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Abstract. In this paper we give sufficient conditions for existence
of bounded solution of cohomological equation for suspension flows
over automorphisms of Markov compacta, which were introduced
by Ito [5] and Vershik [12]. This result can be regarded as a sym-
bolic analogue of results due to Forni [3] and Marmi, Moussa and
Yoccoz [8] for translation flows and interval exchange transforma-
tions.

1. Introduction

1.1. Markov compacta.
Consider a directed graph \Gamma with 2m vertices arranged in two levels,

the top and the bottom, with m vertices at each one. Each edge in the
graph \Gamma goes from the vertex of the top level to the one of the bottom
level, and there may be multiple edges. We shall assume that each
vertex has an edge that either starts or ends in it. Let us denote by \frakG 
the set of all such graphs.

The graph \Gamma can be uniquely defined by the incidence matrix A =
A(\Gamma ) whose elements are defined by the formula

Aij(\Gamma ) := \#\{ edges in \Gamma : i \rightarrow j\} , i, j = 1, ...,m.

Now consider a sequence \{ An, n \in \BbbZ \} of (m\times m) incidence matrices.
It defines a graded graph \Gamma \infty = \cup n\in \BbbZ \Gamma n. The space X of all paths in
\Gamma \infty is called a Markov compactum. Each point in X is a path in \Gamma \infty ,
that is a sequence of edges \{ xn, n \in \BbbZ \} such that the terminal vertex
F (xn) of each edge xn coincides with the initial vertex I(xn - 1) of xn - 1.

Following notation of Bufetov [1], [2], for x \in X,n \in \BbbZ we introduce
the sets

\gamma +
n (x) = \{ x \in X : xt = x\prime 

t, t \geq n\} , \gamma  - 
n (x) = \{ x \in X : xt = x\prime 

t, t \leq n\} ,
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\gamma +
\infty (x) =

\bigcup 
n\in \BbbZ 

\gamma +
n (x), \gamma  - 

\infty (x) =
\bigcup 
n\in \BbbZ 

\gamma  - 
n (x).

The sets \gamma +
\infty (x) are the leaves of the vertical foliation F+(X) and the

sets \gamma  - 
\infty (x) are the leaves of the horizontal foliation F - (X). Note also

that the sets \gamma +
n (x), \gamma 

 - 
n (x) form semi-rings \frakC +(X) and \frakC  - (X) respec-

tively.
Following Vershik [12] and Ito [5], we shall define a partial ordering

o, which is called a Vershik ordering, on the Markov compactum X.
For each vertex v on the top level of the graph \Gamma n \subset \Gamma \infty let us fix

some linear ordering on the set of all edges of \Gamma n starting at v. Now we
say that x < x\prime for x, x\prime \in X, if there exists n \in \BbbZ such that xt = x\prime 

t for
all t > n and xn < x\prime 

n (note that the edges xn and xn are comparable
since they start at the same vertex). One can see that x, x\prime \in X are
comparable with respect to o if and only if they both belong to the
same leaf of the foliation F+.

Similarly, if we fix a linear ordering on the set of edges ending at
each given vertex of \Gamma n, this ordering will induce a partial ordering \~o
on X, and x, x\prime \in X are comparable with respect to \~o if and only if
they both belong to the same leaf of the foliation F - . The ordering \~o
is called a reversed Vershik ordering.

1.2. Renormalization cocycle.
Now consider the space \Omega = \frakG \BbbZ of bi-infinite sequences \{ \omega n, n \in \BbbZ \} 

of graphs. For \omega \in \Omega we denote X(\omega ) the corresponding Markov
compactum. A shift \sigma acts on the space \Omega so that (\sigma \omega )n = \omega n+1, and
this action admits a renormalization cocycle \BbbA (n, x) which is defined
for n > 0 by the product of incidence matrices:

\BbbA (n, \omega ) = A(\omega n)...A(\omega 1).

If all matrices A(\omega n), n \in \BbbZ are invertible, then we can define the
cocycle \BbbA (n, x) for negative n by the following formula:

\BbbA ( - n, \omega ) = A - 1(\omega  - n)...A
 - 1(\omega 0).

