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Abstract
We discuss a generalization of Riemann-Hilbert problem on elliptic curves. We

consider rank two rigid monodromy representations on elliptic curve with three singular
points. For a given elliptic curve and representation we construct explicitly a semistable
vector bundle of degree zero obeying a logarithmic connection with required monodromy
and singular points.

Introduction
Classical Riemann-Hilbert problem deals with Fuchsian systems on the Riemann sphere.
It explores the existence of Fuchsian system of linear differential equations with given
singular points and prescribed monodromy representation. A. Bolibrukh proved that in
general setting the problem has negative solution [1]. There also exist certain sufficient
conditions for positive solvability. The problem can be solved positively for irreducible
monodromy representations, representations of dimension two and some other cases.

The natural way to generalize the Riemann-Hilbert problem to other than Riemann
sphere surfaces appeals to geometric approach to the problem. One can consider a Fuch-
sian system on the sphere as a logarithmic connection in trivial vector bundle on the
Riemann sphere. It appears that in this approach essential properties of trivial vector
bundle are its semi-stability and equality of its degree to zero [2]. The trivial bundle
appears here because on Riemann sphere in any dimension it is the only holomorphic
semi-stable vector bundle of degree zero. To this reason the generalization that we con-
sider is to be given an elliptic curve, set of marked points on it and representation of
fundamental group of punctured curve to construct over that curve a semi-stable vector
bundle of degree zero equipped with logarithmic connection with prescribed singular
points and monodromy representation.

We restrict ourselves to the case of three singular points and two-dimensional irre-
ducible representations. The specifics of that case is the rigidity of monodromy repre-
sentation. Rigid monodromy representations are uniquely defined by local monodromy
data, that fact drastically simplify the problem and allows to construct solution to
Riemann-Hilbert problem explicitly, in general setting there are only existence theo-
rems.

In order to simplify and shorten explicit calculations and expressions we assume the
monodromy in consideration to be in SL(2,C).

1 2d RHP on Riemann sphere
It it known that in dimension two on Riemann sphere the Riemann-Hilbert problem
has positive solution for any poles positions and monodromy representations. Rigid
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representations are distinguished by the possibility of explicit solution construction
while in general setting there are only existence theorems.

1.1 Rigid representations
We call the representation rigid if it can be restored from the spectra of local mon-
odromy.

The two-dimensional irreducible representations of the fundamental group of a
sphere with three punctures are rigid. In what follows considering only irreducible
monodromy representations we construct defined modulo overall conjugation triple of
monodromy matrices G1, G2, G3 corresponding to loops encircling the punctures at
a1, a2, a3 from spectra (λ1, λ2), (µ1, µ2), (ν1, ν2). Reducible case can be treated sep-
arately, it is not very difficult but need special approach and study of a number of
degenerate cases. The criterion of representation irreducibility in terms of eigenval-
ues is well-known, if for all i, j, k there holds λiµjνk 6= 1 then the representation is
irreducible.

We construct the basis from the vectors e1 and e2, the non-collinear eigenvectors
of G1 and G2 respectively. For irreducible representations such a pair obviously exists.
One can always normalize one of basis vectors in a way that G1 has the form

G1 =

(
λ1 1
0 λ2

)
By construction G2 in this basis is lower triangular:

G2 =

(
µ1 0
k µ2

)
Matrix G3 can be obtained from the relation G1G2G3 = 1 or G3 = (G1G2)−1 that
gives

G3 =
1

λ1λ2µ1µ2

(
λ2µ2 −µ2

−λ2k λ1µ1 + k

)
The only parameter k sets the representation and can be obtained from the relation on
trace of G3:

λ1µ1 + λ2µ2 + k

λ1λ2µ1µ2
= ν1 + ν2.

Therefore the spectra (λ1, λ2), (µ1, µ2) and (ν1, ν2) together with relation G1 ·G2 ·
G3 = 1 uniquely define the triple

G1 =

(
λ1 1
0 λ2

)
, G2 =

(
µ1 0

(ν1 + ν2)λ1λ2µ1µ2 − λ1µ1 − λ2µ2 µ2

)
, G3 = (G1·G2)−1

modulo an overall conjugation and hence, monodromy representation is fixed and there-
fore rigid.

