
EXPLICIT CONSTRUCTION OF AN ISOMORPHISM BETWEEN
QUIVER VARIETIES OF TYPE A AND TRANSVERSAL SLICES IN

THE AFFINE GRASSMANIAN.

VASILY KRYLOV

Abstract. This paper will appear as an appendix to new version of the paper [MV1]. In
the paper we write down the isomorphism between Nakajima quiver varieties M0

0(v, d)
of type A and transversal slices in the affine Grassmanian explicitely and explain it
geometrically. After that we show that the isomorphism which is given by our formula
coincides with the one constructed in [MV1].
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1. Introduction

1.1. Transversal slices in the affine Grassmanian. Let K := C((z)) and let O :=
C[[z]]. Let GGLm := GLm(K)/GLm(O). For a cocharacter λ of GLm we denote by
zλ the corresponding element in T (K) ⊂ GGLm where T is the diagonal torus in GLm.
Let L≥0G and L<0G be subgroups of non-negative and negative loops respectively in
GLm(K). (L≥0G := GLm[[z]], L<0G is the kernel of the natural evaluation homomorphism
GLm[z−1] → GLm ) Let Wµ

λ := L<0GLm · z−w0(λ) ∩ L≥0GLm · z−w0(µ) and let Wµ

λ :=

L<0GLm · z−w0(λ) ∩ L≥0GLm · z−w0(µ).

1.2. Affine quiver varieties M0
0(v, d) of type A. Here we follow [MV1, Section 2].

Let us consider the Dynkin graph of type An−1 with vertices I = {1, . . . , n− 1} and the
orientation Ω given by 0→ 1→ · · · → n− 1.
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Let Ω
∼=−→Ω, ω 7→ω, be the reversal of orientation. Our quiver (I,H) has the set of arrows

H = Ω t Ω. For an arrow h ∈ H we denote by h′ ∈ I its initial vertex and by h′′ ∈ I its
terminal vertex.

Following Nakajima we position vector spaces Vi and Di of dimensions dimVi = vi and
dimDi = di, i ∈ I, at the vertices of our quiver i.e. we consider the I-graded vector
spaces V = ⊕i∈IVi and D = ⊕i∈IDi. Let v = (v1, . . . , vn−1) and d = (d1, . . . , dn−1) and
define an affine space

M(v, w) =
⊕
h∈H

Hom(Vh′ , Vh′′)⊕
⊕
i∈I

Hom(Di, Vi)⊕
⊕
i∈I

Hom(Vi, Di).

Following Lusztig and Maffei we will consider an element in M(v, w) as a quadruple
(x, x, p, q).

The group G(V ) =
∏

i∈I GL(Vi) acts on M(v, w) so that for g = (gi)i∈I

(1) g(x, x, p, q)
def
= (gi+1xig

−1
i , gixig

−1
i+1, gipi, qig

−1
i )i∈I .

Let g(V ) be the Lie algebra of G(V ). For the corresponding moment map µ : M(v, d)→
g(V ) the fiber Λc(v, d)

def
= µ−1(c) at c = (c1, . . . , cn−1) ∈ Z[g(V )] consists of all (x, x, p, q)

such that

c1 + x1x1 = p1q1,

ci + xixi = xi−1xi−1 + piqi 2 ≤ i ≤ n− 2,

cn−1 = xn−2xn−2 + pn−1qn−1.

(2)

Let M0
0(v, d) be a geometric quotient of Λ0(v, d) by the action of G(V ).

Let us fix some basic {eij|i ∈ I, 1 ≤ j ≤ di} of D such that eij ∈ Di. We have a natural
order on our basis (we need it because we want to talk about dominant coweights of
GL(D)). Let w0 denote the longest element in the Weyl group for GL(D) (corresponding
to our basis).

1.3. A variety Mreg
0 (v, d) and cocharacters λ, µ. (see [N2, Section 3] and [MV1, Sub-

section 5.1.1]) A quadruple (x, x̄, p, q) ∈ Λc(v, d) is called stable if for any I-graded sub-
space V ′ of V which contains Im(p) and preserved by x and x̄ we have V ′ = V . A
quadruple (x, x̄, p, q) ∈ Λc(v, d) is called costable if for any I-graded subspace V ′ of V
contained in Ker(q) and preserved by x and x̄ we have V ′ = 0. Denote by Λ0

reg(v, d) the

set of stable and costable quadruples in Λ0(v, d). Let Mreg
0 (v, d) [N2, Section 3] be the

quotient of Λ0
reg(v, d) by the free action of GL(V ). One can see that Mreg

0 (v, d) can be

embedded in M0
0(v, d) as an open dence subset.