We set \BbbA (0, \omega ) to be the identity matrix.

Assumption 1.

Let us assume that there exists an ergodic \sigma -invariant probability
measure \BbbP on \Omega such that

\bullet There exists a graph \Gamma 0 \in \frakG such that all entries of A(\Gamma 0) are
positive and \BbbP (\{ \omega : \omega 0 = \Gamma 0\} ) > 0

\bullet The matrices A(\omega n) are \BbbP  - almost surely invertible
\bullet Both log(1+| | \BbbA | | ) and log(1+| | \BbbA  - 1| | ) are integrable with respect
to \BbbP .
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The transpose cocycle \BbbA t is associated with the reversed shift \sigma  - 1

and is defined by the formula (for n > 0)

\BbbA t(n, \omega ) = At(\omega 1 - n)...A
t(\omega 0),

\BbbA t( - n, \omega ) = (At)
 - 1
(\omega n)...(A

t)
 - 1
(\omega 1).

In the same way, \BbbA t(0, \omega ) is set to be the identity matrix. We suppose
that Assumption 1 holds for the cocycle \BbbA t too.

The first part of Assumption 1 implies the construction of the proba-
bility measure on a generic (with respect to \BbbP ) individual Markov com-
pactum. Indeed, for a full measure set of Markov compacta there exists
n0 = n0(\omega ) \in \BbbN such that all entries of the matrix \BbbA (n0, \omega ) are positive.
The unique positive \sigma -additive measure \Phi +

1 on \frakC +(X(\omega )) corresponds
to the unique eigenvector with positive coordinates. In a similar way,
one can define the unique (up to scaling) positive \sigma -additive measure
\Phi  - 

1 on the semi-ring \frakC  - (X(\omega )).
Thus for \BbbP -almost every Markov compactum X = X(\omega ) we obtain

the probability measure \nu = \nu \omega , which is defined for a cylindrical set
C \subset X, that is the set of the form \{ x : xn+1 = e1, ..., xn+k = ek\} , by
the formula

(1) \nu (C) = \Phi +
1 (\gamma 

+
n (x) \cap C) \cdot \Phi  - 

1 (\gamma 
 - 
n+k(x) \cap C).

The second and the third parts of Assumption 1 imply that Oseledets
Multiplicative Ergodic Theorem (see [7], [9],[10]) is applicable to the
cocycle \BbbA (as well as for the transpose cocycle \BbbA t). Namely, for \BbbP -
almost all Markov compacta X(\omega ) there exists an \BbbA -invariant direct-
sum decomposition \BbbR m = Eu

\omega \oplus Ecs
\omega , where Eu

\omega is the strictly expanding
subspace of \BbbA (\cdot , \omega ) and Ecs

\omega is its central-stable subspace. The space
Eu

\omega corresponds to positive Lyapunov exponents, while the space Ecs
\omega 

corresponds to zero and negative Lyapunov exponents, and the growth
of vectors in Ecs

\omega is at most sub-exponential.

1.3. Finitely-additive measures.
Following Bufetov (see [1], [2]), we introduce the space of finitely-

additive measures\frakB +(X),\frakB  - (X) on the semi-rings \frakC +,\frakC  - correspond-
ing to the foliations F+,F - of the Markov compactum X = X(\omega ). A
finitely-additive measure \Phi + \in \frakB +(X) is a real-valued (not obligatory
positive!) functional, defined on the sets of the form \gamma +

n (x) so that

\bullet \Phi +(\gamma +
n (x)) = \Phi +(\gamma +

n (y)) if the terminal vertices F (xn), F (yn)
of edges xn, yn coincide

\bullet there exist constants \theta > 0 and C > 0 such that\bigm| \bigm| \Phi +(\gamma +
 - n(x))

\bigm| \bigm| \leq Ce - \theta n for any x \in X and sufficiently large n.

We shall call the sets of the form \gamma +
n (x) Markovian arcs.