1.2 Explicit construction
A logarithmic connection ∇ on Riemann sphere has the form ∇ = d−ω(z), where ω(z)
is a matrix differential one-form having only simple poles as singular points.

Below we enlist some properties of logarithmic connections required for our con-
struction. Proofs can be found for example at [1]. Consider that ai 6=∞.

Statement 1.1. A matrix one-form of logarithmic connection with three singular
points {a1, a2, a3} on Riemann sphere is set by the triple of residue matrices (B1, B2, B3)
defined up to an overall conjugation and satisfying B1 +B2 +B3 = 0:
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ω(z) =

(
B1

z − a1
+

B2

z − a2
+

B3

z − a3

)
dz,

If the eigenvalues of Bi do not differ by a natural number the point ai is called non-
resonant.
Statement 1.2. In non-resonant point, local monodromy of connection is conjugated
to the exponent of the corresponding residue multiplied by 2πı

Gi ∼ exp

(
2πı Res

z=ai
ω(z)

)
= e2πıBi .

Statement 1.3. For logarithmic connection, the eigenvalues of the local monodromy
Gi coincide with the eigenvalues of exp

(
2πıResz=ai ω(z)

)
= exp(2πıBi).

Statement 1.4 (Fuchs relation). The sum of eigenvalues of Bi = Resz=ai ω(z) over
all singular points of a logarithmic connection is equal to zero.

The statements above together with results of section 1.1 shows the way to ex-
plicit construction of logarithmic connection with three singular points and irreducible
monodromy.
Corollary 1. Consider an irreducible representation χ : π1(CP1 \ {a1, a2, a3}) →
GL(2,C) with eigenvalues of χ(γ1,2,3) being equal to (λ1, λ2), (µ1, µ2), (ν1, ν2) respec-
tively and fix complex logarithms of these eigenvalues in a way that Fuchs relation

lnλ1 + lnλ2 + lnµ1 + lnµ2 + ln ν1 + ln ν2 = 0

holds. If the triple of residues (B1, B2, B3) of logarithmic connection

ω(z) =

(
B1

z − a1
+

B2

z − a2
+

B3

z − a3

)
dz,

has eigenvalues ( 1
2πi

lnλ1,
1

2πi
lnλ2), ( 1

2πi
lnµ1,

1
2πi

lnµ2) and ( 1
2πi

ln ν1,
1

2πi
ln ν2) re-

spectively and B1 + B2 + B3 = 0, then, this logarithmic connection has monodromy
χ.

As it is proved below such a triple does always exist.
Theorem 1. For any set λ1, λ2, µ1, µ2, ν1, ν2 such that λ1λ2µ1µ2ν1ν2 = 1 there exists
a triple of matrices (B1, B2, B3) satisfying requirements of corollary 1.

Proof. Consider B1 to be an upper triangular matrix.

B1 =

(
1

2πi
lnλ1 1
0 1

2πi
lnλ2

)
and B2 to be a lower triangular matrix.

B2 =

(
1

2πi
lnµ1 0
κ 1

2πi
lnµ2

)
As we know, B3 is defined by matrices B1 and B2:

B3 = −B1 −B2 = −
(

1
2πi

(lnλ1 + lnµ1) 1
κ 1

2πi
(lnλ2 + lnµ2)

)
.

Now the only parameter κ can be computed from the relation on eigenvalues of B3.

detB3 = − 1

4π2
ln ν1 ln ν2

1

4π2
(lnλ1 + lnµ1) (lnλ2 + lnµ2) + κ = − 1

4π2
ln ν1 ln ν2

κ = − 1

4π2

(
(lnλ1 + lnµ1) (lnλ2 + lnµ2) + ln ν1 ln ν2

)
.

3



Summarizing all above we obtain following statement.

Corollary 2. If two-dimensional representation of π1(CP 1 \ {a1, a2, a3}, z0) is irre-
ducible, the corresponding Riemann-Hilbert problem can be solved explicitly.

2 Vector bundles on an elliptic curve
The essential tool for studying vector bundles on an elliptic curve is theta-functions.
Below we give definition and some basic properties of θ−functions basing on [3].

2.1 θ-function
Consider on the complex plane the function θ(z) defined by

θ(z) = θ1(z|τ) = ı
∑
m∈Z

(−1)mq(m− 1
2

)2e(m− 1
2

)2πız,

where q(τ) = eıπτ = eıπx−πy sets the mapping of the upper half-plane H = {τ ∈
C| Im τ > 0} into the unit circle D = {q ∈ C | |q| 6 1}.

