction defines a morphism of algebras

- 72 1472
[(A*)XN,B* o H} ®pB [(A*)XTQ,B* ° H] 2) [(A*)X(r1+r2)7B* o H ]

One may interprete the statement that the latter map is an isomorphism for particular A* and B* as some
kind of Kunneth-type property. When this property is satisfied for all r1,ry (e.g. Th. 3.44, Prop. 3.47), we
will write [(A*)*", B* o []"] = [A*, B*]®".

Second, if ¢ is an r-ary poly-operation, then we define an (r + 1)-ary poly-operation 9} ¢ as its derivative
with respect to the é-th component ([10, Def.3.1]). Denote by Z; = (21,...,2i—1), Z>i = (Zit1y---+2r),
then

0ip(Z<is,y, Z5i) = 9(Z<is® + Yy, Zsi) — (Z<is v, Z5i) — d(Z<in Yy Zi)-

It is clear that ¢ is poly-additive if and only if 9;¢p =0 for 1 <i <r.

If r =1, i.e. ¢ is an operation, we will omit the subscript and write 0¢ to mean its derivative. Iterating
the procedure one can easily define 07, = 9, 00y, _, 0---00,,. However, it is easy to see that all
s-derivatives of an operation are symmetric and thus derivatives do not depend on the order of derivation.
We will write 9°¢ to denote any of them.

By definition of the derivative of ¢ one can express values of ¢ on the sum of two elements as the sum of
values of ¢ and 9'¢. It is useful for computations to have analogous formulas for the values on the sum of
any number of elements.

Proposition 1.15 (Discrete Taylor Expansion, Vishik, [10, Prop. 3.2]). Let f : A — B be a map between
abelian groups. Denote by 8'f : A** — B its derivatives.
For any set {a;};cr of elements in A the following equality holds:
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FO )= 0" f(ayl5 € J).

i€l JCI

2. MOTIVATION: OPERATIONS FROM Ky TO ORIENTABLE THEORIES

In this section we mention several results on operations from K, to other orientable theories. As we use
these only as motivation for what will follow about algebraic Morava K-theories we leave them without proofs.

2.1. Chern classes as free generators of operations from K. The following Theorem was communi-
cated to the author by A.Vishik. The result is analogous to the usual calculation of generalized cohomology
of a product of infinite Grassmannians, though it does not formally follow from it.

Theorem 2.1 (Vishik, for the proof see [7, Th. 2.1]). Let A* be a g.o.c.t. Then the ring of r-ary poly-
operations from a presheaf Ko to A* is freely generated over A by external products of Chern classes.
Using notations from section 1.6, we write [(Ko)*", A* o [["] = Al[ef}, ..., ¢, .. ]JOm.

Remark 2.2. Note that there is no issue of convergence of a series of Chern classes for any particular element
of Ky. Due to a discussion after Def. 1.1, Chern classes cf‘ are nilpotent and thus a formal power series
reduces to a polynomial for each particular variety.

2.2. Additive operations from K to an oriented theory A*. One can we deduce the description of all
additive operations [f(o, A*]944 in terms of series in Chern classes. The result provides some intution about
what one could expect of additive operations from higher Morava K-theories to Chow groups [K (n)*, CH* ®
Z))*® (compare Cor. 2.5 and Cor. 3.21).

Denote by P, € Qlcy, ..., ¢y] a polynomial, which is the n-th graded component of log(1+c¢; +ca+...+¢y)
multiplied by n (variable ¢; has degree i here). For example, P; = c¢1, Py = 2¢a+(c1)?, P3 = 3c3+3cica+(c1)3.

Proposition 2.3 ([7, Prop. 2.3]). (1) P, € Zlca,...,cn);
(2) P, ’s produce linearly independent (over A) additive operations from Ky to A*;
(8) all additive operations from Ky to A* are infinite A-linear combinations of Py ’s.

Remark 2.4. This proposition is a generalization of a result of A.Vishik classifiying additive operations
from K to itself. Vishik has shown that any additive operation is a unique infinite linear combination of
operations Ty := Zle(—l)ifl(lf)wi, where 1); are Adams operations. The proofs of Vishik’s result and of

ours are quite similar and one can check that T} equals to a polynomial P on Chern classes ciK o,

Corollary 2.5. The natural map [Ko, CH'®Z | /p — [Ko, CH' /p|*® is an isomorphism of 1-dimensional
vector spaces.
In particular, take ¢;,¢ip to be two generators of additive integral operations from Ky to CH' ® Zpy,

CH™ @ Zpy respectively. Then (¢;)P = agy mod p for some a € Fy,.

2.3. The gamma-filtration on K. As for any g.o.c.t. one can define Chern classes for Ky, i.e. operations
cf(o : Koy — Kg. These operations are strictly connected with y-operations -; and can be expressed in terms
of so called A-operations ([1, Exp. 0]).

One then defines the following ~-filtration on Kjy:

(2) Y Ko(X) =< cfo(al) : --cﬁo(akﬂ Zij >m,a; € Ko(X) > .
J
We summarise properties of the gamma filtration in the following proposition.

Proposition 2.6. (1) v'Ky C TZ:K(), where T is the topological (codimlension) filtration on Ko;

(2) Chern class ciCH : Ko — CH" induces an additive morphism c; : gra Ko — CH*;

(3) ¢; @idg is an isomorphism between gri Ko ® Q and CH' ® Q;

(4) c1 is an isomorphism, cy is surjective when restricted to the graded components of the gamma filtra-

tion.

3. OPERATIONS FROM MORAVA K-THEORIES

Fix a prime p. From now on all theories are defined over Z,)-algebras and the adjective integral will
always mean defined over Z,).
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3.1. p"-typical formal group laws.

Definition 3.1. A series v € A[[z]] is called p"-gradable (w.r.to z) if it is of the form >~ a;zpitie" =1,
A series n € A[[z1,...,x,]] is called p™-gradable if it is p™-gradable w.r.to any variable x;.

The reason for this name is that a p™-gradable series over A can be made a homogenous series of degree
1 over the ring A[v,] with degv,, =1 — p™, and degx = 1.
The following is straight-forward.

Proposition 3.2. (1) Whenever composition of p™-gradable series is defined, it is p™-gradable.
(2) If a series vy is p™-gradable and invertible w.r.to composition, then its inverse is also p™-gradable.
(3) If a series if p*™-gradable, then it is also p™-gradable.

Recall that there exist a notion of a p-typical FGL, and over a torsion-free ring an FGL is p-typical if its
logarithm has the form $°5° ;27" ([2, Th. 4]).

There exist the universal p-typical FGL Fpp over the ring BP which is non-canonically isomorphic to
Zp[v1,v2,.. . Tts logarithm is Y-, l;zP" where pl,, = 37 livﬁii (that is we take v; to be Araki generators).

For these generators we have [p]-5p = Y2727 v;27" mod p.

Definition 3.3. Formal group law F over a Z,)-algebra is called p"-typical, if it is p-typical and [p] -r x is
a p"-gradable series.
An orientable theory is called p™-typical, if the corresponding FGL is p™-typical.

Proposition 3.4. There exist a graded ring BP{n} classifying p"-typical FGL’s.

The ring BP{n} can be naturally identified with a factor ring Zp)[vn,van, . ..] of BP where Araki gener-
ators v; are sent to zero for i {n.

In particular, BP{1} is BP, and BP{kn} is a natural factor of BP{n} for any k,n € N.

Proof. Tt is clear that the ring BP{n} exists and can be identifed with a factor of the ring BP classifying
p-typical FGLs with relations given by those coefficients of [p] -rs,. « being equal to zero so that it is a
p"-gradable series. Denote by Fppyy) the universal p"-typical FGL.

Let v; be Araki’s generators of BP. Our goal now is to show that the map ¢ : BP — BP{n} sends v; to
zero for i { n. ‘

Suppose that ig = min{j : ¢(v;) # 0,7 { n} is finite. Recall that [p] -pp 2 = Z?P v;zP", and therefore
[p] ‘BP{ny T = Zf #(v;)zP" . By our assumption

BP{n} v v
(3) [p] BP{n) T = Z P(vjn)z?’ +pp{n) ¢(Vi)2"" +Bpiny - -
J

The first summand of the RHS of (3) is p™-gradable up to summands of degree greater than zP"°. Indeed,
log; is p™-gradable up to zP", and therefore F is also. It is clear then that the sum over F of 2P s
p"-gradable up to certain degree of x strictly bigger than z?".

The rightmost summands of (3) have degree in x strictly bigger than p, and therefore in [p] -p P{n} T
there appears the monomial ¢(vi0)xp1°, so the series is not p"-gradable and we get a contradiction with the
finiteness of ig.

Tt is clear for degree reasons that the FGL of BP/(v;,i { n) is p"-typical, and thus it is the ring classifying
p"-typical FGLs. 0

Corollary 3.5. A FGL F over a ring R is p™-typical iff it is p-typical and F = aijxiyj is p™-gradable
(i.e. a;; =0 wheneveri+j#1 mod (p" —1)).

Proof. For degree reasons Fpp(,) has the form as in the Corollary, and therefore any p"-typical FGL has
such form.

The converse is straight-forward: if F' is p™-gradable, then [k] -p x is p"-gradable for any k € Z. O
Corollary 3.6. If A is a torsion-free Z,-algebra, then a FGL F over A is p"-typical iff its logarithm is of
the form S50 lzP"".

Proof. Tt is known that p-typical FGLs over torsion-free Z,)-algebras are precisely those which have the

logarithm of the form Z?io lizpi. Thus, F' having logarithm of the form prescribed in Corollary is p-typical.
Note that [p] -r 2 = log~* (log(pz)). Thus, if log is p™-gradable, then so is [p] -p « and F is p"-typical.
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Conversely, it is enough to check that the logarithm of BP{n} is p™-gradable. To do this we need to recall
the formulas linking coefficients of the logarithm of BP in terms of Araki generators v;:

m .
plm = Z livglfiv
=0

where vy = p.

Denote by I; € Q[vn,v2n,...] the coefficients of the logarithm of the universal p"-typical FGL, i.e
loggp(ny = Z;io [;z7". Let ig := min{j : [; # 0,n { j}, and assume that it is finite. Then pl;, =
Z?l_ol livf,:ii +1;,p”"° in BP, and in the sum in the RHS everything maps to zero in BP{n}. Indeed, if n { i
then I; is zero, and if n|é, then n { iy — i and v;,_; maps to zero.

Thus, the equation reduces to pl;, = pP°l;,, and we arrive to a contradiction: ;, = 0. 0

Definition 3.7. Denote by BP{n}* a theory of rational type with the ring of coefficients BP{n} and the
corresponding formal group law is the universal p"-typical FGL.

Clearly, from the universality of algebraic cobordisms the following is straight-forward.

Proposition 3.8. Theory BP{n}* is the universal p™-typical orientable theory, i.e. for any g.o.c.t. A* s.t.
the correspoding FGL is p™-typical there exist a unique morphism of theories BP{n}* — A*.

3.2. Definitions and grading.

Definition 3.9. Let n > 1. A theory of rational type with a p"-typical FGL F over Z,) is called n-th
Morava K-theory K (n)* if the height of F mod p has height n.

Later on we will need the following.

Proposition 3.10. Let F' be a FGL of an n-th Morava K-theory.
Then its logarithm has the form

as ,2n

al n
logr (@) =24+ —2 + 2P +...
K(n)(7) ) 7

X
where a; € Z(p).

k

Moreover, a, = (a1)® mod p.

Proof. The condition that F mod p has height n means that it is classified by a map o : BP{n} — Z,,
sending the Araki generator v, to an invertible element of Z).

The logarithm of BP-theory has the form ) .o/ LizP" where pl,, = > livﬁi_i. Denote by I, € Q the
image of [,,, € BP ® Q under the map classifying the FGL F.

As we have shown in Prop. 3.6, for the logarithm of any p™ typlcal FGL I,,, of BP is sent to zero when
m { n. Let us show now by induction that for n-th Morava K-theory p*l,, € Z( )» and p ¥len = (pln)* mod p.

Base of induction (k = 1) is clear, as pl,, = ¥ (v,) =: a;.

We have

pk(l kn ! lkn Zp 1 zn¢ U(k— z)n) ’”‘7

and by induction we see that the RHS is integral and reducmg modulo p we get
(k—1)n

Prlen = pkilli(k—l)nd)(vn)p = (a1)" a1 = (a1)* mod p.
O

One can easily check that the first terms of the formal group law of any Morava K-theory K (n)* look like
this:
1 Pl som . )
Frmy(w,y) =2 +y—a1~ Z (p. )J;ly” ~* + higher degree terms,
piz \?

where aq € Z(p)

Remark 3.11. The Artin-Hasse exponential establishes an isomorphism between formal group laws F,, =
x +y+ xy and a p-typical FGL over Z,) of height 1.
Therefore Ko ® Z,) is isomorphic to a first Morava K-theory as a presheaf of rings.
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It is not true that any two n-th Morava K-theories as defined above are multiplicatively isomoprhic. We
will show, however, in Theorem 5.3 that any two n-th Morava K-theories are isomoprhic as presheaves of
abelian groups.

Proposition 3.12. (1) Morava K-theories K(n)* are Z/(p™ — 1)-graded.