For the dimension vectors (v, d) we define the following dominant cocharacters λ, µ of
GL(D): the cocharacter λ acts with eigenvalue ti on the space of dimension di (thus
w0(λ) is antidominant and acts with eigenvalue ti on Di) and the cocharacter µ acts with
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eigenvalue ti on the subspace of dimension vi+1 + vi−1 + di− 2vi. Note that this definition
is in accordance with [MV1, Subsection 5.1.1].

1.4. Variety BunaGLm(A2) and its torus fixed points. (see [BF1, Subsection 4.4])

Let BunaGLm(A2) denote the moduli space of principal GLm-bundles on P2 of second Chern
class a with a trivialization at the line at infinity l∞.

Consider the action of C∗ on A2 which sends (x, y) to (t−1x, ty). Note that GLm × C∗
acts on BunaGLm(A2): the first factor acts by changing a trivialization at l∞ and the
second factor via its action on A2. Now for every cocharacter ρλ : C∗ → GLm obtain
the diagonal action of C∗ on BunaGLm(A2). Let BunaGLm,λ(A

2/Gm) denote the fixed point

set of this action. The point (0, 0) ∈ A2 is fixed under the C∗-action. So for every
E ∈ BunaGLm,λ(A

2/Gm) the group C∗ acts on the fiber E(0,0) of E at the point (0, 0) ∈ A2.

Let us denote by Bunµ,aGLm,λ(A
2/Gm) the subvariety of BunaGLm,λ(A

2/Gm) formed by all

E ∈ BunaGLm,λ(A
2/Gm) such that C∗ acts on E(0,0) by the cocharacter ρµ. (Here µ and λ

are the dominant cocharacters of GLm and we use notations ρλ, ρµ when we talk about

actions). Also let us denote by BunµGLm,λ(A
2/Gm) the variety Bun

µ,
(µ,µ)

2
− (λ,λ)

2
GLm,λ

(A2/Gm)

(according to [BF1, Theorem 5.2(1)] for a 6= (µ,µ)
2
− (λ,λ)

2
the variety Bunµ,aGLm,λ(A

2/Gm) is
empty).

1.5. In [MV1] an isomorphism between quiver varieties M0
0(v, d) (see [MV1]) of type

A and slices Wµ

λ is constructed. Let us describe it. Firstly the isomorphism between
quiver varieties of type A and certain transversal slices to nilpotent orbits (not Slodowy
slices but similar) is constructed. (this isomorphism is denoted by φ in [MV1]) Also the
isomorphism between slices to nilpotent orbits and slicesWµ

λ is constructed (it is denoted
by ψ in [MV1]). Thus the composition ψ ◦ φ gives us an isomorphism between quiver
varieties of type A M0

0(v, d) and slices Wµ

λ.

We use a different approach to that isomorphism. We prove that Mreg
0 (v, d) are isomorphic

to Bun
−w0(µ)
GLm,−w0(λ)(A

2/Gm) where λ and µ are constructed from v, d as in 1.3. In paper

[BF1] the isomorphism between Wµ
λ and Bun

−w0(µ)
GLm,−w0(λ)(A

2/Gm) is constructed. Thus

independently from the paper [MV1] we get an isomorphism between Mreg
0 (v, d) andWµ

λ .
We calculate this isomorphism and see that it is given by a very explicit simple formula.
(Theorem 2.1) After that we prove that this formula gives exactly the isomorphism ψ ◦ φ
(restricted on Mreg

0 (v, d)) which was constructed in [MV1]. Thus from the continuity
argument (see Subsection 5.2) it follows that the whole isomorphism ψ ◦φ is given by our
explicit formula 3 (Theorem 2.2).
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Remark. (We do not use this remark in the proof of theorems of the paper)

Actually in [BF1] authors constructed an isomorphism betweenWµ

λ and U−w0(µ),
(µ,µ)

2
− (λ,λ)

2

GL(m),−w0(λ) (A2/Gm)