By the definintion, the measures \Phi + are invariant under changing of
`future', so they are holonomy-invariant with respect to the foliation
F - . Due to this holonomy invariance, at each level n \in \BbbZ we can choose
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`canonical arcs' \gamma +
n (xi,n) = \gamma +

i,n, i \in \{ 1, ...,m\} and introduce a sequence
of m-dimensional vectors vn by setting

(2) (vn)i = \Phi +(\gamma +
n (xi,n)).

The finite-additivity of \Phi + yields that the sequence vn, n \in \BbbZ satisfies
the equality vn+1 = Anvn. Thus if Assumption 1 holds, then for \BbbP -
almost every Markov compactum X there is an isomorphism between
the space of finitely-additive measures \frakB +(X) and the strictly expand-
ing subspace Eu

\omega of the cocycle \BbbA .
In the same way one can define measures \Phi  - \in \frakB  - (X) such that

\bullet \Phi  - (\gamma  - 
n (x)) = \Phi  - (\gamma  - 

n (y)) if the initial vertices I(xn), I(yn) of
edges xn, yn coincide

\bullet there exist constants \theta > 0, C > 0 such that
| \Phi  - (\gamma  - 

n (x))| \leq Ce - \theta n for any x \in X and sufficiently large n.

Again, if Assumption 1 holds, there is an isomorphism between the
space \frakB  - (X) and the strictly expanding subspace \~Eu

\omega of the transpose
cocycle \BbbA t.

1.4. Duality and the functional m\Phi  - .
In conditions of Assumption 1 the spaces \frakB +(X) and \frakB  - (X) are

dual to each other for \BbbP -almost every Markov compactum X = X(\omega ).
More precisely, for \BbbP -almost all Markov compacta the inner product in
\BbbR m induces a non-degenerate pairing \langle \cdot , \cdot \rangle between the unstable sub-
spaces of \BbbA and \BbbA t, Eu

\omega and \~Eu
\omega respectively, by the formula

(3) \langle v, \~v\rangle =
m\sum 
j=1

vj\~vj, where v \in Eu
\omega , \~v \in \~Eu

\omega .

The pairing \langle \cdot , \cdot \rangle between Eu
\omega and \~Eu

\omega is identified with the one between
\frakB +(X) and \frakB  - (X) by the isomorphism described in the previous sec-
tion.
The Oseledets Multiplicative Ergodic Theorem implies that any finitely-

additive measure \Phi + admits a decomposition into base functionals
\Phi +

1 , ...,\Phi 
+
d defined by the formula

(4) \Phi + = \langle \Phi +,\Phi  - 
1 \rangle \Phi +

1 + ...+ \langle \Phi +,\Phi  - 
d \rangle \Phi 

+
d ,

where the functionals \Phi  - 
1 , ...,\Phi 

 - 
d form the basis in \frakB  - (X), and this

basis is dual to \{ \Phi +
1 , ...,\Phi 

+
d \} .

Given the pairing \langle \cdot , \cdot \rangle , for arbitrary finitely-additive measure \Phi  - \in 
\frakB  - (X) we shall define a functional m\Phi  - = \langle \Phi +

1 ,\Phi 
 - \rangle on X. This

functional is a finitely-additive measure on subsets of X which can be
described in terms of formula (1) in the following way: for a cylindrical
set \{ x : xn+1 = e1, ..., xn+k = ek\} = C \subset X we put

m\Phi  - (C) \equiv \Phi +
1 \times \Phi  - (C) = \Phi +

1 (\gamma 
+
n (x) \cap C) \cdot \Phi  - (\gamma  - 

n+k(x) \cap C).
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Remark on the extension of finitely-additive measures. Given a finitely-
additive measure \Phi + \in \frakB +(X) we want to extend it to arbitrary arcs
in F+(X) properly. For that purpose we shall assume that the number
of paths in X grows at most sub-exponentially, or, in other words, the
sequence of matrices An of X has sub-exponential growth, that is for
any \varepsilon > 0 there exists some constant C\varepsilon > 0 such that

m\sum 
i,j=1

(An)ij \leq C\varepsilon exp(\varepsilon | n| ) as | n| \rightarrow \infty .

It was shown in [2] that, under this assumption, the measure \Phi + is
correctly defined on any arbitrary arc of F+(X), and moreover, that
for \BbbP -almost every Markov compactum this assumption is verified.