We denote its graded components as K(n)', K(n)?, ..., K(n)?" =1, and freely use the following
expressions K(n)', K(n)? medr" =1 [ (n)47®" =1 to denote the component K(n)! where j = i
modp” —1,1<j<p"—1.

(2) The grading on K(n)* is respected by Adams operations.
(8) The grading is compatible with push-forwards, i.e. for a proper morphism f: X — Y of codimension
¢ push-forward maps increase grading by c, f. : K(n)/(X) — K(n)¢(Y).

In particular, c{((n)(L) € K(n)X(X) for any line bundle L over a smooth variety X.

Proof. Let Y22, ai“”:# be the logarithm of K(n) (Prop. 3.10). Cousider the FGL over the graded ring

Zp)[vn; v, '] (with degv, = 1 — p™) defined by its logarithm Y °/ %vn”"jxpm. Denote by K(n)* the
corresponding theory of rational type.

Since the logarithm is homogenous of degree 1 (with = having degree 1), the map L — Z,[v,, v, 4
classifying the FGL preserves grading and the theory K (n)* inherits grading from algebraic cobordisms.

It is easy to see from the COT that Adams operations respect grading on algebraic cobordisms and
commute with morphisms to orientable theories. Thus, properties (2), (3) are straight-forward for K (n)*.

The FGL F (n) can be defined by setting v, =1 in Fi(,,) and theory K(n)" is the localisation of K(n)*

along v, = 1, so that components K (n)*®"=1) glue together for all r € Z. The claim now follows. O

3.3. Chern classes: statement of the main theorem.

Theorem 3.13. For any Morava K-theory K(n)* and any p™-typical theory A* there exist a series of
non-additive operations ¢; : K(n)* — A* for i > 1 (which we call Chern classes) satisfying the following
conditions.

i) Operation c; is supported on K(n)* ™4 "= "j e c¢;(x) =0 for x € K(n)?, where j #4 mod p" — 1.
ii) Denote by cior = Y ;~ Ci the total Chern class. Then the Cartan’s formula holds:

Ctot (T +Y) = Fre(n)(Ctot (), Crot (y))-

i) If A is a free Zy)-module, then all operations from K(n)* to A* are uniquely expressible as series in
Chern classes: 5
[K(n)", A" ® Z,)] = Allcx, ..., ci, -]

Remark 3.14. V.Petrov and N.Semenov introduced operations ci,cs,...,cy» from a specific Morava K-
theory K (n)* to Chow groups in [6].

They did not use the COT, which was not available at that time, and the operations were constructed to
CH* ® Zy modulo torsion.

Remark 3.15. The Cartan’s formula in the Theorem 3.13 should be understood as a relation for each
particular Chern class (in the same way as in the classical case).

Namely, ¢;(z +y) = (Frn)(c1(z) +ca(z) +... +ci(2), e1(y) + c2(y) +. .. +ciy)))i, where (Fk ()i means
part of the degree i.

Remark 3.16. No uniqueness of Chern classes is claimed in the Theorem, though for operations to Chow
groups it is not hard to explain how big is the difference of possible Chern classes. For operations from any
n-th Morava K-theory to itself Chern classes are in some sense ’less unique’, however, one can define the
gamma filtration (Section 6) which does not depend on any choices.

It should be noted that one can substitute the formal group law of K(n)* in the Cartan’s formula to any
p"-typical FGL over Z,) of height n. The proof remamins the same. There is no advantage of using one
or another FGL for the Cartan’s formula for Chern classes from K (n)*, however, using the same FGL as
K (n)* looks similar to the classical case of Ky. The usual Cartan’s formula for Chern classes from K, can
be written as ¢ior (2 + y) = Fiy (Ctot (), Ctot(y)) where cior = 2@1 Ci.

Remark 3.17. If A is not a free Z,)-module, then it is not true that all operations from K (n)* to A* are
expressible in terms of Chern classes (for n > 1).

More precisely, we will show in Section 3.6 that for n > 1 there exist additive operations from K (n)* to
CH*/p which are not liftable to CH* ® Z,) even as non-additive operations.
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To prove the theorem first we consider the case A* = CH* ® A where A is free as a Z,)-module. Clearly,
as CH* ® A = ®CH" ® Zy), it reduces to the case A = Z,. In this case we construct Chern classes by
induction on degree. From the Cartan’s formula it follows that derivative 0'c; of operation ¢; is equal to
a polynomial in Chern classes of smaller degree. To define ¢; one calculates an anti-derivative of d'c; as a
Q-polynomial in ¢j, j < 4. This is defined uniquely and any anti-derivative differs from it by an additive
operation. Our goal is to find an additive operation ; s.t. its sum with the anti-derivative above is an
integral operation, to be denoted ¢;. We reduce the problem of existence of ; to a certain question about
additive operations from K(n)* to CH*/p (Lemma 3.23). This is done in Section 3.5.

In Section 3.6 we investigate additive operations from K (n)* to CH*/p. Though we notice that there are
many of them which are non-liftable, we find a sufficient condition for liftability as an additive operation
which is sufficient for our purposes.

It is not hard to show using Theorem 2.1 and the COT that operations ¢; provide rational generators
of the ring of all operations to CH* ® Q. Thus, to prove iv) of Theorem 3.13 it is enough to show that a
non-integral polynomial in Chern classes will yield a non-integral operation. To do this we make a careful
study of derivatives of poly-operations defined by polynomials in Chern classes finally reducing the question
to poly-additive poly-operations. The latter problem is quite easy. This is done in Section 3.7. In fact, we
also show that external products of Chern classes provide free generators of poly-operations.

To prove the existence part of the theorem for a general p™-typical theory it is enough to consider the case
of universal p™-typical theory. Using the continuity of operations we develop a tool which allows to truncate
operations to theory B* to operations to CH* ® B. Thus we are able to reduce the problem to the already
solved case of the Chow groups. The part iv) of the Theorem is in fact proved by the same tool.

In what follows n-th Morava K-theory is fixed, its FGL is denoted by Fg(,) and its logarithms is

10g () (%) = @ + D02, %l"pm

3.4. Corollaries of the main theorem. In this section we deduce several corollaries of Theorem 3.13 in
the case when A* = CH* ® Z(,). These corollaries are not applications of our result, but on the contrary
they provide us a clue of how to construct Chern classes and prove the theorem. Lemma 3.19 is proved
unconditionally and will be used in subsequent sections as a tool, while Cor. 3.18 and 3.21 will be proved by
the end of Section 3.6.

Notation. Denote by v,(a) the p-valuation of a rational number a € Q. Let @ be a polynomial with
rational coefficients: @ = Za(il,.u,in)t? -+ tin. Denote by v,(Q) the smallest p-valuation of coefficients of
monomials of Q, i.e. 1,(Q) = minvy(ag,,. ;,)). Thus, Q has coefficients in Z, if and only if v,(Q) > 0. If
Q is p-integral, then it is divisible by p if and only if v,(Q) > 0.

Let P be a polynomial in variable ¢ over some ring A. Denote by P[t*] the coefficient of ¢* in P (which is
an element of A).

Define rational polynomials P; € Qlcy, ..., c;—1] for each i > 1 by the following formula: (logK(n) Ctot)i =
¢; — P;. Here (logK(n) Ctot)i 18 the i-th graded component of the series 1ogK(n)(cl + c2 + ...) where ¢; has

n

degree i. For example, Py = ... = Pyn_1 =0, Ppn = —%(cl)p .

Note that from the Cartan’s formula it follows that (logg(, ctot); defines an additive operation from
K(n)* to CH' @ A® Q, where c;’s are operations from Theorem 3.13. There exist the minimal y; € N s.t.
phHi (logK(n) Ctot)i := ¢; 1s integral.

By iv) of Theorem 3.13 the operation ¢; should be uniquely expressed as an integral polynomial in
c1,...,ci. Moreover, this polynomial should not be zero modulo p as ¢; is not zero modulo p by the choice
of ;. Combined with formulas above this gives us an equation ¢; = p*i¢; — p*¢ P;. Thus, p; > 0 (as P; does
not contain ¢;) and p*i is bigger or equal to the least common multiple of p-factors of denominators of P;.

More precisely, p; = max(0, —v,(P;)). Indeed, if P; is integral (i.e. v,(P;) > 0), then the expression ¢; — P;
is already integral and not zero modulo p (as P; does not depend on ¢;). Otherwise, if v,(P;) < 0, we have
t; = —vp(P;) and the expression ¢; = p~vr(Pie; — p=vp(P) Py s integral and not zero modulo p.

Thus, we have proven the following Corollary, which can be used to define operations ¢; inductively.

Corollary 3.18. Let P;, u; be as above.
Then there exist an additive operation ¢; : K(n)* — CH'® A s.t. the following equality between operations
to CH' ® A® Q holds
_ i

o PpHi

Pi(cr,. ., cim1)-

C;
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Actually we can calculate p; precisely, and this is done in the next Lemma. The computation together
with the structure of polynomials P; allows to prove some relations between additive operations from K (n)*
to CH* @ Zp) in Cor. 3.21.

The following Lemma is proved unconditionally.

Lemma 3.19. Let C := cit + cot?> + ... = Zfil cit’ be a formal power series in variables c;, i.e. C €
Zlci, ez, .. |[[t]]. Define Ps € Qle1, ¢z, ..., cs-1] to be equal to cs —1og(,,) (C)[t°] for s > 1.

Fizi>0.

1. Let j s.t. j # i mod (p™ —1). Set variables cs to be zero whenever s # j mod (p™ — 1).

Then P; = 0.

2. Let v be s.t. i = p" v and p" tv. Then v,(P;) > —k.

2p. If moreover k > 0, then v,(P;) = —k.

Set variables c; to be zero in P; and P, whenever j # 4 mod (p™ —1). Denote these polynomials by P, P,.

Then over Fylci, ..., ¢;] polynomials (p*P; mod p) and ((c, — Pv)pnk mod p) are proportional.

Remark 3.20. Let us briefly explain how it will be used later.

In the course of an inductive construction of Chern classes the operation ¢; will be expressed as a sum
of P; and some additive operation. Part 1 of the Lemma will be enough to prove that ¢; is supported on
K(n)? mod ("=1) (which is Theorem 3.13, i)). Part 2p will be used to show that p*P; defines a non-trivial
operation modulo p. Also Corollary 3.21 follows from it, which indirectly confirms and motivates results of
Section 3.6.

Proof. 1. Denote by Cj; = Z:io Cj+7-(pn_1)tj+r(p"71), which equals to the formal power series C with
variables ¢s taken to be zero whenever s # j mod (p" — 1).

We need to show that the coefficient of ¥ in log(ny Cpyj) = Cpy) + %C@; + ... equals to zero. Indeed, a
product of p*"* monomials cj+,«(pn,1)tj+’°(p"_1) has the power of t equal to jp*” = j modulo p™ — 1.

2. Let us prove that pFP; is an integral polynomial. We need to show that the coefficient of ' in
PPC + arpt1CP" + ..+ a,CP + (L’;%Cp"(ﬂl) + ... is a polynomial over Z,). First (k4 1) summands of

n(k+r)
this expression obviously produce an integral polynomial. Other summands are of the form ay,p ppkﬁ

for r > 0. The derivative by t of this expression is equal to ak+rpk”+T(”_1)C’p"(k+r)_10’7 which is an integral

polynomial with coefficients divisible by p*"+7("=1) On the other hand, the coefficient of ¢’ is multiplied by
i = p™*v after differentiation. Comparing these two statements and using comparison v, (i) = nk + v,(v) <
nk+n—1<nk+r(n—1) we get that the coefficient of ¢ is integral, and the claim is proved.

2p. Two cases can be dealt with separately.

First, assume v,(v) < n — 1. Then we can actually prove the proportionality of P; and (¢, — Pv)p"k.

We have v,(i) < nk +mn — 1 and by the argument in 2 summands ak“pk% do not add anything
non-divisible by p for > 0. Thus, polynomial —p*P; modulo p equals to akC’pnk [t)]. The latter is simply
akc{,’"k.

Using the same argument one gets that ¢, — P, modulo p equals to C[t*] and thus is ¢,. The claim follows.

Second, vp(v) = n — 1. Then again using the same argument polynomial —pFP; equals (aka"k +
%C’p"(k“))[ti] modulo p and —P, equals %C’pn [t] modulo p. Our goal is to prove that ]%Cpn(wl)[tpnk”]
is equal to (%}C’p” [t“})pnk modulo p when specific variables in C' are taken to be zero. As axy1 = (ap)*+!
nk

mod p, ax = (a1)* by Prop. 3.10 we will have p*P; = (al)kcgnk + (al)k"’l%C”" [t”])pnk and (¢, — P,)P"" =
" 4 (ay)P"" %C”n [t°])P"". As (a1)?"" = a; mod p the claimed propotionality would follow.

Let Ibest. 1 <1 <p"—1,4=1 mod (p" — 1) or in other terms, v = [ + s(p™ — 1). From the
equality v,(v) = n — 1 one easily gets that there exists u € Z non-divisible by p s.t. s = [ +up"™!, i.e.
v=1++up" H)(p" —1).