It is easy to check that θ(z) is entire and odd function so θ(z) = −θ(−z) and
θ(0) = 0. We also need an information about branching of θ(z) and θ′(z). Directly
from definition we derive

θ(z + 1) = −θ(z)
θ(z + τ) = −q−1e−2πizθ(z).

(1)

That implies the relations on derivatives:

θ′(z + 1) = −θ′(z)
θ′(z + τ) = q−1e−2πiz

(
2πiθ(z)− θ′(z)

)
.

(2)

Therefore,
θ′(z + 1)

θ(z + 1)
=
θ′(z)

θ(z)
θ′(z + τ)

θ(z + τ)
=
θ′(z)

θ(z)
− 2πi.

(3)

The relations above imply that the integral of logarithmic derivative of θ(z) over
the perimeter of fundamental parallelogram equals to 2πı. Since θ(z) has no poles
inside the fundamental parallelogram, it has the only simple zero there and as we have
already seen it is located at the point z = 0.

Since the zero of θ(z) is simple θα(z) under analytic continuation along the loop
around z = 0 changes similar to zα. Denoting g∗0 operator of the monodromy around
zero, it is

g∗0 (θα(z)) = θα(z) · e2πıα. (4)

2.2 Line bundles on an elliptic curve
Denote Λτ an elliptic curve, obtained by factorization of the complex plane by lattice
{1, τ}, Imτ > 0. On the curve Λτ vector bundle can be set by action of two shifts: by 1
and by τ on sections of the bundle. It suffices to consider sections over the fundamental
parallelogram.

Consider a holomorphic line bundle E of degree zero over the elliptic curve Λτ and
ϕ(z) to be a meromorphic section of E. Since degE = 0 section ϕ(z) has equal number
of zeroes and poles in the fundamental parallelogram. It also has some monodromy
corresponding to a- and b-cycles, or, which is the same corresponding to shifts by 1
and τ . This monodromies are not uniquely defined, after an appropriate gauge one
can always set monodromy corresponding to 1-shift to be equal to 1 and monodromy
corresponding to τ -shift equal to some constant ν.
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In that setting parameter ν still is not uniquely defined. Multiplying the section
by e2πız preserves its zeroes, poles, invariance under shifting by one and changes ν to
ν · e2πıτ . Hence ν is defined up to multiplication by an integer power of e2πıτ . To
work with it is more convenient to take parameter λ connected with ν via the relation
ν = e2πıλ. Parameter λ is defined on the complex plane up to shifts along the lattice
{1, τ} i.e. parameter λ encoding line bundles on the curve Λτ takes values from the
curve Λτ itself. It is a well known fact that the moduli space of line bundles of fixed
degree on an elliptic curve is isomorphic to an elliptic curve itself.

Hence considering a section of E we can assume ϕ(z) to be invariant when z shifts
by one and multiplied by e2πıλ when z shifts by τ . Such an objects we can effectively
investigate using θ-functions.

Consider ϕλ(z) = θ(z−λ)
θ(z)

. From (1) it follows that

ϕλ(z + 1) = ϕ(z)

ϕλ(z + τ) = ϕ(z) · e2πıλ (5)

ϕλ(z) has exactly one zero and one pole on the elliptic curve. Therefore ϕλ(z) is a
section of some line bundle E of degree zero. Denote this bundle as Oλ(0). Further,
bϕλ(z) = ϕλ(z − b) differs from ϕλ(z) by multiplication on meromorphic function and
thus for any point b on elliptic curve it is also a section of Oλ(0). Hence the modular
parameter λ together with degree k completely define the line bundle Oλ(k), the ratio
of two sections with equal λ and k is a meromorphic function on Λτ .

Now consider ϕ(z) to be the product of k different sections of the type biϕλ(z). It
is a section of Okλ(0). Denoting zeros and poles of this product by ai we get

ϕ(z) = θk1(z − a1) · · · θkn(z − an),

where ki are integers and
n∑
i=1

ki = 0.

From the relations (1) we obtain

ϕ(z + 1) = (−1)
∑
kiϕ(z) = ϕ(z)

ϕ(z + τ) = ϕ(z) · e2πı
∑
kiai

(6)

Since ϕ(z) is a section if the Okλ(0) it implies
n∑
i=1

kiai = kλ.