1.5. Vershik automorphism and the flow h+
t .

Given a Markov compactum X endowed with Vershik ordering o,
following Ito [5] (and also Bufetov [2]), we construct a vertical flow
h+
t , t \in \BbbR along the leaves of the foliation F+(X) by setting

\Phi +
1 ([x, h

+
t x]) = t,

where the interval [\cdot , \cdot ] is considered with respect to Vershik ordering
o. The flow h+

t is correctly defined for \nu -almost all points in X and
preserves the measure \nu . Moreover, the flow h+

t is uniquely ergodic
for \BbbP -almost all Markov compacta. In the same way one can define
a horizontal flow h - 

t along the leaves of the foliation F - (X) using a
reversed Vershik ordering.

There is a finite number of leaves of F+(X), where the flow h+
t is

not everywhere well-defined. These leaves are described as follows. Let
us denote by max(o) the set of points x \in X such that each edge xn

is maximal among the edges starting at the vertex I(xn). In the same
way, let min(o) stand for the set of points x \in X having each edge xn

minimal among the edges starting at the vertex I(xn). Note that, since
the edges starting at the given vertex are ordered linearly, we have

| max(o)| \leq m, | min(o)| \leq m.

For we want the flow h+
t to be defined in a unique way, we shall iden-

tify points x and x\prime such that (x, x\prime ) = (x\prime , x) = \emptyset . Each equivalence
class has at most two points, and \nu -almost all of them have only one
point. Since the obtained Markov compactum is measurably isomor-
phic to X, in a slightly abusive way, we shall denote by X the modified
Markov compactum. Thus the flow h+

t is correctly defined on the set

X\setminus 

\left\{   \bigcup 
x\in max(o)\cup min(o)

\gamma +
\infty (x)

\right\}   = \~X.

In other words, the set of singularity points of the flow h+
t is the union

of max(o) and min(o).
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The first return map of h+
t to the one-sided Markov compactum \^X

obtained by deleting subgraphs \Gamma n, n \leq 0 is called Vershik automor-
phism. It sends a path in a graph associated with \^X to its successor
with respect to Vershik ordering \^o induced from the ordering o on X.
More precisely, the Vershik automorphism P : \^X \rightarrow \^X can be defined
by the formula

Py = min\{ y\prime \in \gamma +
\infty (y) : y\prime > y\} .

On the other hand, the flow h+
t can be regarded as the suspension

flow over Vershik automorphism, with the piecewise constant roof func-
tion that is equal to the coordinates of the Perron-Frobenius eigenvector
of the cocycle \BbbA . For more details see the works of Bufetov [2], and of
Sarig and Schmoll [11].

1.6. Cohomological equation for h+
t .

Let us consider the cohomological equation for the vertical flow h+
t :

(5)
d

dt

\bigm| \bigm| \bigm| \bigm| 
t=0

u(h+
t x) = f(x).

Our aim is to find sufficient conditions for existence of solution of (5).
A function g is called weakly Lipschitz on Markov compactum X, if

it satisfies the weak Lipschitz property, that is for any n \in \BbbZ and some
constant C > 0 depending only on g we have

(6)

\bigm| \bigm| \bigm| \bigm| \bigm| \int 
\gamma +
n (x)

gd\Phi +
1  - 

\int 
\gamma +
n (y)

gd\Phi +
1

\bigm| \bigm| \bigm| \bigm| \bigm| \leq C if F (xn) = F (yn).

A function f onX is said to belong to the class C1+Lip if it is continuous
and the derivative \varphi (x) = d

ds

\bigm| \bigm| 
s=0

f(h - 
s x) along the horizontal direction

is a weakly Lipschitz function on X.

Theorem 1. Let \BbbP be a probability measure on the space \Omega satisfying
Assumption 1. Then for \BbbP -almost every Markov compactum X the
following holds. Let h+

t , h
 - 
s be the vertical and the horizontal flows on

X, and let f be a function of class C1+Lip on X. Then there exists
a bounded solution u of (5) if for any finitely-additive measure \Phi  - \in 
\frakB  - (X) we have

\int 
X

fdm\Phi  - = 0.