Define f to be > - ciprpn_1)t", thus, O = t'f(#*"~1). In this notation we have two equalities:

n n ~ 1, n n
FEr" P mod p,  —B, = —t®" fP" 1P ).
p

n

~ 1
@) —prP= (&t
p

n(k+1) pr Gt

v

n(k+1)

T ) = G p@" P )P mod p. Simplify
it by changing variables = #*"~! and recalling that v — Ip” = up™ '(p" — 1) and p™Fv — [pnF+D) =

up™*+7=1(p" —1). Thus, we need to prove that %f(m)pnoc“) [ze2"""" '] equals to (%f(x)p" [zer" ' 1)P"" . This

We need to prove the equality %tlp
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is already a rather universal equality since it has to be true for any positive integer v non-divisible by p, any
k > 0 and any series f (as it has coefficients which are independent variables).
To see this recall two simple facts about multinomial coefficients.

m

(1) For any m > 0 p-valuation v, (Tlf--ﬂ"k) =1if and only if r; = a;p™ ! for all j, 0 < a; < p.
In particular, k is at most p and allowing aj to be equal to 0 we may write these coefficients as

2) For any a; : 0 < a; < p we have
J J

1 p" 1 P
- 1 1 | = mod p.
p alpm 7"~7app P al,...,a,p

One writes %f(x)pm [z4P" "] explicitly for any m > 0 and sees that it equals (%f(ac)p[:r“])pm_1 modulo p
using the identities above.
O

Assuming Theorem 3.13 we deduce the following result, which will be proven unconditionally later.

Corollary 3.21. Let i = p™*v where p™ { v, and let ¢;, ¢, be generators of integral additive operations from
K(n)* to CH'® Zpy and CH® ® Zyy, respectively.
Then ¢; = a(qbv)p"k mod p for some a € F};.

Proof. If k = 0 the claim is trivial, so assume k > 0.

It is clear that to prove the Corollary we may choose any generators ¢;, ¢,,. In accordance with Cor. 3.18
and using Lemma 3.19 we choose them to satisfy the following equalities ¢; = pFc; — pFP;, ¢ = ¢y — P,.

As additive operations are supported only on the one component, which in this case is K(n)", to compare
them we may restrict operations to it. Thus, we get ¢, = ¢, — Py, ¢; = pFe; — p* P,

The comparison between (gbv)pnk and ¢; modulo p now follows from part 2p of Lemma 3.19. O

3.5. Construction of Chern classes. In this section we reduce the existence of operations ¢; : K(n)* —
CH'® Zp) satisfying conditions i), ii) of Theorem 3.13 to Lemma 3.23, which is proved in the next section.

For now let us provide another point of view on the Cartan’s formula as stated in ii) of Theorem 3.13.
We may look at each graded component of ¢;o¢(x +y) separately: in degree i the derivative of ¢; is expressed
as a polynomial in external products of Chern classes of smaller degree. For example, for i = p" we get
Oepn (,y) 1= cpn(T +y) — cpn(T) — cpn(y) = - Zfﬂzzl (p;)(cl (z))"(c1(y))?" . As the derivative of an
operation defines it uniquely up to an additive operation, this gives a way of an inductive construction of
Chern classes.

It is rather easy to integrate the derivative of the i-th Chern class as Q-polynomial P; in c¢q1,...,¢;—1
(notation is consistent with Section 3.4). For many values of ¢ this polynomial is not integral (Lemma 3.19),
and to construct ¢; one needs to find an additive operation s.t. the sum of P; with it will be integral (cf. Cor.
3.18). For example, f%(cl)pn has the same derivative as the derivative of cp» predicted by the Cartan’s
formula. To prove the existence of an integral operation c,» we need to find an additive operation 1~ from

K(n)* to CH?" @ Q s.t. —%(cl)p" + 1pn is an integral operation.

Proof of Theorem 3.13. We construct operations ¢;, satisfying i) and ii) by induction on i s.t. they satisfy
the following property:

iiibis) a generator of integral additive operations ¢; is expressible as an integral polynomial in ¢q, ..., ¢;.

We will show in Prop. 3.29 that for any j > 1 the space [K(n)*, CHJ ® Z,)]*® of additive operations is
a free module over Z,) of rank 1.

Base of induction. For 1 <i < p™ — 1 choose ¢; to be any generator of [K(n)*,CH/ ® L))

By Prop. 3.29 condition i) is satisfied. As there are no terms in Fi () of degree bigger than 1 and less
than p™ — 1 the Cartan’s formula can be reformulated as additivity of operations ¢; for 1 < ¢ < p™ — 1.
Therefore ii) is satisfied. Property iiibis) is obviously true.

Induction step. Let ¢ > p™ — 1. Assume that operations ¢, ca, ... ¢;—1, satisfying i) and ii), are defined.
In particular, this means that we can calculate derivatives of polynomials in Chern classes c;, j < i, as
polynomials in these Chern classes ¢;, j < <.

Define the rational polynomial P; € Q[eq,...,¢;—1] via the following formula: (logK(n) Cot)i = ¢; — P
Here (log () Ctot): is the i-th graded component of the series log(,)(c1 +c2 +...).

add
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We claim that the derivative of ¢; as predicted by Cartan’s formula is equal to the derivative of P; as a
polynomial in Chern classes. Indeed, (logg(,,) ctot)i is an additive operation, thus 31((10gK(n) Cot)i) = 0 =
0 (c; — P;). (A priori there could be relations between external products of Chern classes. However, the
equality here is between derivatives of P; and ¢; as polynomials in external products of ¢1,...,¢;—1.)

Therefore if we define ¢; as a sum of P; and some additive operation, condition ii) will be satisfied.

Lemma 3.22. [c¢f. Cor. 3.18] Let p; = max(0, —v,(F;)).
Then there exist a generator ¢; of additive operations [K(n)*,CH' @ Z )%, s.t. operation ¢; : K(n)* —

CH'® ® Q defined by the formula ¢; = P;(c1,-++ ,ci_1) + quj acts integrally on products of projective spaces.

The existence of operation ¢; : K(n)* — CH" ® Z,) satisfying conditions i), ii), iiibis) follows from this
Lemma. Indeed, the COT yields existence of integral operation ¢;, s.t. ¢; ® idg (which is loosely denoted by
¢; in the Lemma) satisfies the formula in Lemma 3.22. The Cartan’s formula will be true for integral ¢;, since
it is an equality between two operations which can be checked on products of projective spaces. As there is
no torsion in values of our theories on products of projective spaces, the statement can be checked rationally
where it is true by the formula defining c;.

Let us show now that condition i) is satisfied. Choose j # ¢ mod p™ — 1. By Lemma 3.19 the polynomial
P; equals zero if we take ¢, to be zero whenever s = j # i mod (p™ — 1). By the induction assumption

this is what happens to operation P; when restricted to K (n)?. By Prop. 3.29 the additive operation pdiji is

supported on K (n)’. Therefore by the formula defining ¢; it is zero when restricted to K (n)7.

Condition iiibis) is satisfied by the choice of p; as explained in Section 3.4.

We finish this section by reducing Lemma 3.22 to a result on additive operations [K (n)*, CH*/p]*,
Lemma 3.23, which is proved in the next section. In fact, much stronger version of it will be proved saying
that the reduction modulo p of many integral operations, whenever it is additive, is proportional to the
reduction of an integral additive operation.

Lemma 3.23. Suppose that for some p > 0, a € Q operation p*P; + a¢; acts integrally on products of
projective spaces and, thus, (by the COT) defines an integral operation .
Then 7 is proportional to ¢; modulo p. In particular, operation w is additive modulo p.

As a matter of fact let us show first that if 7 is integral, then it is additive modulo p. It is enough to show
that its derivative is zero modulo p as an integral polynomial in Chern classes. Recall that the derivative
of p"P; equals to p"d'c; by construction. Here d'¢c; is a formal notation meaning an integral polynomial in
Chern classes c1, .. .,c;—1 which is predicted by the Cartan’s formula. Poly-operation p*d'c; is equal to zero
modulo p, since p > 0. The derivative of a¢; is zero as well.

Lemma 3.22 follows from Lemma 3.23. Fix any generator ¢; of integral additive operations [K (n)*, CH® ®
ZLp))-

Let us prove the following statement by (finite) induction on r using Lemma 3.23.

Claim. For 0 < r < pu; there exist a, € Z(Xp) s.t. ptT TP 4 %fbi is an integral operation.

Base of induction (r = 0). Recall that p; is chosen so that p*i P; is integral, and so if r = 0, one may
take ag = 1.

Induction step. Suppose we have shown that p*«~"P; 4+ %@» is an integral operation.

If » = p;, then the induction is finished and we define ¢; := P; + ;ﬁ—j;ﬁgﬁi, which is proved to be an integral
(ll_bi
pti

operation. As a,, € Z(Xp ) the operation ¢; is a generator of integral additive operations and Lemma 3.22
is proved.

If w; — r > 0 then Lemma 3.23 is applicable to it as follows from a discussion above. Thus, operation
pHiTT P + %@‘ equals to bg; modulo p for some b € Z,). Operation p"i~"P; + (Z—: — b)¢; is zero modulo p
a;fffr ¢; is an integral operation. Define a,4+1 = a, — bp".

If r > 0 then a, — bp" € Z(Xp), since a, € Z(Xp), b € Z(y), and the induction step is proved.

However, for the induction step with » = 0 we need to show that b # a9 mod p.

Additional details on the induction step r=0—r = 1.

Note that this applies only if p™|i, as otherwise by Lemma 3.19 u; = 0 and the induction stops at the base.

As we want a1 not to be p-divisible, polynomial p*i P; should not be equal to zero modulo p.

To prove it use Lemma 3.19, 2p which says that polynomials —p*i P; mod p and (¢, — Pv)pnk mod p are
proportional. However, by induction assumption of the construction (not of this proof) property iiibis) is
satisfied, i.e. ¢, — P, = ¢, for some generator ¢, of integral additive operations. Thus, it is not equal to

and hence operation pti— ("t p, 4
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zero modulo p. From the COT it follows that powers of ¢, mod p are not zero as well, since the coefficient
ring of the target theory has no zero divisors. Therefore —p*:P; mod p also is not zero as an operation to
CH'/p.

The induction step is proved and reduction of Lemma 3.22 to Lemma 3.23 as well. O

Remark 3.24. One could avoid the use of ugly Lemma 3.19, 2p in the latter argument by proving all parts
of the theorem together by induction. Namely, to show that p*i P; is not zero modulo p it would be enough to
prove that there are no polynomial relations between constructed operations ¢; modulo p. This is equivalent
to part iii) of the Theorem.

As the technique which we develop in Section 3.7 to prove iii) differs from the discussion above we advocate
the use of Lemma 3.19 as a clearer explanation.

3.6. Additive operations to Chow groups modulo p. In this section we prove Lemma 3.23 as Corrolary
3.33 of the study of additive operations [K(n), CH*/p|*i. This Lemma is the main technical part of the
proof of the theorem, it will be used not only for the construction of Chern classes to Chow groups but in
the general case as well.

The proof is based on a discussion of the system of linear equations, which defines additive operations
according to the CAOT. Roughly speaking it goes as follows. This system is finite-dimensional (for operations
to a particular component of CH* /p) and is upper-triangular when written in a naturally chosen basis. Over
rings Z,), Q coefficients on the diagonal of this system are non-zero, and therefore the space of solutions is
1-dimensional (cf. Prop.3.29). However, over I, many of coefficients on the diagonal are zero which leads
to a higher dimension of the space of solutions and to the existence of additive operations to CH*/p which
are not liftable as additive operations to CH™ ® Z,. It turns out that for rather a natural set of additive
operations (gradable operations, Definition 3.30) it is possible to use equations with zeros on the diagonal
to express all variables in terms of one of them. In other words, one can transform this system into an
upper-triangular one without zeros on the diagonal, but the choice of the new basis for this transformation
is not so natural in the coordinates we work with. Anyway this proves that the space of gradable additive
operations to CH'/p is 1-dimensional (Cor.3.33) and it is easy to show that it is generated by a reduction of
an integral additive operation. Lemma 3.23 then easily follows.

Notation (cf. Section 1.5). Let B be any Z)-algebra. If ¢ : K(n)* — CH* ® B is an operation, denote

by Gi = Gi(t1,...,t;) € Blt1,...,t] the value of ¢ on Hli:1 c{qn)((’)(l)i) = 21z € K(n)(J[(P>)*})
expressed as a symmetric polynomial in t; = ¢{#(O(1);). Here O(1); is the pullback of the canonical line
bundle on the i-th component of the product of projective spaces.
Remark 3.25. From continuity of operations it follows that G; is divisible by 7 - - - #;.

Now we rewrite the CAOT for the case A* = K(n)*, B*=CH™ ® B.

Theorem 3.26 (CAOT). Additive operations [K(n)*, CH™ @ B]“% are in 1-to-1 correspondence with the
set of symmetric polynomials G; € Blt1,...,t;] - (t1---t;) (¢f. Remark 3.25) of degree m for | > 1 which
satisfy the following equations:

Gilty tay .t u+0) = > aiGigjpoa(ty,. o oy, 0 07) =0, (A1)
4,§>0
where a;; are the coefficients of the formal group law of K(n): Fgn)(z,y) = Z” a;x'y’.