(wich is a closure of Bun
−w0(µ)
GLm,−w0(λ)(A

2/Gm) in the reduced Uhlenbeck space U
(µ,µ)

2
− (λ,λ)

2
GLm

(see [BFG]). Also from the decomposition [BFG, (1)] for the Uhlenbeck space, the
same decomposition for M0

0(V,D) (affine Gieseker space) and the isomorphism between

Bun
−w0(µ̃)

GLm,−w0(λ̃)
(A2/Gm) and Mreg

0 (ṽ, d̃) for different µ̃, λ̃, ṽ, d̃ should follow the existence of

the isomorphism between M0
0(v, d) and U−w0(µ),

(µ,µ)
2
− (λ,λ)

2

GL(m),−w0(λ) (A2/Gm). Thus we can construct

the isomorphism between M0
0(v, d) andWµ

λ. Note that to prove that it is given by certain
explicit formula it is enough to show that the restriction of this isomorphism on the dense
open subvariety Mreg

0 (v, d) is given by that explicit formula. Thus for our purposes it is
enough to deal with the explicit formula for the isomorphism between Mreg

0 (v, d) andWµ
λ .

2. Main theorems

2.1. Theorem. The map

(3) (xi, x̄i, pi, qi) 7→ z−w0λ(1 + z−1

∞∑
n,l=0

z−nqx̄nxlp),

where (x, x̄, p, q) := (⊕xi,⊕x̄i,⊕pi,⊕qi) and λ, µ are as in Subsection 1.3 gives an isomor-
phism between Mreg

0 (v, d) and Wµ
λ .

Recall the isomorphisms φ : M0
0(v, d)

∼−→ Tλ∩Oµ (see [MV1, Section 8], [MV2, Subsection

3.3]) and ψ : Tλ ∩ Oµ
∼−→ L<0GLm · z−w0(λ) ∩ L≥0GLm · z−w0(µ) (see [MV1, Subsection

4.4.11]).

2.2. Theorem. The isomorphism ψ ◦ φ is given by the formula (3).

The proof of the Theorem 2.1 will be given in the Section 4

The proof of the Theorem 2.2 will be given in the Section 5.

3. Geometric interpretation of the formula (3)

3.1. ADHM description. We set Mreg
0 (V,D) = {(x, x̄, p, q) ∈ µ−1(0) | stable and

costable }/GLm, where (x, x̄, p, q) are Jordan quiver quadruples:
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V

W

x
x̄

qp

dimV = a, dimD = m

The ADHM description [N1, Theorem 2.1] identifies BunaGLm(A2) with Mreg
0 (V,D).

The vector bundle E(x,x̄,p,q) corresponding to a quadruple (x, x̄, p, q) can be obtained as
the middle cohomology of the following monad:

V ⊗OP2(−1) V ⊗OP2

⊕
V ⊗OP2

⊕
D ⊗OP2

V ⊗OP2(1)
b=
[
−(z0x̄− z2) z0x− z1 z0p

]
a=

z0x− z1

z0x̄− z2

z0q


.

3.2. Induced torus action on Mreg
0 (V,D). The C∗-action on BunaGLm(A2) correspond-

ing to a cocharacter λ defines an action on Mreg
0 (V,D) via the ADHM isomorphism 3.1.

3.3. Lemma. This action can be described as follows:

(x, x̄, p, q) 7→ (t−1x, tx̄, pρλ(t)
−1, ρλ(t)q).

Proof. Take t ∈ C∗. Consider a vector bundle tE(x,x̄,p,q) that is obtained from E(x,x̄,p,q) by
the action of t. It can be described as the middle cohomology of the following monad:

V ⊗OP2(−1) V ⊗OP2

⊕
V ⊗OP2

⊕
D ⊗OP2

V ⊗OP2(1)[
−(z0x̄− t−1z2) z0x− tz1 z0p

] z0x− tz1

z0x̄− t−1z2

z0q


We have to emphasize that the trivialization of tE(x,x̄,p,q) at infinity is ρλ(t).

