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Introduction

Before we start speaking about the question, it is necessary to give the definition of the main
object of our research.

Definition 1. K3-surface is a projective surface X with H1(X,OX) = 0 and Ω2
X ' OX .

Let us discuss their automorphisms groups. All K3-surfaces are holomorphic symplectic
varieties. Thus, if G act on X, we can consider natural representation on H0(X,Ω2

X) = Cω.
We denote by Gs the kernel of this action, and by Gn the image of this map. Thus, we have
the following exact sequence of groups:

1→Gs→G→Gn→ 1 (1)

In our paper we suppose that the exacts sequence (1) splits and that Gn has an element g,
whose order is an odd prime number1 . We consider the quotient variety of X by g. We
denote it by Y . We prove that Y is a rational surface with the action of G/〈g〉. We study
the case where Y is a G/〈g〉-conic bundle (a G/〈g〉- equivariant fibration whose general fiber
is P1).

Theorem 1. Let X be a K3 surface and g be a non-symplectic automorphism of X. We
denote the order of g as n. Suppose that n is not a power of 2. Moreover, the quotient
variety of X by g is a conic bundle. Then there is an isotrivial elliptic fibration of X whose
j-invariant equal to 0. Moreover, 3 divides n.

We refer to the paper of Justin Sawon [Saw14] to the classification of isotrivial elliptic
fibrations of K3-surfaces. In addition, we achive the following particular result about such
fibrations.

Theorem 2. Let π : X→P1 be an isotrivial jacobian elliptic fibration of a K3 surface whose
j-invariant is 0 and Gs = Z/3Z and Gn be a complex multiplication by 1+

√
−3

2
. Then all

singular fibers of this fibration has type IV or IV ∗. All possible configurations of the singular
fibers contain in this list: 6 IV , IV+IV ∗, 2 IV+2IV ∗, 3 IV ∗.

1The case of antisymplectic involution was studied in detail by Kristina Frantzen in her paper [Fra11]
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Background

In this sectin we recall the background knowledge and of the history of the question.
Shafarevich and Piateckii-Shapiro [PS71] proved the famous Torelli theorem on K3-surfaces.
It brings to us the following corollary.

Theorem 3 (Shafarevich and Piateckii-Shapiro, 74). Let X be a K3-surface, then the natural
map AutX→O(H2(X,Z)) is injective.

See e.g. [Huy15, chapter 15.2] for more details. To apply Theorem 1 let us remind
something about the structure of H2(X,Z).

H2(X,Z) = E8(−1)2 ⊕H3

. Particularly, the period lattice is a principally polarized lattice of rank 22 and signature
(3, 19). The intersection of the period lattice with the Hodge part of the second cohomology is
the Neron-Severi group denoted by NS(X). The transcendental lattice of X is the ortogonal
complement of NS(X). We denote it as T (X). The classifcation of all possible Gn is well-
known.

Proposition 4. Gn is a cyclic group whose order divides 66, 44, 42, 36, 28 or 12

Proof. See e.g. [Huy15, chapter 15.1].

Clearly, the fixed locus of Gn is the disjoint union of k smooth curves and n isolated fixed
points. In the paper [AST11] Michela Artebani, Alessandra Sarti and Shingo Taki find all
possible n, k and topological structures of the fixed curves.

Theorem 5 (Artebani, Sarti and Taki). Let X be a K3-surface and σ be a non-symplectic
automorphism whose order is a prime number. Then at most one of the fixed curves may
have positive genus g. Moreover, the numbers g, n and k can be expressed in terms of the
second cohomology lattice of X.

Now let us remind some results about the symplectic automorphisms groups of K3 sur-
faces.

Vyacheslav Nikulin in his work “Finite groups of automorphisms of Kählerian K3 surfaces”
[Nik79] gives the list of all abelian groups that can act symplectically on some K3. This result
based on the action on the second cohomology lattice.

Theorem 6 (Nikulin, 79). There are exactly 14 non-trivial finite abelian groups G that can
be realized as subgroups of Aut(X) of a complex K3-surface X. Moreover, the induced action
on the abstract lattice H2(X,Z) is unique up to orthogonal transformations. Apart from the
cyclic groups Z/nZ, 2 ≤ n ≤ 8 the list comprises the following groups: Z/2Z2, Z/2Z3, Z/2Z4,
Z/3Z2; Z/4Z4, Z/2Z×Z/4Z and Z/2Z×Z/6Z.

Nine years later Mukai Shigeru extended the previous result to the case of non-commutative
G. In his paper “Finite groups of automorphisms of K3 surfaces and the Mathieu group”
[Muk88], by application of the Niemeier lattices, he classified all finite symplectic groups of
automorphisms of K3-surfaces.
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Theorem 7 (Mukai, 88). For a finite group G the following conditions are equivalent:

(i) There exists a complex (projective) K3 surface X such that G is isomorphic to a sub-
group of Aut(X).