Remark 3.27. If we investigated operations from K (n)*, and not from K (n)*, then there would be also a
'polynomial’ Gy € A defining an operation. It is equal to zero in our considerations.

Let 7 = (r1,...,7;) be a partition of m. We do not imply in our notations that numbers r; are ordered
somehow and (1,2, 3) and (2, 1, 3) are both acceptable notations of the same partition. Denote by ozE:,)l ) OF
aff) a coefficient of any monomial 7} - - - #7* in the symmetric polynomial G; where {j1,...,j;} = {1,2,...,i}.

We will call these coefficients variables as we consider them unknown in equations (A4;).

Proposition 3.28. The system of equations (A;) is a finite-dimensional linear homogenous system on vari-
()

';"17“-77%') with i < m.

ables o
(1)

The matriz of this system is defined over Zy), il is upper-triangular when variables Ay

) are ordered
by the superscript (and no matter how we order variables with the same superscript).
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The value of this matriz on the diagonal corresponding to a variable ag?l ) 18 non-zero if and only if
i £ m.
(4)

Moreover, there exist a value on the daigonal corresponding to a variable a(;l i) which is divisible by p

if and only if the partition (r1,...,r;) is p-special, i.e. T is a p-th power for all j : 1 < j <i.

Proof. As G; has to be of degree m and is divisible by ¢; ---¢;, i.e. has degree at least [, then G; = 0 for
I > m. Thus, the system is finite-dimensional, and equations (A;) are clearly linear and homogenous on
coefficients of Gi; and are defined over Z ).

Let a,b,r1,...,7i-1 > 0 s.t. 7:= (r1,...,7-1,a + b) is a partition of m. We need to show that the
coefficient of the monomial ¢{* --- ¢, u®® in the equation A; lies in Z(p)ag) + EBkNZ(P)aEl:E,...,sk)'
(@)

{ n

do not appear as coefficients of monomial ¢]* - - ~t;l_’11 u®v

with ¢ < [ do not appear in the equation A;. Thus, it is enough to show that variables
b

Variables «
O]
(81,-++581)

In fact these variables can appear only in the expression Gj(t1,ta,...,t—1,u+v) — Gi(t1,ta, ..., t1—1,u) —
Gi(t1,ta, ..., t;_1,v) of equation A;. That is we have to look at agi)l sl)til ot ((u ) — st — 0%,
which obviously does not contain the monomial under investigation if partitions § and 7" are different.

Moreover, whenever s; # 1 for all ¢ (which is the case I = m), (u+v)®% —u® —v® is not a zero polynomial

and therefore there is a non-zero element on the diagonal of the matrix corresponding to the coefficient
O]

(s15---,

« in equation A; for §:= (s1,...,8;) # 7.

@ 5" Clearly, all these elements are divisible by p if and only if s; is a power of p for all 7. O

Proposition 3.29. Let B be a torsion-free Z,)-algebra, then the B-module of additive operations [R’(n)*, CH'®
B] is free of rank 1, and it is generated by an operation from [K(n), CH' ® L))

All operations from K (n)* to CH'® B are supported on K(n)', i.e. if ¢ : K(n)* — CH'® B is an additive
operation, then ¢(x) =0 for x € K(n)? whenever j # i mod p™ — 1.

Proof. As was shown in Prop. 3.28 the matrix of the system defining additive operations to CH’ ® B has
rank 1 over Q and is upper-triangular. This proves the first claim.

It is enough to compute the support of a generator of operations from K (n)* to CH' @ Z(py. However,
there is a non-zero additive operation ch; : K(n)* — CH®® Q (the i-th component of the Chern character).
There exist N = N(i) s.t. pNch; acts integrally on products of projective spaces (indeed, an operation is
defined by a finite number of polynomials with a finite number of deenominators), and thus it is enough to
check that ch; has support on K(n)? for products of projective spaces.

In the notations of this section let us show that

() ch(z) € BLCH P D (P*) © Q

From the multiplicativity of the Chern character it would follow that ch(z; - - - 2;) € ®22,CH P =D ((P>*)*)g
Q for any 7 > 1.

Note that the element ch(z) can be expressed as a series in ¢ := ¢{'# (O(1)) € CH*(P>) which is inverse to
the logarithm of the FGL Fi(n). As logg () (x) is p™-gradable, the same is true for its inverse. The formula
5 now follows and the claim about support is proved. O

Definition 3.30. Operation ¢ : f((n)* — CH'® B is called gradable, if for any [ > 1 symmetric polynomial
Gi(t1,...,t;) is p"-gradable in each variable ¢; (i.e. admits only monomials where every variable has its power
equal to 1 modulo p™ — 1).

We will show later that there are many gradable operations from any n-th Morava K-theories. For example,
all additive operations to CH* ® B when B is torsion-free are gradable.

The goal of what now follows is to show that for a F,-algebra B all gradable additive operations to CH*® B
are actually generated by reductions of additive operations to CH* ® Z,). More precisely, we will prove that
the system of equation (A4;) over I, is upper-triangular of corank 1 for gradable operations. This will allow

us to prove Lemmas neccessary for the construction of Chern classes to CH™ ® Z,).
Q)

7

corresponding to it have to be zero whevener there
exist r; € Fs.t. r; #1 mod (p™ —1). We now investigate whenever variables ag) corresponding to p-special
partitions can be non-zero for gradable operations as precisely these variables are in charge of the possible

non-liftable additive operations.

By the definition of a gradable operation variables «

Proposition 3.31. Number p" is equal to 1 modulo p™ — 1 if and only if r is divisible by n.



18 PAVEL SECHIN

Therefore variables ag) corresponding to p-special partition T are zero for gradable operation whenever
there exists r; s.t. p™ does not divide it.
— ,,m modn

Proof. From the equality r = 1 +v(p™ — 1) = p™ we get that p” — 1|p™ — 1 and hence n|m (p™ =p
mod (p™ — 1) and thus m =0 mod n). By definition of gradable operations the claim follows. O

We will call partitions (p™!,...,p"*) — p™-special.

Proposition 3.32. Let {chZT)1 r_)} satisfy the system of equations (A;) and let ag) = 0 whenever there
exists r; 1 mod (p™ — 1). In other words, {ag)} correspond to a gradable additive operation.
Let 7:= (r1,...,7) be a p™-special partition s.t. there are at least p™ equal numbers among r;, 1 < i <.
Then using equations A;_pny1 and A; one may express ag) of in terms of aék) fork>1.

Proof. As there are at least p™ equal numbers in the partition 7, it follows that { > p™ — 1. Denote by
Tl—pn41 = Fj—png2 = ... =1 = p°" for some s > 0.

Recall that modulo p the formal group law of n-th Morava K-theory looks like this x+y—% S ()"
higher degree terms, i.e. at,n_t # 0 mod p if and only if ¢ = ip"~!, 0 < i < p.

sn+n—1

-1

iy (=) 4

Look at the coefficient of monomial #]* - ¢;'~ 2" y? PP i the equation Aj_pn41. Variable

l—pm

O‘Elr)l .m) Abpears non-trivially as a coeflicient of this monomial coming from term
Qpn—1 (p—1)pn—1 Gi(t1,... yt—pn, uXpn_l , ’L)X(pil)pn_1 ).
Here we have used the assumption that there are at least p™ equal numbers in (rq,...,7r;). Otherwise
we would get some multiple of O‘Elr)l ..m)» Decause Gy (t1,...,t;) is symmetric and monomials may ’glue’ in

Giltr, -t w @ X 00,
(k)

The first claim is that variables .’ with k < [ do not appear in the coefficient of this monomial. In
equation A;_pny1 these variables may appear only for k =1 — p™ + 1, however they do not as monomials in

question are additive (Prop. 3.28).

0]
(m1,...,my)
are only those which come from non-additive monomials,; i.e. p does not divide m; for some 1 < ¢ < [. These

*) with k > [ via equation A; by Prop. 3.31 and so the proof will be

s

The second claim is that variables « which appear in the coefficient of the monomial in question

can be expressed in terms of variables «
finished.

Indeed, the only variables coming from additive gradable monomials are a®

(k1. k) They may come

in equation A;_pn 1 from a;pn—1 (piypn-1Gi(ty, ..., ti_pn, uXiP"ﬂ’vX(P—i)p"’l) for somei:1<i<p—1. To
appear as a coefficient of monomial ¢]* - - ~t;’:}ﬁf WP T T T 01 we need pFi = 1y for i < 1 — p”, and
moreover Z'lL:lfp“Jrl pnkl — pnpns — p’ﬂ(s-i-l)'

It is easy to see that the latter equation has a unique solution with k_p,ni1 = ... = ki = s. This

0}
(p*1 ... prke)
of the monomial in question. O

corresponds to the coefficient we were interested in, so no other variable o appears in the coefficient

Proposition 3.33. Let B be an F,-algebra, then the B-module of gradable additive operations from f((n)*
to CH™ ® B is a free module of rank 1 generated by a reduction of an operation from K(n)* to CH™ ® Z).

Proof. Clearly, it is enough to prove that the system of equations (A4;) modulo p is upper-triangular and of

corank 1 for gradable operations. To show this we express all variables O‘Ei«)l B

We say that the variable « is expressible in terms of some variables 3 if there exist a consequence of the

system of equations (A;) which looks like this: a = ) bsf3s, where b, € F,. From Prop. 3.31 and 3.32 we
O]
(r1,-
exists r; # p™® for any s; or if there are at least p™ equal numbers among (r1,...,7;). Consider now other
0
(re,e.m)
the number of p*® among (r1,...,7;), where i > 0. We know that 0 < m; < p"™ for any ¢, and we know that
j =mg+mip" + map?® + ... + msp*" because it is partition of m. Thus m; are uniquely defined by m as
they are the digits of m in p™-ary digit system. This means that the ’exceptional’ variable which can not be
expressed in terms of variables with higher superscript by propositions 3.31, 3.32 is unique. (Note that we

do not claim that it could not be expressible in this way by some other argument.)

;) B8 multiples of one of them.

know that the variable v,/ ) is expressible in terms of variables with a bigger superscript whenever there

variables « corresponding to p”-special partitions which do not satisfy this condition. Denote by m;
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If m < p”, then the space of gradable additive operations is 1-dimensional as it has to be determined by
(m)
1,1,...,

If m > p”, then the variable «

the only coefficient « 1 which is the ’exceptional’ one.

J ) equals 0 due to the Prop. 3.32. Any variable except for the

(1,1,...,1 _
exceptional one can be expressed in terms of the exceptional one and agl 11y The Proposition is thus
proved. O
Proposition 3.34. (1) The sum of gradable operations is gradable;

(2) product of N gradable operations is gradable if N =1 mod p" — 1;
(8) an operation ¢ : K(n)* — CH" ® Zy is gradable iff ¢ ® idg : K(n) — CH" ® Q is gradable.

Proposition 3.35. All additive operations from K(n)* to CH* ® Z, are gradable.

Proof. Only a finite number of (non-zero) polynomials needs to be specified in the COAT to define an
operation to C H’ ®Zp) for each particular j. Therefore one can find N such that p™ ch; has these polynomials
integral, and thus defines an integral operation. By Prop. 3.29 any additive operation is thus rationally
proportinal to ch;, and it is enough to prove that all components of the Chern character are gradable.

Since the Chern character is multiplicative, we have G;(t1,t2,...,%) = [[; G1(t;). It is neccessary and
sufficient for ch to be gradable that v(t) := G1(¢) admits only monomials with ¢ of the power equal to 1
modulo p™ — 1.

Series y defines a morphism from the FGL Fk(,) to the additive FGL. Thus, by definition of the logarithm,

7 is the composition inverse of log k(). One may consider the inverse to the homogenous series x—l—vn% +...
over Zy)[vn], where degv, = 1 — p" and degx = 1. Its inverse is homogenous as well. However, as log K(n)
can be obtained from this series by setting v,, = 1, v can be obtained from its inverse by the same procedure.
Therefore, it’s 'gradable’, the operation ch is gradable and the proposition is proved. O

Remark 3.36. One can show that not all operations K(n)* — CH* ® Z,) are gradable, e.g. #? is not.
For n > 1 not all additive operations K (n)* — C'H*/p are gradable as well, the easiest example being ¢

Proposition 3.37. Leti > p". Assume that operations ci,...,ci—1: K(n)* — CH* ®@Zy, satisfying 1), ii)
and iibis) of Theorem 3.13 exist.

Then these operations are gradable.

Denote by P; = —(logK(n) Ctot); + ¢, § <1, a rational polynomial in Chern classes c1,...,cj_1.

Then aP; + bg; defines a gradable operation for any a,b € Q.

Proof. Operation defined by the polynomial P; is gradable as follows from the gradability of c;,...,c;—1 and
Prop. 3.34, (2). Indeed, any monomial of 10g () Ctot is a product of p*™ Chern classes for k > 0 and pF™ =
mod p™ — 1.

Base of induction. Operations ci,cs,...,cpn_1 are additive and are proved to be gradable in Prop.
3.35.

Induction step. Recall from Section 3.5 that rationally c; is equal to a sum of a multiple of P; and
a rational additive operation ;. Operation P; is gradable by induction and 1; is gradable as additive
oepration. By Prop. 3.34 the induction step is proved.