It is easy to see that for any set of points ai an expression

ϕ(z) = θα1(z − a1) · · · θαn(z − an) (7)

with any complex αi such that
∑
αi = 0, gives a (multivalued) section of the bundle

Oλ(0) where

λ =

n∑
i=1

αiai (8)

2.3 Rank 2 vector bundles on elliptic curve and logarith-
mic connections
In this section we examine two-dimensional vector bundles of degree zero over Λτ . From
the results of previous section it follows that Oλ(k)⊕Oµ(−k) gives an example of such a
bundle. From general theory [5] it is known that there also exists exceptional indecom-
posable two-dimensional vector bundles of degree zero. Roughly speaking one can differ
these two classes of bundles by decomposable or indecomposable monodromy represen-
tation generated by a- and b-cycles. In our work we shall only consider decomposable
bundles.
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Definition 1. Vector bundle E is semi-stable if for any subbundle F ⊂ E there holds
degF/ rkF 6 degE/ rkE

Theorem 2. If F is a line sub-bundle of Oλ(0)⊕Oµ(0) then degF 6 0.

Proof. Consider ϕ to be a meromorphic section of F . Then degF = Nϕ − Pϕ where
Nϕ, Pϕ are total numbers of zeroes and poles of ϕ in a fundamental parallelogram.
Being a section of F , ϕ is also a section of Oλ(0) ⊕ Oµ(0) and hence ϕ = ϕ1 ⊕ ϕ2

where ϕ1, ϕ2 are some sections of Oλ(0) and Oµ(0) respectively. Therefore zeroes of ϕ
are the common zeroes of ϕ1 and ϕ2 while poles of ϕ are both poles of ϕ1 and poles
of ϕ2. Hence Nϕ 6 min(Nϕ1 , Nϕ2) and Pϕ > max(Pϕ1 , Pϕ2) implying Nϕ − Pϕ 6
min(Nϕi − Pϕi) = 0

Corollary 3. Vector bundle Oλ(0)⊕Oµ(0) is semistable.

According to our formulation of generalized Riemann-Hilbert problem we need to
construct on elliptic curve Λτ vector bundle E ' Oλ(0) ⊕ O−λ equipped with log-
arithmic connection with prescribed monodromy representation and singular points
location.

Let us describe the explicit form of logarithmic connection in that bundle. Consider
a canonical base (s1, s2) in meromorphic sections of E, taking s1 to be a section of Oλ(0)
and s2 to be a section of O−λ(0) respectively. Any meromorphic section of E in that
base has the form

ϕ(z) =

(
f1(z)s1(z)
f2(z)s2(z)

)
=

(
ϕλ(z)
ϕ−λ(z)

)
where f1,2(z) are meromorphic functions on Λτ and ϕ±λ(z) are the sections of O±λ(0)
respectively. Section ϕ(z) is horizontal for some meromorphic connection with matrix
differential 1-form ω:

dϕ(z) = ω(z)ϕ(z)

From relations 5 it follows

ϕ(z + 1) = ϕ(z)

ϕ(z + τ) =

(
e2πıλ 0

0 e−2πıλ

)
ϕ(z)

and hence

ω(z + 1) = ω(z)

ω(z + τ) =

(
e2πıλ 0

0 e−2πıλ

)
ω(z)

(
e−2πıλ 0

0 e2πıλ

)
(9)

Theorem 3. Consider {a1, . . . , an} ∈ Λτ , ai 6= aj and complex αi, βi, γi, δi, i =
1, . . . , n such that

n∑
i=1

(
αi βi
γi δ

)
= 0

Then matrix 1-form

Ω(z) =

n∑
i=1

(
αiθ
′(z − ai) βi

θ′(0)
θ(−2λ)

θ(z − ai − 2λ)

γi
θ′(0)
θ(2λ)

θ(z − ai + 2λ) −δiθ′(z − ai)

)
θ(z − ai)

dz, (10)

defines a logarithmic connection on E ' Oλ(0)⊕O−λ(0) with residues

Res
z=ai

Ω(z) =

(
αi βi
γi δi

)
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Proof. Relations 3 and 5 imply

θ′(z − ai + 1)

θ(z − ai + 1)
=
θ′(z − ai)
θ(z − ai)