(ii) There exists an monomorphism G ↪→ M23 into the Mathieu group M23 such that the
induced action of G on Ω := 1, ..., 24 has at least five orbits.

There are 11 maximal subgroups of finite symplectic automrphisms groups acting faith-
fully of complex K3-surface. The orders of these groups are 48, 72, 120, 168, 192, 288, 360,
384, 960. Some orders appear twice.
The goal of our work is to study the case in which the both parts of G are not trivial, and
the last map in the exact sequence (1) is a trivial extension,

G = Gn ×Gs.

The main idea of our work is to take the quotient of X by an ellement of Gn and study
how Gs can act here. These quotients can be the so-called Enriques surfaces, which were
discovered by the Italian mathematician Federigo Enriques. However, we do not need to
focus on this case, as all the groups of the automorphisms of these surfaces are classified in
[BP83]. Otherwise, X/Gn is a rational (possibly singular) surface.

Quotient variety by the non-symplectic part and G-MMP

In this section we consider the quotient of our K3-surface by g, where g ∈ Gn and order of g is
odd. We denote it as Y . We prove that Y is a rational surface and describe the classification
of rational surfaces with a group action. Notice that this variety can be singular. Let P be
an isolated fixed point Gn. The group Gn act non-trivialy on the symplectic form. Thus,
Gn|TP

⋂
SL(TP ) = id. Hence, the singularities are not canonical. Theory of singularities of

surfaces provides us with following fact.

Proposition 8. Let S be a surface and P ∈ S be a quotient singularity by a cyclic group G.
Supose that G

⋂
SL(TP ) = id. Let πS̄→S be the minimal desingularisation of S. Then the

class of divisors E = −π∗KS +KS̄ contains an effective divisor.

Proof. See e.g. [Rei]

Lemma 9. Let X be a K3 surface and g be a automorphism of X. Suppose that the action
of g is free. Then order of g equal to 2.

Proof. We denote the quotient variety X be g. Since the action of g is free, the natural map
from X to Y is étale. Hence,

χ(X,OX) = ord g · χ(Y,OY )

. Because X is a K3, χ(X,OX) = 2. Thus, g is an involution.
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Proposition 10. Let X be a K3-surface and Gn be the group of its non-symplectic auto-
morphisms. Suppose that the order of Gn is not equal to 2. Then Y := X/Gn is a rational
(possibly singular) surface.

Proof. By the Hurwitz formula for the finite maps we have:

KX = π∗(KY +B)

,
where B is the ramification divisor.
Applying the push forward to the first equality, we get:

π∗π
∗(KY +B) = π∗Kx = 0

−KY =
B

ord g

Let p : Ȳ →Y be the minimal resolution of singularities of Y . Then

−KȲ = −p∗KY + E

By proposition 8 the divisor E equal to 0 if only and if there is no isolated point with
non-trivial stabilizer. The support of the divisor B is the set non-isolated fixed points with
non-trivial stabilizer. By lemma 9 the action of g is not free, hence the divisor E + B is
non-zero effective divisor. As we noticed above

−KȲ = p∗B + E

. Thus, H0(Ȳ ,OȲ ) 6= 0. In particular, Y has the negative Kodaira dimension. Since X is a
K3, we have H1(X,OX) = 0. Hence, H1(Ȳ ,OȲ ) = 0. Thus by Castelnuovo criterion, Ȳ is a
smooth rational surface.

Since Gs commutes with Gn and Gn is a cyclic group, each element g ∈ Gn commutes with
all group G. Hence, G/g acts on Y . To classify types of this actions we apply G-minimal
model program.

Proposition 11. All G-minimal rational surfaces has one of the following type:

• Yd is a del Pezzo surface of degree d whose invariant Picard lattice is generated by the
canonical bundle.

• φ : Y →P1 is a G-minimal conic bundle. The invariant Picard lattice of X has rank 2.

• Projective plane. And G is subgroup of PGL3(C)

Proof. See [DI09].

In this paper we consider only the case of a conic bundle.

4



Elliptic fibrations

In the present section we prove theorem 1
Proof of Theorem 1. The quotient variety of X by g is a conic bundle. Hence, we have
the following diagram

X //

!!