Operation aP; + bg; is a sum of gradable operations and, thus, gradable. O

Proposition 3.38. Lemma 3.23 and Corollary 3.21 are unconditionally true.

Proof. To prove Lemma 3.23 note that due to Prop. 3.37 expression p*P; 4+ a¢; defines a gradable operation.
It was shown in Section 3.5 that if it is integral then it is additive modulo p. Therefore it is propotional to a
generator ¢; of additive operations to CH® ® Zp) modulo p.

Cor. 3.21 follows as ((bv)pk" is a gradable additive operation by Prop. 3.34 and thus it is proportional to
Dyphn - U

One can show after the proof of iii) of Theorem 3.13 (and in the same manner as the proof in Section
3.7) that the only liftable additive operations K(n) — CH*/p are gradable operations and their p-primary
powers (however p-primary powers do not lift in general as additive operations). From this it is easy to show
that there are many additive operations to C H*/p which are not liftable. Let us produce now a construction
of such operations with a particular example which is proved to be non-liftable directly.

It is well-known (cf. [9, Th. 6.6]) that to any p-partition (p°!,...,p%) of j corresponds an additive
operation CH'/p — CH’ /p which sends the product of i first Chern classes t; - - - t; to the symmetrization
of the monomial £ - ~t‘fsl (as in the notations of Section 1.5).
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It is clear that the composition of such an operation with a gradable operation is not always gradable.
We expect however that all additive operations from K(n)* to CH*/p are generated by the action of the
Steenrod algebra on gradable operations though we do not prove it here.

For example, let n > 1, and consider an additive operation @ : CH?/p — CHP*!/p which sends t;t5 to
th'ty + t1th. The composition @ o ca is a non-zero additive operation, which is supported on K (n)?. Assume

that p # 2. From iii) of Theorem 3.13 it follows that there is the only (up to a scalar) integral operation
ptl
from K(n)? to CHP ® Zpy which is ¢5* . One easily checks that this is not additive modulo p therefore

not proportional to @ o co, and therefore @) o ¢y is not liftable.

3.7. Chern classes freely generate all operations. In this section we prove the statement iii) of Theorem
3.13.

In Sections 3.5, 3.6 we have constructed operations ¢; : K(n)* — CHi(X)Z(p), i > 1, satisfying properties i),
ii) of Theorem 3.13 and iiibis) of Section 3.5. The latter says that generators of additive integral operations
¢; can be expressed as an integral polynomial in c¢q,...,¢;. We now prove that Chern classes ¢; generate
freely the ring of integral operations to Chow groups. In fact, we get a more general statement that external
products of Chern classes freely generate rings of poly-operations (Prop. 3.48).

The proof is independent of the construction of Chern classes and uses only the notion of a gradable
operation (Def. 3.34) and the fact that integral additive operations are gradable (Prop. 3.35).

The starting point for the proof of iii) is the natural inclusion [f((n)*, CH* ® L] C [f((n)*, CH* ® Q]
provided by the COT. We will show that the latter space is freely generated by components of the Chern
character reducing the problem to the Theorem 2.1, and then it is easy to show that it is freely generated
by Chern classes (Prop. 3.44 below). Thus if we have an integral operation it can be uniquely expressed as
a rational series in Chern classes. The problem is then to prove that this is in fact an integral series. To do
this we study derivatives of this operation and, roughly speaking, reduce everything to the case of additive
poly-operations (Lemma 3.47).

We start, however, with several general observations.

3.7.1. Adams operations are universally central. The following proposition was communicated to the author
by A. Vishik.

Proposition 3.39 (Vishik, cf. [9, Th. 6.15]). Let A* be a theory of rational type. Then there ex-
ist multiplicative Adams operations it : A* — A* for i € Z, which are uniquely defined by the property
YA (e (L)) = 1 (L®Y), where L is a line bundle over some smooth variety.

Moreover, Adams operations do not depend on the orientatation.

Proof. The existence of Adams operations was proved in [9] and uniqueness follows from the COT.
Using the transformation of the first Chern class under a change of an orientation, one checks the last
claim of the proposition. O

Proposition 3.40. Let ¢ : A* — B* be an operation between two theories of rational type.
Then ¢ commutes with Adams operations, i.e. ¢ o 1/),;4 = w,]f o ¢.

Proof. According to the COT we may check the equality ¢ o w,‘f = B o ¢ on products of projective spaces.
However, the action of Adams operations ¢ on products of projective spaces (P>)" is nothing more than
the pull-back along the composition of Segre maps with diagonals (i.e. products of k-Veronese maps) and,
thus, commutes with any operation. O

3.7.2. Localisation of non-additive operations.

Proposition 3.41. Let S be a subset in Z\ {0}, denote by Zs := S™7Z the localisation of integers in S.
Let A* be a theory of rational type s.t. the map A — A ® Z[S™!] is injective, and let B* be any g.o.c.t
such that S is invertible in B.
Then the natural map [A* ® Zg, B*] — [A*, B*] is an isomorphism.

This Proposition is obviously true for additive operations, though to deal with non-additive ones we use
the COT.

Proof. From the COT it follows that any operation from A* to B* factors through a theory of rational type
O ®1, B. Thus, without loss of generality we may assume that B* is of rational type as well.

Let ¢ be any operation from A* to B*. We need to show that there exist unique ¢ A* @ Zg — B*, s.t.
its composition with the natural map A* — A* ® Zg is equal to ¢.
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Denote by A,.,, := A*((P*)*") a factor ring of A[[z1, ..., z,]] by the ideal of power series of degree > (n+1).
By the COT and continuity of operations ¢ is determined by its restriction to maps of sets from A,,, ® Zg
to By, for all r,n.

We claim that for any P € A, ,, ® Zg there exists M € Z§, s.t. wﬁ(P) € A, . Recall that operation wj‘e[
is multiplicative and ¥4, (2) = Mz + Q(z) where Q € Az2[[z]]. Write P = Py, + Py + P~} where summands
are of degree less than k, exactly k and bigger than k, respectively. Assume that summands of degree less
than k have coeflicients from A, i.e. P, € A, . Let d be the common denominator of coefficients of P.
Apply 14 to P. Polynomial ¢ (P<y) still has coefficients in A. Polynomial ¢4 (Psy) still has degree bigger
than k. At the same time polynomial 7,/}&4 (Py) has its coefficients in degree k multiplied by d* and thus lying
in A. Therefore 7,/}(‘14 (P) has its summands of degree less than k + 1 lying in A. Iterating this procedure and
using the fact that ¥4 oy =7 the claim is proved.

By Prop. 3.40 Adams operations commute with any operation, ¢(y4(P)) = ¥5 o ¢(P). On the other
hand 9% is an invertible operation when M is invertible in B. Therefore this equality allows to express &(P)
in terms of ¢ uniquely, which proves the unicity of ¢.

One can define ¢ by the procedure above. It is enough to show that maps ¢ : A, — B, , commute
with the restriction maps of the list of morphisms in COT (Segre, diagonals, etc.). However, this follows
quite formally as ¢ and Adams operations commute with pull-backs along all morphisms between projective
spaces. ]

Proposition 3.42. Let K be a theory of rational type with the ring of coefficients being a subring in Q.

Then any r-ary poly-operation from K to CH* @Q can be uniquely written as a series in external products
of monomials in {ch;};>1, where ch : K — CH* ®Q is the unique stable multiplicative operation (aka Chern
character).

In other words, [f(xr, CHio[]"| = Qllcha, - .., chi,. . ]|,

Proof. By Prop. 3.41 the natural map [K ® Q,CH* ® Q] — [K,CH* ® Q] is an isomorphism. As any two
formal group laws over Q-algebras are isomorphic, there exists the unique stable multiplicative isomoprhism
Ko ®Q =~ K ®Q. Obviously, it maps components of the Chern character K ® Q — CH* ® Q to components
of the Chern character Ko ® Q - CH* ® Q. Thus, it is enough to prove the statement for K = K.

Note that there is a standard equality (log(1 + ¢tot))n = (n — 1)lch,, between operations from Ky to
CH™®Q, where log(1+z) =z + %xQ + %x?’ +...and ¢tor = €1 + 2+ c3+ ... is the total Chern class. Using
it one can uniquely express Chern classes as polynomials in the components of the Chern character ch,, and
vice versa. The claim now follows from Theorem 2.1. O

Corollary 3.43. The dimension of the space of operations [K,CH' ® Q] equals to p(i), where p(i) is the
number of partitions of i.

The dimension of the space of r-ary poly-operations from K to CH' @ Q does not depend on K (and can
be interpreted as a number of some partition-type objects).

3.7.3. Proof that Chern classes freely generate all operations.

Proposition 3.44 ([7, Prop. 4.28]). Chern classes are free generators of the Q-algebra of poly-operations
from K(n)* to CH* ® Q.

Proof. From Prop. 3.42 one easily sees that it is enough to show that components of Chern character can be
expressed as polynomials in Chern classes. Indeed, by iiibis) a generator of integral additive operations ¢; is
equal to an integral polynomial in Chern classes. By Prop. 3.29 rationally ¢; is a multiple of ch; and thus
ch; is a rational polynomial in ¢y, ..., ¢;. Therefore Chern classes generate all poly-operations to CH* ® Q.

Suppose that there is a rational relation of degree i (i.e. as a poly-operation to C H? ® Q) between external
products of monomials of Chern classes. Then the dimension of the space of poly-operations from K (n)* to
CH' ® Q would be less than the dimension of poly-operations from K, to C H? ® Q which contradicts Cor.
3.43. Indeed, in both cases the dimension can be calculated as the number of external products of monomials
in variables 1, ¢y, ..., c; which have degree 1. O

Recall from Section 1 that we denote by ® the external product of operations. Proposition 3.44 thus can

be written as [K(n)**",CH* @ Q] = Q[[c1 ..., ¢n,...]]".
We call v; the i-th component of poly-operation ¥ ® ¥ ® -+ - ® ..

Proposition 3.45. Let A* be a theory of rational type, let B* be a g.o.c.t. and let {ds}scs be a set of
B-linearly independent additive operations from A* to B*.
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Then external products of operations {¢s, © ¢s, © - }s, s,....cs5 are B-linearly independent.

Proof. We prove the statement by induction on arity of poly-operations.

Base of induction is the assumption of the Proposition.

Induction step. Suppose we know the statement of the Proposition for i-ary poly-operations, where
i < r. Consider a non-trivial linear combination T := 3~ B(s, s,,....s,)Ps, © s, @ - - @ s, Choose a monomial
with a non-zero coefficient in this linear combination S¢s, © ¢s, ® --- © ¢s,., and collect all the terms which
differ from it only in the first component. Denote it by RO ¢s, ©- - O s, := (3, Bl 59,80 01) O Py O - - O s, .

By assumption of the Proposition and from the COT it follows that there exist x in A*((P>*)**) for some
kE > 0, s.t. R(z) # 0. Restrict poly-operation T in the first component to this element. Thus, we get a
natural transformation T}, := T(x, —) from the functor x*~!' A* to the functor B* o ((P>)** x []).

Note that B*(X x (P~)**) = B*(X) ®p B|[#1,...,2k]] for any X by the projective bundle theorem.
Choose any B-linear projection p : B*(P>)** = B[[zy,..., z;]] — B s.t. p(R(z)) # 0 and compose it with
T, to get an (k — 1)-ary poly-operation (id ® p) o Ty.. It can be expressed as a sum of p(R(z))¢s, @ -+ © ¢s,
and a linear combination of external products of ¢; which does not contain this summand. By induction
assumption this is a non-trivial poly-operation, and therefore T' is non-trivial as well. O

Corollary 3.46. Ezternal products of additive operations {(bfs}{pnh} are linearly independent over ), as
poly-operations to CH* /p.

Note that by Cor. 3.21 (unconditionally proved in Cor. 3.33) operation ¢§n is proportional to ¢;,» modulo
p for any 7 > 1, which explains a somewhat strange set of additive operations in the statement.

Proof. By Prop. 3.45 it is enough to show that these additive operations are linearly independent.

Suppose we have a linear combination Y, a; ¢ ”, which is zero modulo p as an operation. Let r = min; r;.
If » > 0 then consider p"-th root of this expression. If it were not a trivial operation, then from the COT it
would follow that its p-primary powers are non-trivial (as there are no p-nilpotents in the coefficient ring of a
target theory). Thus, we obtain a relation in which there is a unique summand «;¢;, ; # 0. It is a gradable
operation by Prop.3.29. .

Since 7 is not divisible by p™, then by degree reasons all other summands look like oqu? "7 where n fr;. It
follows from the fact that ¢; are gradable that this operations are non-gradable and so is their sum. Therefore
such relation cannot exist if a; # 0. O

To prove the next Lemma we will use derivatives of poly-operations (Section 1), and mainly derivatives of
Chern classes (Section 3.5). Recall that by Cartan’s formula d'c,, is expressible as an integral polynomial in
Chern classes ¢1,...,cp—1-

Lemma 3.47. Let ¢ € Q[[cy1, ca,.. ]|V be any N-ary poly-operation from K(n)* to CH* ® Lpy. Assume
that all its first derivatives can be expressed as a Z,)-series in Chern classes.
Then ¢ € Zy[cr, cz, .. J]ON.