θ′(z − ai + τ)

θ(z − ai + τ)
=
θ′(z − ai)
θ(z − ai)

− 2πı.
(11)

and
θ(z − ai ∓ 2λ+ 1)

θ(z − ai + 1)
=
θ(z − ai ∓ 2λ)

θ(z − ai)
θ(z − ai ∓ 2λ+ τ)

θ(z − ai + τ)
=
θ(z − ai ∓ 2λ)

θ(z − ai)
e±4πıλ

(12)

Therefore from
∑
αi =

∑
δi = 0 it follows

Ω(z + 1) = Ω(z)

Ω(z + τ) =

(
e2πıλ 0

0 e−2πıλ

)
Ω(z)

(
e−2πıλ 0

0 e2πıλ

)
(13)

and Ω(z) is a 1-form of meromorphic connection on some vector bundle F ' Oλ(k)⊕
O−λ(l).

Since tr Ω(z) = 0 degree of F equals to zero and therefore F ' Oλ(k) ⊕ O−λ(−k)
for some integer k. Consider a section Φ of bundle F written down as

Φ(z) =

(
ϕλ(z)
ϕ−λ(z)

)
where ϕ±λ(z) are some sections of O±λ(±k). Any connection on F maps sections of F
to sections of F ⊗ T ∗Λτ . For our Ω that imply that in the first row of ΩΦ(

n∑
i=1

αi
θ′(z − ai)
θ(z − ai)

)
ϕλ(z) +

(
n∑
i=1

βi
θ′(0)

θ(−2λ)

θ(z − ai − 2λ)

θ(z − ai)

)
ϕ−λ(z) (14)

should be a section of Oλ(k).
Since A(z) =

(∏n
i=1 θ

αi(z − ai)
)′
/
(∏n

i=1 θ
αi(z − ai)

)
is a ratio of two sections

of O∑
αiai(0) it is a single-valued function on Λτ or a section of O0(0). Therefore

A(z)ϕλ(z) is a section ofOλ(k). Hence, B(z)ϕ−λ(z) =
(∑n

i=1 βi
θ′(0)
θ(−2λ)

θ(z−ai−2λ)
θ(z−ai)

)
ϕ−λ(z)

as a difference of two sections should also be a section of Oλ(k). But by explicit con-
struction B(z) is a section of O2λ(0) and therefore B(z)ϕ−λ(z) is a section of Oλ(−k).
Hence k = 0 and Ω(z) defines a connection on E ' Oλ(0)⊕O−λ(0).

Differential 1-form Ω(z) is holomorphic on Λτ \ {a1, . . . , an} and since θ(z) is an
entire function and θ′(0) and θ(±2λ) do not equal to zero Ω(z) has a simple poles in
z = ai. Therefore the connection defined by Ω is logarithmic with prescribed polar
locus.

Calculation of residues is evident.

It is important to notice that unlike to logarithmic connections over the Riemann
sphere logarithmic connection over an elliptic curve is not uniquely defined by its
residues. Since in the bundle E can exist holomorphic matrix 1-forms one can add
them to Ω(z) and obtain new connection with the same residues. Explore in greater
details the construction of such a 1-form Υ(z). Denote

Υ(z) =

(
Υ1(z) Υ2(z)
Υ3(z) Υ4(z)

)
dz

and consider relations (9). We get

Υ1,4(z + 1) = Υ1,4(z)
Υ1,4(z + τ) = Υ1,4(z)
Υ2,3(z + 1) = Υ2,3(z)

Υ2,3(z + τ) = Υ2,3(z)e∓4πıλ

(15)
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Since all Υi(z) are holomorphic and Υ1,4(z) are double-periodic, Υ1,4(z) are constant.
Relations (15) imply

Υ′2,3(z+1)

Υ2,3(z+1)
=

Υ′2,3(z)

Υ2,3(z)
Υ′2,3(z+τ)

Υ2,3(z+τ)
=

Υ′2,3(z)

Υ2,3(z)

Therefore integral of logarithmic derivative of Υ2,3(z) along the perimeter of funda-
mental parallelogram is zero and Υ2,3(z) has equal number of zeroes and poles in the
parallelogram. Since Υ2,3(z) is holomorphic it has no poles and hence no zeroes. But
[4] the only entire functions obeying relations (15) with no zeroes in complex plane are
f(z) = Ce2πkız with integer k inducing 2λ = kτ . Since λ is defined modulo {1, τ} it
follows that λ equals either zero, or τ/2. The first case corresponds to Υ2,3(z) = 0, the
second to Υ2,3(z) = C∓e