In other words, there is a finite number of obstacles to the existence
of solution of (5).

Our result is closely related to ones of Marmi, Moussa and Yoccoz
for interval exchange maps [8] and of Forni for translation flows on
flat surfaces [3]. Interval exchange maps, as well as translation flows,
admit a symbolic representation as Vershik automorphisms and their
suspension flows respectively via Rauzy-Veech induction (see [2]) ap-
plied to Markovian partition into zippered rectangles. The functionals
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m\Phi  - then become invariant distributions in a sense of Forni [3] with
respect to the vertical flow h+

t .

2. Proof of Theorem 1

The rest of this paper is devoted to the proof of Theorem 1. The
main thing to prove is the uniform boundedness of the integrals of the
function f along the orbits of the flow h+

t . Note that the Gottschalk-
Hedlund theorem ([4], Theorem 14.11; see also Johnson [6], Lemma
2.7) implies that for a continuous flow on the arbitrary compact metric
space, the uniform boundedness of the integrals along the orbits of the
flow yields the existence of a bounded solution of (5).

Proposition 1. In conditions of Theorem 1 there exists some constant
C that does not depend on T such that for any x \in X

(7)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
T\int 

0

f \circ h+
t (x)dt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq C.

According to Gottschalk-Hedlund theorem, if the flow h+
t was mini-

mal, the solution of (5) would be continuous. Actually, our flow h+
t is

almost minimal: indeed, \nu -almost every leaf \gamma +
\infty of the foliation F+(X)

is dense in X, but there are finitely many leaves, which intersect the
set max(o) (or min(o), if we consider the reversed time). Thus the
solution u(x) of (5) is a bounded function with a finite number of dis-
continuity poits, which are exactly the singularity points of the flow
h+
t .
Assuming that Proposition 1 holds, one can check that the measur-

able function

u(x) :=  - lim sup
T\rightarrow \infty 

T\int 
0

f \circ h+
t (x)dt

satisfies (5).
Without any loss of generality us fix a point x0 \in X, and let us first

prove that the bound (7) holds for x = x0. The proof below applied to
each single orbit of h+

t varifies the statement of Proposition 1.
The integral (7) can be rewritten as

\int 
\gamma 

fd\Phi +
1 , where \gamma is the interval

[x0, h
+
T x0] of the leaf \gamma +

\infty (x0). Thus we have to prove that the integrals\int 
\gamma 

fd\Phi +
1 are uniformly bounded for any arc \gamma = [x0, h

+
T x0].

2.1. Difference between integrals for long arcs.

Let us start with the proof of Proposition 1 for Markovian arcs, that
is for arcs of the form \gamma +

n (x).
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Proposition 2. Under assumptions of Theorem 1

(8)

\bigm| \bigm| \bigm| \bigm| \bigm| \int 
\gamma +
n (x)

fd\Phi +
1  - 

\int 
\gamma +
n (y)

fd\Phi +
1

\bigm| \bigm| \bigm| \bigm| \bigm| \leq C\theta e
 - \theta n if F (xn) = F (yn),

where \theta = \theta 1  - \theta 2, that is the difference between the top and the second
Lyapunov exponents of the renormalization cocycle \BbbA .

Proof. Let us apply a Mean Value Theorem:\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
T\int 

0

f \circ h+
t (x)dt - 

T\int 
0

f \circ h+
t (y)dt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| (x - y) \cdot 

T\int 
0

\partial f

\partial s
(h+

t h
 - 
s0
x)dt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| =

=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| (x - y) \cdot 
T\int 

0

\varphi \circ h+
t (z)dt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq \Phi  - 
1 ([x, y]) \cdot 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\int 

\gamma +
n (z)

\varphi d\Phi +
1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| ,
where \Phi  - 

1 is the positive measure on F - (X).
We know that on smaller arcs the measure \Phi  - 

1 decays exponentially
with the top Lyapunov exponent \theta 1, that is \Phi  - 

1 ([x, y]) \leq C1e
 - \theta 1n for

some constant C1 > 0. Thus it remains to prove that there exists a

constant C2 > 0 such that

\bigm| \bigm| \bigm| \bigm| \bigm| \int 
\gamma +
n (z)

\varphi d\Phi +
1

\bigm| \bigm| \bigm| \bigm| \bigm| \leq C2e
\theta 2n.