Proof. We will prove the Lemma by contradiction. First, it is enough to consider components of ¢ to each
graded component CH’ ® Zpy separately. Thus, we may assume that ¢ is in fact a polynomial and not a
series.

Second, if a counter-example to the statement of Lemma existed, then there would be a counter-example
¢ s.t. denominators of ¢ are at most p. Otherwise one can multiply ¢ by p to get a counter-example which
denominators are smaller. So we assume that pg € Z,[cy, .. ., OV for some n > 1.

Third, we may assume that all coefficients of ¢ are not p-integral, as we can subtract integral part without
breaking a counter-example.

. o . . 71
We will now continue to reduce a counter-example in order to finally get Zi:( (bfl ®

Bi

1,582,000 )5 (P15 TN) P
’7'2 ’V‘N . . .
¢f2 (ORERNO) ¢fN , where f3; € Z(Xp) and p™ {14, for all 1 <1 < N. This would contradict Cor. 3.46.

Denote by i the highest index of the Chern class ¢; appearing in the first component of ¢. One can write
down ¢ as a sum ZS:(%SFIW’SI) ascic;' et @ Ps, where Ps € Zpyler, - - -7Cn]@(N—1) is an integral
polynomial in external products of Chern classes, s.t. Ps is not zero modulo p.

Note that if as is not zero and thus not integral by our assumptions, then derivatives 0;Ps for any
j:1<j < N-—1are divisible by p as polynomials in Chern classes. Indeed, the derivative in the (j 4+ 1)-th
component of ¢ contains asci’c; ' -+ cj' ® 8;Ps which is integral iff asd; Ps is integral.
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Define a (lexico-graphical) order on i-tuples of non-negative numbers as follows: (s;,$;-1,...,51) =
(risriz1,...,r1) if and only if there exist k : 1 < k < i st. s; = r; for i > j > k and sp—1 > rp_1.
For example, (1,0,...,0) = (0,2,...,0).

Let r = (r4,7—1,...,71) be the >-highest index of non-zero coefficients ag of ¢. Without loss of generality
we may assume that a, = % and by the choice of ¢ we have r; # 0. Denote P := P,.

We will show that ¢ having an integral derivative in the first component implies strong restrictions on the
tuple r.

Step 1. Tuple r has to be of the form (p™,0,0,...,0) for some m > 0.

Let us recall how to differentiate monomials in Chern classes:

i i

O -+ ) (w,y) = (ci() + ciy) + Oci(@, )" -+ (er(@) + e ()™ = [J(a@)™ = [J(a@w)™.

=1 =1

In particular, if there exist r; # 0, j < ¢, then the expression on the right contains ¢;(z)" ;;} c(y)m
which does not cancel.

Thus, if there exist r; # 0, j < 4, then in the derivative 01¢ we get a summand %c: ® H;: ¢'®P,
which can not be cancelled by derivatives of other summands in ¢ due to the highest >-order of tuple r.

If r; is not a power of p then thereexist k: 1 < k <r; —1, s.t. (Tk’) is not divisible by p. Thus 81(%0? OP)
contains non-integral (2) %c?—k O] Cf ® P which can not be cancelled by derivatives of other monomials in ¢,
because of the highest order of (r;,0,...,0).

We have shown that the highest >-order term is proportional to %Cf "orPr.

Step 2. Number i has to be non-divisible by p™.

Assume the contrary and denote by v = p%. Look at the derivative of ¢; as given by the Cartan’s

formula. It contains, in particular, the expression —4 Z?i;l (pjn)c% ® 2" =7, Note that it has a summand

which is not zero modulo p (e.g. j = p"~!). Therefore 81(%cf HNG) P) contains non-integral summand

n m4n— _ m+n—1
() @™ o @ P, which we will call *bad’.

We claim that in order for ’bad’ monomial to be cancelled in the derivative of ¢ there has to be monomial

n m4n \—1  gn
,piz (pf—l) (pm+:’1) cb T O Pin ¢. This would contradict our assumption that demoninators are at most
pin ¢.

The only Chern classes ¢;, j < i s.t. 9'c; contains bie,g)C, ©c for some b, o) # 0, e, g are ¢; and ¢,. To see
this recall that formal group law Fi(,,) has only monomials r®y? with a4+ B8 =1 mod (p” — 1) (Prop. 3.12,
(1)). Thus, by Cartan’s formula if §'¢; contains external product b ¢t ® ¢, then e+g =1 mod (p" —1),
though v(e + g) has to be less or equal to i = vp™.

Therefore 'bad’ monomial in 8'¢ may be cancelled only by derivatives of monomials bie,g)cicy © P for
some e > 0 and g > 0. Fix maximal e > 0 s.t. be,q) # 0, it is not integral by our assumptions. The
derivative 01 (b(e,g)cic © P) contains non-integral monomial b g)c§f ® ¢J © P, which can be cancelled only by
the derivative of b gyc§ ¢J © P for some e’ > e,g’ > 0 and b(er o) € %Z(p). By maximality of e it has to be
cancelled by %cf ©® P, but its derivative does not contain bef ® ¢ ©® P for any e > 0, g > 0 and any b € Q.

Thus, e = 0 and ’bad’ momonial has to be cancelled by the derivative of bcl~ © P. As 8(0{)’7L+"'L) contains

c{jmmil ® Cq(jpfl)pmw_l with coefficient (pfﬁ:il), b has to be equal to —Z%(pﬁil)(pﬁz:il) ! which has p-
valuation equal to —2. We do not allow so big denominators in our counter-example ¢ and the claim of Step
2 is proved.

Step 3. Reduce the non-integral monomial with the highest lexico-graphical order.

If 4 is non-divisible by p™, then in the notaion of Lemmas 3.19 and 3.22 p; = 0. Thus, a generator ¢;

of additive operations to CH® ® Z(py is expressible as integral polynomial ¢; — P; € Z) [c1,...,¢] with a

n+m

summand c¢;. Thus, the derivative of ¢ := ¢p— % ®P in the first component is still integral, because ' ¢; = 0,
and 0'(¢)P" = Zi;}l (”IJ)@f ©® qbfr_k, which is divisible by p. Derivatives of v in other components are
integral because derivatives of P are p-divisible as explaine in the beginning of the proof.

Note that the highest »=-order of r = (r;,...,71) of non-zero coefficients a, in 1 is smaller than for ¢.

Step 4. Reduce the counter-example to the form ) %d)i o P;.

If ¢ is not an integral polynomial we apply Steps 1-3 reducing the highest >-order of non-integral mono-
mials ’in the first component’. Note that we have not used the assumption that the poly-operation is integral
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anywhere above. In the end we have ¢ — ), % f o) P;, which is an integral polynomial in Chern classes

and ), %(ﬁfs ® Ps has derivatives in all components which are integral as polynomials in Chern classes.
Here o, € ZE; ) and i, is not divisible by p™.

Thus a counterexample to Lemma is reduced to the case of Zsm %(;Sfr ® Ps. Indeed, if it were integral,
then ¢ would be integral as well.

Step 5. Apply Steps 1-3 to other components of the poly-operation.

Reducing counter-example of the form ) %%1 * ® P, by the procedure above (applied not to the first

component) does not change expressions in the first component.
. 1 T2 TN
Thus, finally we get a counter-example of the form Zi:(’ily’bé-,-uﬂ'N);("‘l7~~»77‘N) %Qﬁfl O 008,
where 35 € Z(Xp) and p" 1 forall 1 << N.
Step 6. If this poly-operation is integral, then multiplying it by p, we get a non-trivial relation in poly-
operations modulo p: »~; B¢} "o (bf;) 0O ¢fNN =0 mod p. Due to Corollary 3.46 we have arrived to a

contradiction and the Lemma is proved. O

Proposition 3.48. Any integral poly-operation ¢ from K(n)* to CH* @ Zy is uniquely expressible as an
integral series in external products of Chern classes.

Proof. Tt is enough to work with polynomials (not series) of Chern classes, i.e. to prove that a poly-operation
to a component of C'H* is expressible as an integral polynomial in external products of Chern classes. Let ¢
be an integral r-ary poly-operation to CH" ® Z).

By Lemma 3.44 operation ¢ and all its derivatives are uniquely expressible as rational polynomials in
external products of Chern classes. We prove by decreasing induction on s that all s-th derivatives are
integral.

Base of induction (s >> 1). Poly-operation ¢ can be written as a finite Q-linear combination of external
products of polynomials in components of the Chern character ch;.

Recall that if 1 is an additive operation, then the j-th derivative of ¢~ looks like: > (T17Tg_.7rj)¢“ ®
¢ @ ---©¢". In particular, for j > N we have §7¢" = 0.

As the Chern character is additive, the same applies to polynomials in it and external products in them.

One could prove the base step directly from the COT using continuity of poly-operations.

Induction step (s — (s — 1)). Suppose that all derivatives 9°¢ are integral polynomials in products of
Chern classes. Previous derivatives 9°~!¢ are integral poly-operations for which Lemma 3.47 is applicable.
Therefore they are integral polynomials in external products of Chern classes. d

This finishes the proof of Theorem 3.13 for the case of A* = CH™ ® Z,), the general case will be proven
by the end of the next section as we develop a technical tool to reduce operations to an arbitrary g.o.c.t. to
operations to Chow groups.

4. CONTINUITY AND TRUNCATION OF OPERATIONS

In this section we study operations between theories of rational type which ’increase’ topological filtration
on products of projective spaces.

Let ¢ : A* — B* be any operation from theory of rational type A* to g.o.c.t. B*. By the COT it is
determined by its restrictions to the products of projective spaces Gy : A[[21,...,2{']] = B[z, ..., 2P]].

Denote by F® a filtration on values of a g.o.c.t. B* on a product of projective spaces generated by the
ideal B*. In other words, F'B*((P=)**¥) C B[[2F,...,2P]] are series of at least degree i in variables ZJB
(which have degree 1). One can easily see, that this filtration coincides with the topological (codimension)
filtration, however, in the following definition we

Definition 4.1. Operation ¢ : A* — B* is said to increase Chern filtration by c if G; takes values in F¢B*(P)
forall { > 1.

Remark 4.2. It seems plausible that for any g.o.c.t. B* one can define Chern bi-filtration F'** satisfying
the following property. If i : Z C X is a smooth closed subvariety of codimension at least n in a smooth
variety, ¢ is a polynomial in Chern classes of vector bundles on Z of degree at least m and any a € B*(Z),
then i.(ac) € F™"B*(X).

Then using the general Riemann-Roch theorem one should be able to prove that any operation ¢ from a
theory of rational type A* respects Chern bi-filtration: ¢pF"™™A* C F™"B*. Moreover, if the operation ¢
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increases Chern filtration by ¢ (in the sense of Definition 4.1) then ¢F"™ " A* C F™*Te=™"B* (note that this
is a new condition only for n < ¢).

There are some technical issues in defining the Chern bi-filtration and as throughout the paper we will
use it only on products of projective spaces we decided to leave aside the general definition of the Chern
bi-filtration. However, we hope that this may be done and it could give some kind of interpretation of what
does it mean for an operation to increase the Chern filtration.

Definition 4.3. Denote by F¢[A* B*] the subset of operations increasing Chern filtration by ¢ > 1.
This defines a decreasing filtration on the set of operations.

Let P,, := (P>°)*" be a product of infinite-dimensional projective spaces.

Let B* be a g.o.c.t. Denote by m,, the morphism of B-algebras B*(P,) — (CH* ® B)(P,) which sends 2
to 2FH

i .

Note that in general maps 7, do not commute with pullbacks in theories B* and CH* ® B, however, a
weaker statement holds.

Lemma 4.4. Let f : P, — P, be one of the morphisms between products of projective spaces appearing in
the list of the COT.
Then for any ¢ > 1 the following diagram is commutative:

F°B*(P,,) =% (CH® ® B)(P,,)

f};*\L féH*@B\L
F°B*(P,) =% (CH® @ B)(P,,).

Proof. Consider the case when f is a partial Segre embedding acting on the last two components of P,,, other
cases being similar (and, perhaps, more obvious).

The pull-back along Segre map fj. sends 22 to Fp(25,25,1), fén-op sends zn t0 2y + zZpjp1. As
Fp(zP, 2B ) =2F + 28, | mod (252F, ) the claim is checked by a straight-forward computation. O

Proposition 4.5. Let A* be a theory of rational type and let B* be a g.o.c.t.
Let ¢ : A* — B* be an operation which increases Chern filtration by c.
Then we can associate an operation tr.¢ : A* — CH®® B, s.t. for anyn >0 and any a € A*(P,,)

(6) treg(a) = m(d(a)).
This defines a functorial map between groups of operations tr. : FC[A* B*] — [A*, CH® ® B].
Proof. According to the COT and Lemma 4.4 the equation 6 correctly defines an operation to CH°® B. [J

Proposition 4.6. Suppose that [A*, CH' ® B] is a free B-module with generators (bgi), ceey qb,(ji), and assume
that the map grf’'[A*, B*] — [A*,CH' ® B] is an isomorphism for all i.

Therefore the lifts of operations qﬁ;i), denote them by wj(-i) € F'[A*, B*], freely generate the B-module of
all operations from [A*, B*].

The same is true for additive operations in the place of all operations.