We have the following commutative diagram giving the isomorphism between the monad
for tE(x,x̄,p,q) and the one for the quadruple (t−1x, tx̄, pρλ(t)

−1, ρλ(t)q):
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V ⊗OP2(−1) V ⊗OP2 ⊕ V ⊗OP2 ⊕ D ⊗OP2 V ⊗OP2(1)

V ⊗OP2(−1) V ⊗OP2 ⊕ V ⊗OP2 ⊕ D ⊗OP2 V ⊗OP2(1)

Id t−1 t ρλ(t) Id

The morphism on cohomology induces the isomorphism between corresponding vector
bundles with trivializations. �

3.4. An isomorphism between
∐

v,
∑
vi=a

Mreg
0 (v, d) and BunaGLm,−w0(λ).

Let
∐

v,
∑
vi=a

Mreg
0 (v, d) be the disjoint union of quiver varieties of type A with vertices

numbered by integers with a framing of dimension d and
∑
vi = a. We define a morphism

[N2, Section 3]

Θ̃v,d : Mreg
0 (v, d)→Mreg

0 (V,D) ' BunaGLm(A2),

Θ̃v,d(xi, x̄i, pi, qi) = (⊕xi,⊕x̄i,⊕pi,⊕qi).

The maps Θ̃v,d for different v induce the map Θ̃d :
∐

v,
∑
vi=a

Mreg
0 (v, d)→ BunaGLm(A2).

3.4.1. Lemma. Θ̃d induces an isomorphism between
∐

v,
∑
vi=a

Mreg
0 (v, d) and BunaGLm,−w0(λ)

where λ is as in Subsection 1.3.

Proof. We describe the inverse map. Let (x, x̄, p, q) be a fixed point under the C∗-action
on Mreg

0 (V,D) corresponding to −w0(λ). Then using Lemma 3.3 we have that for every
t ∈ C∗ there exists ρV (t) ∈ GL(V ) such that

(4)
(t−1x, tx̄, pρ−w0(λ)(t)

−1, ρ−w0(λ)(t)q) = (ρV (t)xρV (t)−1, ρV (t)x̄ρV (t)−1, ρV (t)p, qρV (t)−1).

Note that ρV (t) is uniquely determined by t because of the freeness of GL(V )-action on
stable and costable quadruples. In particular ρV defines a cocharacter of GL(V ). We
decompose V into a direct sum ⊕Vi (where Vi is the t−i-eigenspace of ρV ) and similarly
decompose D into a direct sum ⊕Di with respect to ρ−w0(λ) (because of our definition
Di is the t−i-eigenspace of −w0(λ) ). It is easy to see that the condition (4) implies that
∀i ⊂ Z, x(Vi) ⊂ Vi+1, x̄(Vi) ⊂ Vi−1, p(Di) ⊂ Vi, q(Vi) ⊂ Di. So (x, x̄, p, q) defines a point
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in a quiver variety of type A with vertices numbered by integers such that
+∞∑
i=−∞

vi = a,

and the framing is d. The inverse map is constructed.

�

3.5. An isomorphism between Mreg
0 (v, d) and Bun

−w0(µ),
∑
vi

GLm,−w0(λ). Lemma. Θ̃d induces

the isomorphism [N2, Section 4] Θ : Mreg
0 (v, d) ' Bun

−w0(µ),
∑
vi

GLm,−w0(λ) where λ, µ are as in

Subsection 1.3.

Proof. It is enough to prove that C∗ acts on the fibre of E ∈ Θ(Mreg
0 (v, d)) at the origin

by ρµ. Let us denote the cocharacter corresponding to the framing by ρd (ρd = ρ−w0(λ))
and let ρv be the cocharacter of GL(⊕Vi) that acts with eigenvalue t−i on the space Vi.

Let (x, x̄, p, q) := Θ(xi, x̄i, pi, qi) and E(x,x̄,p,q) be the corresponding vector bundle. The
bundle tE(x,x̄,p,q) is the middle cohomology of the following monad:

V ⊗OP2(−1) V ⊗OP2

⊕
V ⊗OP2

⊕
D ⊗OP2

V ⊗OP2(1)[
−(z0x̄− t−1z2) z0x− tz1 z0p

] z0x− tz1

z0x̄− t−1z2

z0q


The map (ρv(t), tρv(t) ⊕ t−1ρv(t) ⊕ ρd(t), ρv(t)) provides an isomorphism between the
monads corresponding to E(x,x̄,p,q) and tE(x,x̄,p,q). In particular this map induces a C∗-
module structure on the fibre at the origin of the monad corresponding to E(x,x̄,p,q):