Y

~~

P1

The map from X to P1 is a fibration of a K3 surface. Hence, it is an elliptic fibration. Let
E be a smooth fiber of this elliptic fibration. The curve E/g is rational. Since the order
of g is not 2 or 4, some power of g is a complex multiplication of order 3 or 6. Hence,
E = C /Z[1−

√
−3

2
]. This elliptic curve has j-invariant 0. �

1 Isotrivial elliptic fibrations whith the complex mul-

tiplication of order 3

In the last section we study the automorphism group of isotrivial elliptic K3 surfaces with
complex multiplication of order 3. We classify all such fibrations and describe their auto-
morphisms. First, we prove that the fibration has a section using the involution h from the
lemma 7. Since h ∈ Gn and Gn is cyclic group, g and h commute. Hence, their product
is an element of order 6. We use it to construct a section of the fibrationπ. Now we can
consider only Jacobian fibrations. It allows us to use the Weierstrass equation. We study the
automorphisms of isotrivial elliptic fibrations whose j-invariant equals to 0 in the following
sections.

Proposition 12. Let X be a K3-surface and π : X→P1 be an isotrivial elliptic fibration
whose j-invariant equals to 0. Then X can be determined as zeros of cubic equation

y2 = x3 + f(t)z3

in PP1(OP1 ⊕OP1(4)⊕OP1(6)) and f(t) is degree 12 polynomial on the base.

Proof. Consider the Weierstrass equation of X:

y2 = x3 + g(t)xz2 + f(t)z3

in PP1(OP1 ⊕OP1(4) ⊕ OP1(6)), where f(t) has degree 12 and g(t) has degree 8. See e.g.
[Huy15, chapter 11.2]. What we need is to show that g vanishes. The j-invariant of any fiber
equals 0. Let us calculate it using g(t) and f(t).

0 = j(t) = 1728
4g(t)3

4g(t)3 + 27f(t)2

Hence, g = 0.
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Lemma 13. Let π : X→P1 be an isotrivial elliptic fibration whose j-invariant equal to 0.
Then it has a complex multiplication of order 6 if and only if π admits a section.

Proof. Indeed, the set of fixed points of the complex multiplication of order 6 is a section.
Conversely, if the fibration is jacobian, we can write its Weierstrass equation (proposition
12). The required complex multiplication derminated by formula

(x, y) 7→ (
1−
√
−3

2
x,−y)

A fiber is singular at a point b if only and if f(b) = 0, and depends only on the order
of zero at b. We denote the order of zero as m. All fibers with m 6 5 are listed in the
table below (see [Saw14]). In the last column of this table we describe the group structure
of smooth loci of these singular fibers. See e.g. [Huy15, chapter 11.2].

m Kodaira type Dynkin diagram Euler number Group structure of singular loci

1 II Ã0 2 Ga

2 IV Ã2 4 Ga×Z/3Z
3 I∗0 D̃4 6 Ga×Z/2Z2

4 IV ∗ Ẽ6 8 Ga×Z/3Z
5 II∗ Ẽ8 10 Ga

Remark. Let F be a singular fiber fixed by Gs.The group Gs×Gn acts faithfully on it. Indeed,
if kernel of action is non-trivial, it have singular loci of fixed points, but it is impossible.

Proof of Theorem 2. Firstly, note that Z/3Z×Z/3Z can act faithfully only on a fiber of
type IV and IV ∗ and symplectic part has 1 and 2 fixed points on each fiber respectively. We
prove that Gs act by a translation. Otherwise, the group Gs acts non-trivially on the base of
this fibration. Hence, it has two fixed fibers. The group Gs fixes 2 point on base. Hence, the
number of fixed point of Gs cannot be greater then 4. However, it is well-know that number
of fixed points of a symplectic automorphism of order 3 is equal to 6 (see [Huy15][chapter
11.1]). Thus, we have a contradiction. Since Gs acts trivialy on the base, it act on each fiber.
As we noticed in the begining of this proof, it implies that every singular fiber has a type IV
or IV ∗. Remark that the sum of the Euler characteristics of all singular fiber is equal to 24.
�

Example. Consider a surfaces X with three singulars of type IV ∗. We can describe this
surface in a more geometric way. Let E is elliptic curve with j(E) = 0 and ω its complex
multiplication of order 3. Consider the quotient variety of E × E by the group acting
diagonally by ω on this abelian surface. Fibration to the E/ω has three singular fiber. Every
singular fiber has three singularities of type A3. Thus, we obtain X as the desingulariation
of this surface.

Suppose that Gs acts trivially on the base of fibration. We acts by the translations. By
the table above, the group Gs can be only Z/2Z, Z/3Z and Z/2Z2. The case of Z/3Z is
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described above. The complex multiplication by 1−
√
−3

2
does not fix non-zero points of 2-

torsion. Hence, in our case Gn and Gs do not commute. However, if we neglect condition of
the commutativity, by the table, we get that all singular fibers have type I∗0 . The group of
automorphisms of this surface is a non-trivial exterior of Z/6Z by Z/2Z2.

Example. Let E and ω be as in the previous example and B be arbitrary elliptic curve. Let
X be the Kummer surface of E × B and π is the projection to B/{±1}. Then X is a K3
with Gn = Z/6Z and Gs = Z/2Z2, which do not commute.
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