Proposition 4.7. Let A* be a theory of rational type, B* a g.o.c.t.

Assume that the truncation maps gTZ-F[/I*, B*] — [A*,CH' ® B] are isomorphisms for all i. Assume that
the ring [/Nl*, CH*® B] is freely generated as B-algebra by operations t; : A* - CH™ @B, i € I, and assume
that [A*, CH' ® B] is a finite rank (free) B-module.

Denote by t; € F™i [flﬂ B*| s.t. trpt; = ;.

Then [A*,B*] is freely generated as B-algebra by oeprations t;.

Proof. First, let us prove that there are no relations between operations ¢,. Suppose that P € Bl[t1,...,t;,...]]
defines a zero operation. Define degree of a monomial [, t;’; to be >, m, ry, i.e. this monomial defines
an operation increasing Chern filtration (at least) by its degree. Let j be the minimal degree of monomial
summands of P, note that this is finite whenever P # 0.

Thus, tr; P defines an operation to C H? ® B which is defined a polynomial in operations #;. As there are
no relations between ¢; by the assumption, we deduce that j is infinite, or equivalently P = 0.

Second, let ¢ be any operation from A* to B*. Then approximating its truncations by operations Namely,
let us prove by induction on j that there exist P; € B[[t1,...,t;,...]] s.t. ¢ — P; increases Chern filtration

by j.
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Base of induction is proved the same way as step so we skip it. Operation tr;(¢ — P;) can be lifted as
a polynomial @); in operations ¢; by the assumption of the proposition. Therefore ¢ — (P; — @Q);) increases
Chern filtration by j+ 1. As the Chern filtration on the space of operations is complete, operation ¢ is equal
to a series in operations t;. O

4.1. Truncation of operations from Morava K-theories. Let A* be a p™-typical theory. In this section
we construct Chern classes from K (n)* to A* and finish the proof of Theorem 3.13.
It is enough to consider the case of A* = BP{n}*, the universal p"-typical theory. Thus, for any A* Chern
classes are just compositions of ¢; : K(n)* — BP{n}* with the unique morphism of theories BP{n}* — A*.
Later we will show how to prove iii) and iv) of Theorem 3.13 for any p"-gradable theory.

Proposition 4.8. There exist additive operations ¢; : K (n)? ™4 " =1  BP{n} s.t.

(1) operation ¢; increases Chern filtration by i;
(2) operation tri¢; : K(n)® ™°4P"~1 — CH'® BP{n} is a generator of BP{n}-module of additive
operations.

Proof. First, let us show that there exist operations v; : K (n)* — BP{n}'®Q which increase Chern filtration
by @ and s.t. tr;1; is a generator of additive operations to CH* @ BP{n}. Let us call such generator an
integral generator in this proof.

Clearly, we have an isomorphism [K (n)*, BP{n}* ® Q]*¢? = [K(n)* ® Q, BP{n}* ® Q]*¥. There exist
Chern characters K(n)* @ Q - CH*® Q and BP{n}* ® Q - CH* ® BP{n} ®Q

The space grf [K(n)* ®Q, BP{n}*®Q]*% is a free BP{n} ® Q-module of rank 1 by Prop. 3.29. Take any
generator of this space y;. The truncation of this operation is clearly a generator of the BP{n} ® Q-module
of operations to CH' @ BP{n} ® Q. Recall that the module of ’integral’ additive operations [K (n)*, CH® ®
BP{n}]* is also a free BP{n}-module of rank 1. Therefore there exist a; € Q, s.t. a;x; is integral and
tri(a;x;) is a generator of integral additive operations.

Second, let us define ¢; as an infinite BP{n} ® Q-linear combination of operations ;. For each i we define
¢; by an induction procedure.

On the k-th induction step we construct an additive operation ¢¥ : K(n) — BP{n}*®Q, s.t. ¢ increases
Chern filtration by i, tr;¢; is an integral generator of additive operations and ¢¥ is integral on products of
projective spaces modulo F*.

Base of induction. For ¢! one may take ;.

Induction step.

Let m := min{p™¢Fisintegral}, i.e. ¢} has denominators at most p™ in degree k. If m = 0 then one can
define ¢F™! = ¢;.

Assume now m > 0. We will decrease m by a new induction procedure. Loosely speaking, operation p™¢¥
is "integral modulo F**1’ and its truncations (if properly defined) tr;(p™¢¥) mod p are all zero for j < k.
At the same time the k-th truncation modulo p is a gradable operation and therefore is proportional to the
truncation of 1. Thus, we will be able to find b € BP{n} s.t. pmgbf — b1); has denominators at most p™ !
in the k-th part of filtration.

To be more precise, by the CAOT operation ¢ is determined by series G; € BP{n} ® Q[[z1,. .., z;]]
for 5 > 0. The conditions on the operation reformulate in terms of this series as G; has degree at least k
in variables z, and p™G; € BP{n}[[21,...,2m]] mod F¥*1. Denote the latter elements by H; = p™G; €
BP{n}[21,...,2m)]/F*, in particular, H; = 0 for j > k + 1 by continuity. Note that H; mod p has
degree at least k, since G; were integral in degrees less than k. Therefore by the considerations in Section
4 H; mod p determines a truncated operation K (n)* — CH* ® BP{n}/p. This operation is gradable by
Prop. 3.35, and by Prop. 3.33 it is proportional to the truncation of the operation . Therefore there exist
b€ BP{n} s.t. p™¢¥ — byp;, has denominators at most p™ ! in the k-th part of filtration.

This reduces m and by the induction on m one defines ¢f+1 as ¢F + a1y, for some x € BP{n} ® Q. Note
that since ¥ increases Chern filtration by k ¢f+1 = ¢* mod F¥*! and thus it is clear that the induction
process on k converges to an operation ¢;.

It is clear from the definition that the composition of ¢; with a projection m; to the i-th component of
BP{n}* has the same i-th truncation, so we may take 7; o ¢; to be the operation of the Proposition. O

Corollary 4.9. (1) The BP{n}-module of additive operations from K(n)* to BP{n}* is freely generated
by ¢i; i.e.

[K(n)*, BP{n}*]*™ = {>  a;¢:|a; € BP{n}}.

i=1
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(2) Any additive gradable operation to BP{n}*/p is uniquely represented as a linear combination of
operation of reductions of operations ¢;:

o0

[K (n)*, BP{n}* /p]*torad = Z ¢i mod p)la; € BP{n}/p}.

Proof. The first part follows from Proposition 4.7.
Recall that all additive operations ¢; are gradable, and by Prop. 3.33 the truncation map

grl (R (n)*, BP{n}* [p*40070 =5 (R (n), CH' & BP{n} /p|@daed

is an isomorphism. Arguments analogous to the proof of Prop. 4.7 can be applied here to prove the second
part. ]

Proposition 4.10. There exist operations c; : K(n)* — BP{n}® s.t.

(1) they satisfy a Cartan-type formula (cf. Remark 3.15):

Ctot (T +Y) = Fr(n)(Ctot (T), Ctot (y));

(2) operation c; increases Chern filtration by i;
(3) operation tric; is equal to c$H as operations to CH® @ BP{n}.

Proof. We will construct operations ¢; by induction, in the same way as was done for operations to Chow

groups.

Base of induction. Take ¢; to be equal the additive generator ¢; for 1 <i < p™ — 1.

Induction step. Assume that operations cy,...,¢;_1 are constructed and satisfy properties of the propo-
sition.

As in the case of Chern classes with values in Chow groups we define operations ¢; as a sum of a polynomial
in ¢1,...,¢;_1 and an additive operation increasing Chern filtration by 1.

As usually denote by P; :=¢; — (1ogK(n)(cl +co+...) €Qlea, ..., ci—1]. Let p; = max(0, —v,(F;)).

By the induction assumption operation defined by P; increases Chern filtration by . Moreover, it is clear
that tr;Pi(ci,...,ci—1) = Pi(tricr,...,tri—icioy) = Pi(cfH, ... ). From Prop. 4.8 it clear that there
exists an addltlve operation 1; s. t tr;1); is equal to the additive generator of operations to CH® ®Zp) defined
by the formula p#i (¢S — P,(c{H, ..., cSH)). Then P; + p~*iy; is an operation to BP{n}* ® Q 1ncreasmg
the Chern filtration by i and s.t. its i-th truncation is equal to c{'H.

_ Let us give a sketch of a proof analogous to the construction of operations ¢; in Prop. 4.8 that there exist
Vi =i + 305, bidi, bi € Q, s.t. Py + pTHi); is an integral operation.

Suppose that we have found b;,1,...,bisx € Q s.t. P; 4+ p~Hit; acts integrally on products of projective
spaces up to the (i + k)-th part of filtration and the denominators in this degree are at most p~. It is
clear that p™(P; + p‘“’?zﬁi) is integral up to the (i + k)-th part of filtration and thus one can look at its
reduction modulo p, F*+*. Since P; is integral, this reduction will be a gradable additive map which can be
approximated by ¢; 1. Reducing N one finds b, .

Clearly, P; +p—H: 1; increases the Chern filtration by i, define ¢; to be equal to it and the induction step
is finished. The Cartan’s formula is satisfied by the definition of polynomials P;.

As P; has degree i in Chern classes, then by induction it takes values in BP{n}?, and so is ¢;. O

The following proposition finishes the proof of Theorem 3.13.

Proposition 4.11. Let A* be a p"-typical theory s.t. A is a free Zy)-module.
Then all operations from K(n)* to A* are uniquely expressible as series in Chern classes:

[K(n)*, A*] = Allcy, ... ci, .. ).

Proof. As CH* ® A is isomorphic to a direct sum of CH* ® Z,) as a presheaf of abelian groups, then it is
clear, that the A-module of operations [K (n)*, CH* ® A] is isomorphic to A ® [K(n)*, CH* ® Zp))-

From Prop. 3.48 it follows that the latter is freely generated by polynomials in Chern classes ¢ of
degree i, which by the construction of Chern classes to A* are equal to i-th truncations of polynomials in ¢;
of degree i. By Prop. 4.7 the claim now follows. d
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5. ON THE UNIQUENESS OF MORAVA K-THEORIES

Proposition 5.1. Let ¢; : K(n)* — K(n)* be a basis of additive endo-operations of Morava K-theory, s.t.
¢; increases Chern filtration by i.
Then an additive endo-operation ¢ == . a;¢; is invertible if and only if a; € Z(Xp) for1 <i<p"—1.

Proof. Denote by f;, b} the coefficients in the expansion of ¢2? in the basis ¢;: ¢5% = B;¢; + D ks b .
The key observation is that

Lemma 5.2. 3; € ZE;) Jori <p", and B; € pLy fori > p".

Proof of Lemma. First, let us explain how one can express numbers (; in terms of the series GG; defining an
additive operation (for the notation see Section 1.5).

It is clear that ¢9? increases the Chern filtration by i, and so it is represented by a linear combinations of
¢; with j > 4. The series G; of ¢; is equal to §;21 - - - z;+higher degree terms, and for ¢; the series G; is of
degree at least j.

Now for ¢§2 we see that the series GG; starts with 51-221 -+ z;, and thus it is clear that ¢f2 — B;¢; increases
the Chern filtration by ¢ + 1, and can be represented by a linear combinations of ¢; with j > 4.

Recall that truncations of generators of additive operations to BP{n}* are generators of additive operations
to CH* ® Zy), and the same is true for the composition K (n)* — BP{n}* — K(n)*. Thus, our goal is to
show that for a generator of additive operations K (n)* - CH'® Zp) the corresponding polynomial G; is of
the form ;21 - -+ z; where f3; is invertible in Z,) iff i < p". This also proves that the statement of Lemma
does not depend on the choice of generators ¢;.

For ¢ < p™ one checks that ch; is a generator of integral operations, and for it G; = 21 ---z;. For i > p”
consider the mod-p reduction of a generator of integral operations. The polynomial G; = agll),l,...,l)zl .
equal to zero by Prop. 3.32. O

oz s

Let ¢ := Y2, a;¢; be an additive endo-operation of K(n)*, and assume that ¢; is the projection on the
i-th graded component for ¢ < p™ (it is clear that the statement of Proposition does not depend on the choice
of generators).

First, assume that ¢ is invertible, and let v be its inverse. The series G; for ¢, 1 are equal to a;z1 - - - z;+. . .,
biz1---2z;+ ... for i < p™. As the composition 1 o ¢ is the identity, we see that a;b; =1, i.e. a; € Z(Xp) has to
be invertible for i < p".

Second, assume that a; € pr for i < p™ and let us construct the inverse operation by induction.

The induction hypothesis is that we have found ¥y s.t. ¥, o ¢ — Id increases the Chern filtration by k, i.e.
it is equal to ) .5, a;¢; for some a; € Z,).

Base of induction (k = p").

Define the operation pn := Zf:l_l ai_lqﬁ,;. Using the fact that ¢; o ¢; = d;;¢; for i # j and 4,5 < p”, a
direct computation shows that 1,» o ¢ — Id is a linear combination of operations ¢; for ¢ > p™. Thus, the b

Induction step (p" <k — k+1).

Let us define g1 = (Id + x¢y) o 1 with = defined so that ;11 o ¢ — Id increases Chern filtration by
k+1.