∓2πız.
Finally, all holomorphic matrix 1-forms Υ(z) on E ' Oλ(0)⊕O−λ(0) have the form

Υ(z) =

(
C1 C−e

−2πız

C+e
2πız C4

)
dz

with constant C1, C∓, C4 and C∓ = 0 if λ 6= τ/2. Logarithmic connections defined by
1-forms Ω and Ω(z)+Υ(z) have coinciding residues, but in general different monodromy
representations.

For shortness exclude in what follows from consideration the exceptional case 2λ = 0
modulo {1, τ}. In that case Oλ(0) ' O−λ(0), and the two-dimensional vector bundle
Oλ(0) ⊕ O−λ(0) is analogous to trivial vector bundle in a sense that all four matrix
entries of connection form are just

(∑3
i=1 ci · θ

′(z − ai)/θ(z − ai)
)
dz

3 2d RHP on Elliptic curve
Two-dimensional Riemann problem on elliptic curve we consider consists in establish-
ing on an elliptic curve a semi-stable vector bundle of degree zero with logarithmic
connection having prescribed monodromy and singularities. For shortness of explicit
expressions and calculations we restrict ourselves to the case of SL(2,C)-monodormy.

3.1 Monodromy data
Suppose we are given a logarithmic connection on an elliptic curve Λτ with singular
points a1, . . . , an and monodromy representation

χ : π1 (Λτ \ {a1, . . . , an}, z0)→ SL(2,C).

Namely we are given a set of matrix multipliers G1, G2, G3 corresponding to the change
of local horizontal sections basis under continuation along the loops encircling singu-
lar points and Ga, Gb corresponding to trivialisation deformation along a−, b− cycles
respectively.

γi : Y (z) 7→ Y (z)Gi
γa,b : Y (z) 7→ Ga,bY (z)

(16)

Let us find the conditions that monodromy satisfy and the most convenient way to
encode it.

The fundamental group of an elliptic curve obey the relation aba−1b−1 = id, the
loop, encircling the fundamental parallelogram along perimeter can be contracted inside
it. Obviously, that for some natural ordering points ai and choice of classes of basic
loops γi encircling them, the sequential bypassing all the punctures is equivalent to
bypassing the perimeter of the fundamental parallelogram and hence the relation in the
fundamental group of punctured torus is γ1 · · · γn = aba−1b−1 or γ1 · · · γnbab−1a−1 =
id. It corresponds to the condition

GaGbG
−1
a G−1

b Y (z)Gn · · ·G1 = Y (z)
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on monodromy matrices. In general setting, and particularly for irreducible monodromy
in the right hand-side that implies{

GaGbG
−1
a G−1

b = 1
G1 · · ·Gn = 1

As we have already seen for line bundles monodromy corresponding to the periods is not
uniquely defined. Here situation is similar. Remind that we consider only decomposible
bundles. Then by constant and holomorphic gauges acting on the left on Y (z) one can
easily get

Ga =

(
1 0
0 1

)
Gb =

(
e2πıλ 0

0 e−2πıλ

)
preserving all other Gi.

Finally the input monodromy data for Riemann problem on elliptic curve Λτ in our
approach is{
Ga=

(
1 0
0 1

)
, Gb=

(
e2πıλ 0

0 e−2πıλ

)
,
{
G1, G2, G3|Gi ∈ SL(2,C), G1G2G3 = 1)

}
�∼

}

3.2 Explicit construction of solution
We shall construct required logarithmic connection ∇ on E ' Oλ(0) ⊕ O−λ(0) in the
form ∇ = d−Ω(z), where Ω(z) is a matrix differential one-form described in Theorem
3.

Results of section 2.3 imply the explicit form of Ω(z).