Let us choose canonical system of arcs \gamma +
i,n = \gamma +

n (zi,n) and a sequence
\{ vn, n \in \BbbZ \} of vectors defined by the formula

(9)
(vn)i =

\int 
\gamma +
i,n

\varphi d\Phi +
1 , i \in \{ 1, ...,m\} .

Since \varphi is a Lipschitz function on X, and due to the sub-exponential
growth of An the following inequality holds:

| Anvn  - vn+1| \leq C\varepsilon e
\varepsilon n

for any n \in \BbbN , \varepsilon > 0 and some C\varepsilon > 0 not depending on n. Indeed, \varphi 
is Lipschitz, hence\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\int 
\gamma +
n (z)

\varphi d\Phi +
1  - 

\int 
\gamma +
n (\~z)

\varphi d\Phi +
1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq C if F (zn) = F (\~zn).

Splitting the arc \gamma i,n+1 into arcs of the form \gamma +
n (z) and replacing these

arcs with the ones of the form \gamma +
j,n we get at most sub-exponential error

due to Remark in Section 1.5.
Thus, from Lemma 2.3 in Bufetov [2], it follows that there exists a

unique vector \^v\varphi \in Eu
1 such that for any n \in \BbbN 

| An...A1\^v\varphi  - vn+1| \leq C\varepsilon e
\varepsilon n,
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and this yields that there exists a unique finitely-additive measure \Phi +
\varphi \in 

\frakB +(X), corresponding to the vector \^v\varphi such that for any n \in \BbbN 

(10)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\gamma +
i,n

\varphi d\Phi +
1  - \Phi +

\varphi (\gamma 
+
i,n)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq C\varepsilon e
\varepsilon n,

where C\varepsilon > 0 depends only on function \varphi .
Moreover, for any functional \Phi  - \in \frakB  - (X) a pairing \langle \Phi +

\varphi ,\Phi 
 - \rangle can

be re-written as a Riemann-Stiltjes integral:

(11) \langle \Phi +
\varphi ,\Phi 

 - \rangle =
\int 
X

\varphi dm\Phi  - .

Both flows h+
t and h - 

t preserve the measure \nu = \Phi +
1 \times \Phi  - 

1 on X. It
yields

\int 
X
\varphi d\nu = 0. Furthermore, applying formula (4) to \Phi +

\varphi we get a
decomposition

\Phi +
\varphi = \langle \Phi +

\varphi ,\Phi 
 - 
1 \rangle \Phi +

1 + ...+ \langle \Phi +
\varphi ,\Phi 

 - 
d \rangle \Phi 

+
d .

The first term in this sum is equal to
\int 
X
\varphi d\nu \cdot \Phi +

1 , so it equals to zero.
Thus there exists C2 > 0 that does not depend on n \in \BbbN such that\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \int \gamma +

i,n

\varphi d\Phi +
1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq C2e
\theta 2n for any n \in \BbbN ,

and this finishes the proof of Proposition 2. \square 

2.2. Proof of Proposition 1 for Markovian arcs.

Now we come to the new sequence of vectors associated with the
integrals of f along canonical arcs

(12)
(wn)i =

\int 
\gamma +
i,n

fd\Phi +
1 , i \in \{ 1, ...,m\} .

Proposition 2 yields that for any n \in \BbbN and \theta = \theta 1  - \theta 2

| Anwn  - wn+1| \leq C\theta exp( - \theta n)

Proposition 3. In assumptions of Theorem 1, let w1, ..., wn, ... be a
sequence of vectors such that there exist a constant C\theta > 0 and \theta > 0
such that for all n \geq 1 we have

| Anwn  - wn+1| \leq C\theta exp( - \theta n).