V V ⊕ V ⊕D V

ρv
t−1ρv⊕tρv⊕ρd

ρv

Now we can calculate the action of C∗ on cohomology of this complex. The cocharacter
corresponding to this action is the difference of the cocharacters on V ⊕ V ⊕D and the
double cocharacter on V . It means that the desired cocharacter acts with an eigenvalue
t−i on a subspace of dimension vi−1 + vi+1 + di − 2vi. So this cocharacter is −w0(µ). �

3.6. An isomorphism Bun
−w0(µ)
GLm,−w0(λ)(A

2/Gm) ' (L<0GLm ·z−w0(λ)∩L≥0GLm ·z−w0(µ)).
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Recall the construction of the isomorphism

η : Bun
−w0(µ)
GLm,−w0(λ)(A

2/Gm) ' (L<0GLm · z−w0(λ) ∩ L≥0GLm · z−w0(µ))

[BF1, Theorem 5.2].

Let us think about vector bundles on P2 with trivialization on the line at infinity (and
fixed rank and second Chern class) as of bundles on P1 × P1 with trivialization on

P1 ×∞
⊔
∞× P1.

The morphism η is constructed as follows: a bundle E ∈ BunµGLr,λ(A
2/Gm) has to be

trivial on P1 × (P1 \ 0). (It is trivial on the line P1 × ∞ hence on a neighbourhood
of that line. It means that the number of horizontal jumping lines has to be finite.
Using invariance of E under C∗-action we see that the only jumping line must be P1 × 0.
Alternatively we can look at the monad corresponding to E and see that we can write
down an explicit trivialization of E restricted on P1 × (P1 \ 0) (we will do it)). But E is
also trivialised on the line∞×P1. We can uniquely extend this trivialization to the whole
variety P1 × (P1 \ 0). Now we restrict E with the trivialization to the line (1 : 1) × P1.
We get a point in the affine Grassmannian GGLm . Finally, we apply z−w0(λ) to this point
to obtain the desired point in the slice.

3.6.1. An isomorphism between Mreg
0 (v, d) and (L<0GLm · z−w0(λ) ∩ L≥0GLm · z−w0(µ)).

Composing the isomorphisms from subsections 3.5 and 3.6 we obtain an isomorphism

η ◦Θ : Mreg
0 (v, d) ' (L<0GLm · z−w0(λ) ∩ L≥0GLm · z−w0(µ)).

4. Proof of Theorem 2.1

The isomorphism η ◦Θ can be described as follows:

(xi, x̄i, pi, qi) 7→ z−w0λ(1 + z−1

∞∑
n,l=0

z−nqx̄nxlp),

where (x, x̄, p, q) := (⊕xi,⊕x̄i,⊕pi,⊕qi).

Proof. (Similar to [Hen, Proposition 4.8]) Take (xi, x̄i, pi, qi) ∈Mreg
0 (v, d).

Let E(x,x̄,p,q) := Θ(xi, x̄i, pi, qi). The vector bundle E(x,x̄,p,q) can be described as the middle
cohomology of the following monad [BF2, Subsection 2.4]:

V ⊗OP1×P1(−1,−1) V ⊗OP1×P1(−1, 0)
⊕

V ⊗OP1×P1(0,−1)

⊕
D ⊗OP1×P1

V ⊗OP1×P1

ba
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a =

tx− yhx̄− z
thq

 , b =
[
−(hx̄− z), tx− y, p

]
,

where ((y : t), (z : h)) are the coordinates on P1×P1. Let (∞,∞) := ((1 : 0), (1 : 0)). We
want to describe the trivialization of E(x,x̄,p,q) restricted to P1×(P1 \0). For this it suffices
to construct a map D⊗OP1×(P1\0) → Ker(b) |P1×(P1\0) transversal to Im(a) |P1×(P1\0). It is
easy to see that the map:

D ⊗OP1×(P1\0) V ⊗OP1×(P1\0)(−1, 0)

⊕
V ⊗OP1×(P1\0)(0,−1)

⊕
D ⊗OP1×(P1\0)

τ1 =

(hx̄− z)−1p
0
Id


satisfies the requirement.