Lemma 3.1. A logarithmic connection with singular points {a1, a2, a3} on E ' Oλ(0)⊕
O−λ(0) can be given by the set of residue matrices (B1, B2, B3),

Bi =

(
αi βi
γi δi

)
,

3∑
i=1

Bi = 0

in the form:

Ω(z) =

3∑
i=1

(
αiθ
′(z − ai) βi

θ′(0)
θ(−2λ)

θ(z − ai − 2λ)

γi
θ′(0)
θ(2λ)

θ(z − ai + 2λ) δiθ
′(z − ai)

)
θ(z − ai)

dz + Υ(z), (17)

up to an overall conjugation and holomorphic 1-form Υ(z) described in 2.3.

Following statements analogous to 1.2, 1.3 are essentially local and are valid for an
elliptic curve as well.

Statement 3.1. In non-resonant point, local monodromy of connection is conjugated
to the exponent of the corresponding residue multiplied by 2πı

Gi ∼ exp

(
2πı Res

z=ai
Ω(z)

)
= e2πıBi .

Statement 3.2. For logarithmic connection, the eigenvalues of the local monodromy
Gi coincide with the eigenvalues of exp

(
2πıResz=ai Ω(z)

)
= exp(2πıBi).

Being essentially non-local the Fuchs relation also holds true for a logarithmic con-
nection on E as it deals with the sum of residues of determinant connection on deter-
minant bundle, and the latter is trivial.

Statement 3.3 (Fuchs relation). The sum of eigenvalues of Bi = Resz=ai Ω(z) over
all singular points of a logarithmic connection is equal to zero.

Similarly to the Riemann sphere case altogether that leads to
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Lemma 3.2. Consider an irreducible representation χ : π1(Λτ\{a1, a2, a3})→ SL(2,C)
where

Ga =

(
1 0
0 1

)
, Gb =

(
e2πiλ 0

0 e−2πiλ

)
.

and eigenvalues of χ(γ1,2,3) equals to (λ1, λ
−1
1 ), (µ1, µ

−1
1 ), (ν1, ν

−1
1 ) respectively and fix

complex logarithms of these eigenvalues in a way that Fuchs relation

lnλ1 + lnλ−1
1 + lnµ1 + lnµ−1

1 + ln ν1 + ln ν−1
1 = 0

fulfills. If the triple of residues (B1, B2, B3) of logarithmic connection Ω(z), described in
lemma 3.1 has eigenvalues ( 1

2πi
lnλ1,

1
2πi

lnλ−1
1 ), ( 1

2πi
lnµ1,

1
2πi

lnµ−1
1 ), ( 1

2πi
ln ν1,

1
2πi

ln ν−1
1 )

respectively and B1 + B2 + B3 = 0, then, this logarithmic connection has monodromy
χ.

As we already know from theorem 1 there always exists triple of residues B1, B2, B3

satisfying B1 + B2 + B3 = 0 with prescribed spectra. Therefore we obtain the main
result

Theorem 4. An irreducible representation χ : π1(Λτ \ {a1, a2, a3}, z0) → SL(2,C)
with eigenvalues of χ(γ1,2,3) equal to (λ1, λ

−1
1 ), (µ1, µ

−1
1 ), (ν1, ν

−1
1 ) respectively for any

choice of complex logarithms branches such that

lnλ1 + lnλ−1
1 + lnµ1 + lnµ−1

1 + ln ν1 + ln ν−1
1 = 0

can be realized as a monodromy of a logarithmic connection on E ' Oλ(0) ⊕ O−λ(0)
with one-form

Ω(z) =



(
lnλ1
2πi

θ′(z − a1) θ′(0)
θ(−2λ)

θ(z − a1 − 2λ)

0
lnλ−1

1
2πi

θ′(z − a1)

)
θ(z − a1)

+

+

(
lnµ1
2πi

θ′(z − a2) 0

k θ
′(0)
θ(2λ)

θ(z − a2 + 2λ)
lnµ−1

1
2πi

θ′(z − a2)

)
θ(z − a2)

+

+

 − (lnλ1+lnµ1)
2πi

θ′(z − a3) − θ′(0)
θ(−2λ)

θ(z − a3 − 2λ)

−k θ
′(0)
θ(2λ)

θ(z − a3 + 2λ) − (lnλ−1
1 +lnµ−1

1 )

2πi
θ′(z − a3)


θ(z − a3)

 dz + Υ(z) (18)

where
k = − 1

4π2

[
ln ν1 ln ν−1

1 + (lnλ1 + lnµ1)(lnλ−1
1 + lnµ−1

1 )
]
,

and Υ(z) is holomorphic 1-form on E
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