Then there exists a unique vector \^w \in E1
u such that

| An...A1 \^w  - wn+1| \leq C.
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Proof. Let Ecu
n and Es

n be the central-unstable and stable subspaces
of the cocycle \BbbA (n,X) respectively (their existence is provided by Os-
eledets Multiplicative Ergodic Theorem). For any n \in \BbbN a vector
wn+1 \in \BbbR m admits a direct-sum decomposition

w+
n+1 = u+

n+1 + Anu
+
n + ...+ An...A1u

+
1 ,

w - 
n+1 = u - 

n+1 + Anu
 - 
n + ...+ An...A1u

 - 
1 ,

where w+
n+1 \in Ecu

n+1, w
 - 
n+1 \in Es

n+1 and wn+1 = w+
n+1 + w - 

n+1.

Let us choose \delta so that \theta 
2
> \delta > 0 and set Bn = e - \delta An, and let

\~wn = e - \delta (n - 1)wn. Again, for a vector \~un+1 = Bn \~wn  - \~wn+1 we have

| \~un+1| = | Anwn  - wn+1| \cdot e - \delta n \leq Ce - 
\~\theta n

for some C > 0, where \~\theta = \theta + \delta > 0.
Again we split the vectors \~un+1 into central-unstable and stable com-

ponents \~u+
n+1 and \~u - 

n+1 respectively, and

\~w+
n+1 = \~u+

n+1 +Bn\~u
+
n + ...+Bn...B1\~u

+
1 ,

\~w - 
n+1 = \~u - 

n+1 +Bn\~u
 - 
n + ...+Bn...B1\~u

 - 
1 .

Note that for any n \in \BbbN we have \~u+
n \in Eu

n, hence \~w+
n \in Eu

n. Let us
introduce a vector \^w \in Eu

1 :

\^w = \~u+
1 +B - 1

1 \~u+
2 + ...+ (Bn...B1)

 - 1\~u+
n+1 + ....

It is not hard to check that we have the following inequalities:

| Bn...B1 \^w  - \~w+
n+1| \leq C \prime exp( - \~\theta n),

| \~w - 
n+1| < C \prime \prime exp( - \delta n),

and hence
| B1...Bn \^w  - \~wn+1| \leq \~Ce - \delta n.

Thus we have arrived at the required estimate:

| A1...An \^w  - wn+1| \leq C.

The uniqueness of the vector \^w is obvious from the fact that it belongs
to unstable subspace of \BbbA . \square 

As a result,

Proposition 4. In assumptions of Theorem 1, there exists a unique
measure \Phi +

f \in \frakB + such that for any n \in \BbbN 

(13)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\int 

\gamma +
n (z)

fd\nu +  - \Phi +
f (\gamma 

+
n (z))

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq C(| | \varphi | | Lip+w + | | f | | C), where C > 0

Moreover, assumptions of Theorem 1 yield that \Phi +
f (\cdot ) is equal to 0,

since for each functional \Phi  - \in \frakB  - (X) we have \langle \Phi +
f ,\Phi 

 - \rangle = 0. This
concludes the proof of Propositon 1 for Markovian arcs, that is for the
sets of type \gamma +

n (\cdot ), n \in \BbbZ .
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2.3. The integrals along arbitrary arcs are bounded.

It is not too hard to see that the Proposition 1 is true for arbitrary
arcs of the flow h+

t . Indeed, let us take an arc \gamma = [x0, h
+
T x0] of the

vertical flow and approximate it with Markovian arcs. The arc \gamma admits
a decomposition into markovian arcs

(14) \gamma = [x0, h
+
T x0] =

0\bigsqcup 
n= - \infty 

Nn\bigsqcup 
k=1

\gamma n,k,

where \gamma n,k is arc of n-th level, and Nn grows sub-exponentially as n
goes to  - \infty . Due to sub-exponential growth of Nn, we have

(15)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
T\int 

0

f \circ h+
t (x)dt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\sum 
n\leq 0

exp(\varepsilon | n| ) \cdot 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\int 

\gamma n,k

fd\nu +

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .
And finally, due to the sub-exponential growth of An for negative n,
terms in the sum (15) decay exponentially fast with the Lyapunov
exponent \theta 1, and as a result, time integrals are uniformly bounded:\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

T\int 
0

f \circ h+
t (x)dt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq Cf .

Now Proposition 1 and then Theorem 1 are completely proved.
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