Note that τ1 is well defined because hx̄ is nilpotent (x̄ = ⊕x̄i, and x̄i sends Vi to Vi−1, so
that ⊕x̄i acts nilpotently on ⊕Vi), hence hx̄−z is invertible when restricted to P1×(P1\0)
(since z 6= 0 on P1 × (P1 \ 0) and hx̄ is nilpotent).

For the same reasons the map:

D ⊗O(P1\0)×P1 V ⊗O(P1\0)×P1(−1, 0)

⊕
V ⊗O(P1\0)×P1(0,−1)

⊕
D ⊗O(P1\0)×P1

τ2 =

 0
(y − tx)−1p

Id


induces the trivialization of E(x,x̄,p,q) restricted to (P1 \ 0) × P1. Note that these two
trivializations agree at the point (∞,∞) and extend the trivialization of E(x,x̄,p,q) restricted
to two infinite lines. Now we can construct η(E(x,x̄,p,q)). To this end we have to calculate
the transition function (τ−1

1 ◦ τ2)|(1:1)×(P1\{0,∞}) it is the point in GGLm corresponding to
E|(1:1)×(P1\{0,∞}) and the trivialization induced by

τ1 : D ⊗O(1:1)×(P1\{0,∞}) → D ⊗O(1:1)×(P1\{0,∞}).

Let us compute τ−1
1 ◦ τ2 on the fibre at a point (y0 : t0), (z0 : h0) := g. On the fibre of

τ1, τ2 at g we have the following morphisms:
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D V⊕V⊕D D
(τ1)|g (τ2)|g

They induce isomorphisms:

D Ker(b) / Im(a)|g D
(τ1)|g (τ2)|g

For a vector w ∈ D we want to find τ−1
1 ◦τ2(w) i.e. a vector w̃ ∈ D such that τ2(w)−τ1(w̃) ∈

Im(a). It means that there exists a vector u ∈ V such that τ2(w)− τ1(w̃) = a(u). It gives
us the system of equations:

(5)


(z − hx̄)−1p(w̃) = tx(u)− yu
(y − tx)−1p(w) = hx̄(u)− zu
w − w̃ = thq(u)

⇒

(6)

{
u = (hx̄− z)−1(y − tx)−1p(w)

w̃ = w − thq(u)

Hence w̃ = w − thq(hx̄− z)−1(y − tx)−1p(w).

So

(τ−1
1 ◦ τ2)|(1:1)×(P1\{02,∞2}) = (1 + q(x̄− z)−1(x− 1)−1p).

Thus we obtained the following point in GGLm : 1 + z−1
∞∑

n,l=0

z−nqx̄nxlp. It remains to

multiply it by z−w0(λ). We have calculated η(E(x,x̄,p,q)). Thus

η ◦Θ(xi, x̄i, pi, qi) = z−w0(λ)(1 + z−1

∞∑
n,l=0

z−nqx̄nxlp).

�

Note that from (5) it also follows w = w̃ + thq(y − tx)−1(hx̄− z)−1p(w). So

(7) (1 + z−1

∞∑
n,l=0

z−nqx̄nxlp)−1 = (1− z−1

∞∑
n,l=0

z−nqxlx̄np).
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5. Proof of Theorem 2.2

5.1. Lemma. The isomorphism ψ ◦ φ restricted to Mreg
0 (v, d) induces an isomorphism

between Mreg
0 (v, d) and (L<0GLm ·z−w0(λ)∩L≥0GLm ·z−w0(µ)) and is given by the formula:

(8) (xi, x̄i, pi, qi) 7→ z−w0λ(1 + z−1

∞∑
n,l=0

z−nqx̄nxlp)

where (x, x̄, p, q) := (⊕xi,⊕x̄i,⊕pi,⊕qi).