Note that g1 0¢ = Id+ apdr + xpr + xarordr + Zbk cxPr, and therefore setting r = — 11’@ the claim
is obtained. Number = € Z,) since (B € pZ,) for k > p™.
This process 'converges’ as ¥gy1 — P = Xy © Py increases the Chern filtration at least by k. d

Theorem 5.3. Let K(n)*, K(n)* be two n-th Morava K-theories over Z, (i.e. localisations of algebraic
cobordisms defined by p™-gradable FGLs Fy, Fy respectively of height n). -
Then there exist an isomorphism of presheaves of abelian groups K(n)* — K(n)*.

Proof. 1. There exist an additive operation ¢; from K(n)* to K(n)* s.t. the corresponding series G; =
z1 - - - zi+higher degree terms for 1 <1¢ < p” — 1.

By the construction of additive operations from K (n)* to K(n)*: it starts with the Chern character and
then it is somehow adjusted. Denote the corresponding operations by ¢;. Note however that ¢1(z1---2;) =
z1rzi+ . for 1 <i<pm—1.

Denote by 1, an additive operation from K(n)* to K(n)* satisfying the same property.

2. Compositions ¥ o ¢1, ¢1 0 Y1 are invertible additive operations.

For these compositions we have G; = z - -- z;+higher degree terms, which means that they satisfy the
conditions of Prop. 5.1. d
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Remark 5.4. Note that not all of Morava K-theories are multiplicatively isomorphic. The condition to be
checked is whether logf1 olog, is an integral series. However, by a direct computation one checks that if v,
is sent to a,b € Z(Xp) and a # b mod p, then it is not integral.

Recall, however, that K(n)* ® F, and K (n) ® F, are multuplicatively isomorphic by a theorem of Lazard.

Remark 5.5. The theorem above, perhaps, suggest that there is a uniquely defined n-th Morava K-theory
as a presheaf of abelian groups (this does not follow from the theorem as additive isomorphism constructed
therea are neither canonical, nor unique).

At the same time a multiplicative structure on K (n)* is certainly not unique, and this breaks the hope
that one could find some algebraic structure similar to FGLs which controls K (n)*-orientability. However,
it is possible that there is some weaker than multiplicative additional structure on Morava K-theories which
is in some sense canonical and could account for the orientability.

6. THE GAMMA FILTRATION ON MORAVA K-THEORIES

In this section we define a functorial filtration on K (n)*(X) for all n > 1. The definition of this filtration
is verbatim the definition of the gamma filtration for Ky with the use of Chern classes.

We prove that thus introduced gamma filtration does not depend on the choice of Chern classes and it
is strictly compatible with additive isomorphisms between n-th Morava K-theories. The filtration on K (1)*
coincides with the gamma filtration on Ko ® Z,) under an additive isomorphism.

We call this filtration on K (n)* the gamma filtration.

6.1. Definitions and properties.
Definition 6.1. Define the gamma filtration on K (n)* of a smooth variety by the following formula:

YK (n)*(X) =< ¢, (on) - e (an)| D i > ma; € K(n)*(X) > .
J
It is clear from the definition that y™ K (n)* is an ideal subpresheaf of K (n)*.

Proposition 6.2. The gamma filtration satisfies the following properties:
i) My K () = 0;
ii) operations c{'H is additive when restricted to ¥'K(n)*, and it induces an isomorphisms of Q-vector
spaces;
iii) ¢'H when resrticted to 'K (n)* is surjective for 1 <1i < p";
i) griK(n)* = grl K(n)" med Pt

Remark 6.3. Unfortunately, we can not yet prove that the gamma filtration is weaker than the topological
one, i.e. v* C 7', however, we conjecture this to be true.

Proof. The property i) follows by continuity, since monomials of Chern classes of degree at least i+ 1 increase
the Chern filtration at least by i + 1 as poly-operations. Thus, the composition of them with ¢ increases
the Chern filtration at least by i + 1 and there are no such operations to CH* ® Lp)-

The operation ¢ is additive on 7K (n)* as follows from i) and the Cartan’s formula. Recall that
there is a surjective morphism ch; : K(n)* — CH' ® Q, it is proportional to ¢; — P;(c1,...,¢i_1) as an
additive operation, and thus it is proportional to ¢; when restricted to 4*. It is left to show that the map
VK (n)* <% CH' @ Q is still surjective.

To do this recall that an additive operation ¢; : ¢; — P; : K(n)* — K(n)*®Q increases the Chern filtration
by i and tr;1; # 0. As the polynomial P; has degree i in Chern classes, the image of v; lies in v K (n)*.
Operation 9; has G; equal to az;y ---z; + ..., where a # 0. Thus, ch; o 9; has G; equial to az; ---z; and is
not zero. As the vector space of additive operations to CH? ® Q is 1-dimensional, ch; o v; is proportional to
ch;, and thus it is clear that ch; is surjective on 7.

The property iii) is proved analogously. Consider the morphism of theories p; : BP* ® Ly — CH t® Zp)
as a surjective operation, then let us show that it is proportional to ciCH o ¢; o w; where 7; is the projection
to K(n)'. If the coefficient of the proportionality is invertible, then it is clear that ciCH is surjective on the
image of ¢;.

Note that both these operations are additive as ¢ o ¢; is additive by the considerations above. Thus,
it is enough to show that corresponding polynomials G, ..., G; (notation from Section 1.5) for operations
these operations coincide. It is clear for degree reasons that for p; polynomial G; = 0 for j # ¢, and
Gl(zlzz) =ty
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The projection 7; has G; = 0 for j < ¢ for the same degree reasons, and it is clear that if the operation
ciCH oc;om; sends 21 - - z; to to ayty - - - t;, then ayp; = ciCH o ;.
By construction of Chern classes one may take ciCH to be ch; for i < p™ — 1, and then o; = 1. Thus it is

X
left to show that ayn € Z ).

By definition ¢ = ()" 9 g1 some additive operation ¢,». By the construction one can take c¢; to
be the projection on K(n)', and therefore (¢;)P" sends z; -+ - zpn to (21 ---2pn)P". The p"-th truncation of

¢pr is a generator of additive operations to C'H P ® Zp)y, and one easily checks that it is equal to pchyn, so

CH

it sends 21 -+ 2zpn to pz1---2zpn. The same considerations apply to ¢;n”,

21 zZpn 6Oty -t

To prove iv) recall that the Chern class ¢; : K(n)* — BP{n}* takes values in the i-th graded part, and as
the classifying morphism of theories from BP{n}* to K(n)* respects the grading, the i-th Chern class from
K(n)* to itself takes values in K(n)®.

The space of all polynomials in Chern classes is split into p™ — 1 summands by their degree modulo p™ — 1.
It is clear that the filtration by the degree of polynomials jumps on each summand every p™ — 1 steps, and
thus the same is true for the gamma filtration and the graded components of K (n)*. This proves iv). O

and one sees that cgnH o ¢cpn sends

6.2. Uniqueness of the gamma filtration.

Proposition 6.4. For any m > 0
YK () (X) =< glan,. .., ap)lg € FM(K (n)*)**, K (n)*] >,
i.e. the m-th part of the gamma filtration is generated by the image of all poly-operations increasing the

Chern filtration by m.
In particular, it does not depend on the choice of operations c; satisfying properties of Theorem 3.13.

Proof. The statement is equivalent to the fact that poly-operations increasing the Chern filtration by m
are precisely series in external products of Chern classes of degree at least m. However it is clear from the
classification of poly-operations and the fact that ¢; increase the Chern filtration by i. O

Proposition 6.5. Let K(n)*, K(n)* be two n-th Morava K-theories, and let ¢ : K (n)* — K(n)* an additive
isomorphism between them (which exists by Th. 5.3).
Then ¢ is strictly compatible with the gamma filtration.

Proof. To show the strict compatibility it is enough to show the compatibility for ¢, since the inverse also
will be compatible with the gamma filtration.

Thus, let P be a series of degree i in Chern classes defining an r-ary poly-operation in K(n)*, we need
to show that ¢ o P = P’ o ¢, where P’ has also degree i. To define P’, consider an endo-operation of K (n)*
by the formula ¢ o P o 4*". It is then clear that P’ increases the Chern filtration by 4, and thus by Prop.
6.4. O

*

Proposition 6.6. Denote by 0 : Ko ® Z,) — K(1) an invertible multiplicative operation defined by the
Artin-Hasse exponential which gives an isomorphism of Ko and a first Morava K-theory. Denote by F3 Ko
the classical gamma-filtration on K.

Then OF: Ko = F1K (n).

Proof. The proof is the same as of Prop. 6.5, one needs only to note that the usual Chern classes cf( 0 Ky —
K increase the Chern filtration by i. We leave it to the reader to prove as an exercise. O

6.3. An application: Chow groups of quadrics in I". In this section we prove several bounds on torsion
in Chow groups of small codimension of quadrics in I"™. The idea of such an application is due to N. Semenov.
As there is only 2-torsion in Chow groups of quadrics, p = 2 in this section and all Morava K-theories
have Z2)-coefficients.
The following result is a corollary of a result of N. Semenov.

Proposition 6.7 (Semenov, [8, Prop. 6.14]). Let ¢ € I"*? be a quadratic form, and denote by Q a corre-
sponding smooth quadric. B
Then the restriction morphism K(m)*(Q) — K(m)*(Q) is an isomorphism for 1 <m < n.

Proof. By Semenov K (m)*-motive of @, denote it by M(Q), is a Tate motive, and thus is isomorphic to the
motive of Q.
As K(m)*(Q) = Homg (,m)(Z(0), M(Q)), the Proposition follows. O
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Corollary 6.8. The restriction morphisms induces canonical isomorphisms for all i > 0:
gri K(n)"(Q) = gr] K(n)"(Q).

Proof. Tt follows from the functoriality and the definition of the gamma filtration. O

It follows from Corollary 6.8 and Prop. 6.2 that one can estimate Chow groups CH(Q) ® Loy for 1 <27

by the graded factrors of the gamma filtration on K(n)*(Q).

6.3.1. An estimate of the gamma filtration for a split quadric. Denote by Q a split quadric of dimension 2d,
and let d > 2"*! — 1. Recall that by the result of Pfister all quadrics in /"2 have dimension at least 2"+2 —2.
Denote by i : P4 — @ an inclusion of the maximal linear subspace.

Proposition 6.9 (Ngshitov). The linear projection map p : Q \ P? — P induces an isomorphism p* :
K(n)*(PY) — K(n)*(Q\ P?).

Thus, there is a short exact sequence of abelian groups :
0= B Zyli =5 K(n)*(Q) = Ze[H]/(HI) = 0,

where the map 7* is a morphism of rings.

Note that p* induces surjective maps of abelian groups gr] K (n)*(Q) — gr] K(n)*(P4). A direct calculation
shows that gr] K(n)*(P?) has no torsion for all 7, i.e. it equals to Z) for 1 < i < d and 0 for i > d. As
we will be interested in gr] K(n)* for i < 2" < d, the rational generator of it is given by H? and the torsion

equals to the torsion in gr] K (n)*(Q) N Imi,.

Proposition 6.10. Denote by m = ©f_, Zo)h' + &L Zo)l; the mazimal ideal of K (n)*(Q).
Then for 2 <i < 2"+ 1 we have l; € m*T! for j > i, and 21; € m**! for j > 1.

Proof. Multiplication in the graded pieces of topological filtration of free theories is the same as in Chow
groups for torsion-free rings.
Thus, hll = li-{—l mod (l]‘] Z 1+ 2”), hd+1 = 211 mod (lj|_] Z 2”) ]

Proposition 6.11. We have con(h) = h mod (h?"), therefore h lies in 2"-th part of the gamma filtration.

Proof. This follows from the calculation of cgnH(zl <+ zgn) =t1 -+ - tan done in the proof of Prop. 6.2 and the
general Riemann-Roch theorem 1.13. d

Proposition 6.12. Let Q be a split quadric of dimension 2d with d > 2"t — 1. Let j € [1,2" — 2] be s.t.
d=j mod (2" —1)

Then gr] K (n)(Q) is torsion-free for all i: 1 < i < 2" except for i = 2" when j =1 and for i = j in the
other case.

Proof. As was noted above all torsion in the graded piece of the gamma-factor comes from classes ;.

For i > 1 we can obtain ; as a product of con (h) and lp modulo elements I;, 7 > i. By induction on 7 it is
clear that they all lie in the 2™ 4 1-th piece of the gamma-filtration.

However, there is no way to obtain [y by multiplication, and it might give some torsion in the gamma
filtration in K (n)?. However, if j = 1 then can(lp) = lp modulo (I;|i > 1) and thus [y lies in the 2"-th piece
of the gamma filtration. O

Combining all the results of this section we obtain the following theorem.

Theorem 6.13. Let ¢ € I"2 be an anisotropic quadratic form, Q a corresponding smooth quadric of
dimension 2d. Let j € [1,2™ — 2] be s.t. d=j mod (2" — 1).

Then CH(Q) is torsion-free for all i: 1 < i < 2" except for i = p™ when j = 1 and for i = j in the other
case.

Remark 6.14. One can give the bound for the torsion in the ’exceptional’ component of Chow groups,
however, it seems to depend on the dimension of a quadric.
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