Proof. In Subsection 3 we proved that the map

η ◦Θ : (xi, x̄i, pi, qi) 7→ z−w0λ(1 + z−1

∞∑
n,l=0

z−nqx̄nxlp)

is an isomorphism between Mreg
0 (v, d) and (L<0GLm · z−w0(λ) ∩L≥0GLm · z−w0(µ)). Let us

think of GGLm as of the moduli space of lattices L ⊂ D(K). Then the above isomorphism
sends (xi, x̄i, pi, qi) to the lattice

L := z−w0λ(1 + z−1

∞∑
n,l=0

z−nqx̄nxlp)(L0) = (1 + z−1

∞∑
n,l=0

z−lqx̄nxlp)(Lb),

where L0 is the standard lattice D(O), b is a permutation of λ and Lb is the lattice
corresponding to z−w0(λ) (see also [MV1, Subsection 4.4.1]) According to [MV1, Subsection
4.4] this lattice L is uniquely determined by a C-linear map f : Lb/L0 → L−b (L−b is a
subspace in D(K) spanned by {z−leij|i ∈ I, 1 ≤ j ≤ di, l > i} see [MV1, Subsection 4.4.3])

and f is uniquely determined by f1 : Lb/L0 → Ub (where Ub is spanned by {z−ieij|i ∈
I, 1 ≤ j ≤ di} it is the same as Vb in [MV1, Subsection 4.4.4]). Let us compute f1. (Note
that f1 is nothing but ψ−1(L)−φ(0) (see [MV1, Subsection 4.4.11] and [MV2, Subsection
3.3]) thus we only have to prove that f1 = φ(x, x̄, p, q)− φ(0))

Recall the definition of f . Denote the projection of Lb ⊕ L−b to L−b along Lb by π−b . Note

that πb (see Subsection[MV1, Subsection 4.4]) induces the isomorphism π : L
∼−→ Lb.

f := π−b ◦ π
−1.

We have the following commutative diagram:

(9) Lb

1+z−1
∞∑

n,l=0
z−lqx̄nxlp

//

""

Lb ⊕ L−b

πb

��

π−b // L−b

Lb

π−1

OO

f

<<
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Let f =
∞∑
k=1

z−kfk as in [MV1, Subsection 4.4.4]. For a vector z−h
′
ej′ , ej′ ∈ Dj′ , 1 ≤ h′ ≤

j′,

π−1(z−h
′
ej′) = z−h

′
ej′ +

∞∑
k=1

z−kfk(z
−h′ej′) = z−h

′
ej′ +

∑
j

z−j−1wj +
∞∑
k=2

z−kfk(z
−h′ej′) for

some wj ∈ Dj(we want to compute them).

Conjugating (7) by z−w0(λ) we note that the map

1− z−1

∞∑
n,l=0

z−lqxlx̄np : Lb ⊕ L−b → Lb ⊕ L−b

is inverse to the map

1 + z−1

∞∑
n,l=0

z−lqx̄nxlp : Lb ⊕ L−b → Lb ⊕ L−b .

Now we see that the diagram (9) gives us the condition

(10) Ξh′,j′ := (1− z−1
∑
n,l

z−lqxlx̄np)(z−h
′
ej′ +

∑
j

z−j−1wj +
∞∑
k=2

z−kfk(z
−h′ej′)) ∈ Lb.

Note that we have two gradings on D(K). One is by degree of z and the other comes
from the decomposition D = ⊕Di. A straightforward computation shows that (−j−1, j)-
component of the vector Ξh′,j′ is z−j−1(wj−qxj−h

′
x̄j
′−h′p(ej′)) (to prove it we observe that

sum of degrees of components of vectors z−kfk(z
−h′ej′) is equal to −k thus less than −1

for k > 1 while operator z−l−1qxlx̄np shifts a sum of degrees on −n − 1, from that two
observations our claim follows). Using (10) and the fact that vectors of Lb do not have
any components of degree (−j − 1, j) we see that

wj = qjxj−1 . . . xh′x̄h′ . . . x̄j′−1pj′(ej′).

It follows directly from the definition of φ (see [MV2, Subsection 3.3]) that φ(0) + f1 =
φ(xi, x̄i, pi, qi). So

ψ ◦ φ(xi, x̄i, pi, qi) = L = η ◦Θ(xi, x̄i, pi, qi).

�
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5.2. Proof of Theorem 2.2.

Proof. According to Lemma 5.1, the morphism ψ◦φ restricted to the dense open subvariety
Mreg

0 (v, d) ⊂M0(v, d) is given by the formula

(xi, x̄i, pi, qi) 7→ z−w0λ(1 + z−1

∞∑
n,l=0

z−nqx̄nxlp).

Now continuity of the map ψ ◦ φ implies Theorem 2.2. �

I would like to thank my supervisor M. Finkelberg very much for formulation of the
problem and for very useful discussions.
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