
SUBGROUPS OF ODD ORDER IN THE REAL PLANE CREMONA GROUP

EGOR YASINSKY

Abstract. In this paper we describe conjugacy classes of finite subgroups of odd order in the
group of birational automorphisms of real projective plane.

1. Introduction

Consider a projective space P𝑛k over an arbitrary field k. Recall that the Cremona group Crn(k)
is the group of its birational automorphisms. From algebraic point of view the Cremona group over
k is the group of k-automorphisms of the field k(𝑥1, . . . , 𝑥𝑛) of rational functions in 𝑛 independent
variables.

The classification of finite subgroups in Cremona groups is a classical problem which goes back
to E. Bertini’s work on involutions in Cr2(C). He discovered three types of conjugacy classes, which
are now known as de Jonquières, Geiser and Bertini involutions. However, Bertini’s classification
was incomplete and his proofs were not rigorous. The next step was made in 1895 by S. Kantor and
A. Wiman who gave a description of finite subgroups in Cr2(C). Their list was quite comprehensive,
but not precise in several respects.

The modern approach started with the works of Yu. I. Manin and V. A. Iskovskikh who
discovered the deep connection between conjugacy classes of finite subgroups in the Cremona
group and classification of 𝐺-minimal rational varieties (𝑋,𝐺) and 𝐺-equivariant birational maps
between them. This approach was taken by L. Bayle and A. Beauville in their work on involutions
[BaBe00]. The classification was generalised by T. de Fernex for subgroups of prime order [dFe04].
Finite abelian subgroups in Cr2(C) were classified by J. Blanc in [Bla09]. Finally, the most precise
description of conjugacy classes of all finite subgroups in Cr2(C) was given by I. V. Dolgachev and
V. A. Iskovskikh in [DI09a].

Much less is known in the case when the ground field k is not algebraically closed. Some results
about the existence of birational automorphisms of prime order in Cr2(k) for any perfect field k
were obtained by Dolgachev and Iskovskikh in [DI09b]. Similar questions, including a Minkowski-
style bound for the orders of the finite subgroups in Cr2(k), are discussed in J.-P. Serre’s works
[Ser08], [Ser09]. The generators for various subgroups of Cr2(R) were studied by J. Blanc and F.
Mangolte in [BlMa13].

In this paper we work in the category of schemes defined over R together with regular mor-
phisms of schemes. In other words, a regular morphism for us is a rational map defined at all
complex points. The group of automorphisms in such a category is denoted by Aut(𝑋). One can
also consider the category with the same objects and morphisms defined as follows: we say that
there is a morhism 𝑓 : 𝑋 99K 𝑌 if 𝑓 is a rational map defined at all real points of 𝑋. Auto-
morphisms in such a category are called birational diffeomorphisms and the corresponding group
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is denoted by Aut(𝑋(R)). Clearly, Aut(𝑋) ⊂ Aut(𝑋(R)). In recent years, birational diffeomor-
phisms of real rational compact surfaces have been studied intensively (see, for example, [HM09],
[KM09]). In particular, prime order birational diffeomorphisms of the sphere, i.e. elements of the
group Aut(𝑆(R)), where 𝑆 = {[𝑤 : 𝑥 : 𝑦 : 𝑧] ∈ P3R : 𝑤2 = 𝑥2 + 𝑦2 + 𝑧2}, were studied in [Rob15].

In this work we classify all subgroups of odd order in the real plane Cremona group. Our
main results are the following two theorems.

Theorem 1.1. Any finite subgroup of odd order in Cr2(R) is conjugate to a subgroup of the
automorphism group of some Del Pezzo surface 𝑋. More precisely, one of the following holds:

(1) rk Pic(𝑋)𝐺 = 1, and 𝑋 is R-rational;
(2) rk Pic(𝑋)𝐺 = 2, 𝑋 ∼= P1R × P1R and 𝐺 can be written as a direct product of at most two

cyclic groups.

The next theorem gives the details about finite groups arising in the case (1) of Theorem 1.1.

Theorem 1.2. Let 𝑋 be a real R-rational Del Pezzo surface, and 𝐺 ⊂ Aut(𝑋) be a group of odd
order, such that rk Pic(𝑋)𝐺 = 1. Then one of the following cases holds:

∙ 𝐾2
𝑋 = 9, 𝐺 is a cyclic subgroup of PGL3(R);

∙ 𝐾2
𝑋 = 8, 𝐺 is cyclic and linearizable (see subsection 2.2 for precise definitions);

∙ 𝐾2
𝑋 = 6, 𝐺 ∼= (Z/𝑛Z × Z/𝑚Z) o (Z/3Z) for some odd integers 𝑛,𝑚 ≥ 1; this group is

linearizable if and only if 𝑛 = 𝑚 = 1;
∙ 𝐾2

𝑋 = 5, 𝐺 ∼= Z/5Z and linearizable.
Moreover, all the possibilities listed above actually occur.

Remark 1.3. It may be interesting to notice that Theorem 1.2 with a slight modification is valid
if we replace the R-rationality assumption by a weaker one, namely 𝑋(R) ̸= ∅. The only new
case obtained is a Del Pezzo surface of degree 3 with non-connected real locus (hence it is not
R-rational), and the group Z/3Z acting minimally on it (see Example 5.5).

This paper is organised as follows. Section 2 recalls notation and background results from the
theory of rational surfaces and equivariant minimal model program. In Section 3 we prove Theorem
1.1. In Sections 4 and 5 we prove, step by step, Theorem 1.2. Finally, for the reader’s convenience,
some information about conjugacy classes in the Weyl groups is included in Appendix A.

Acknowledgments. The author would like to thank his advisor Yu. Prokhorov for numerous
useful discussions. The author is also grateful to Frédéric Mangolte for pointing out a problem in
the preliminary version of the proof of Proposition 5.1.

2. Preliminaries

Throughout the paper 𝑋 denotes geometrically smooth projective real algebraic surface, and
𝑋C denotes its complexification (as a scheme over R):

𝑋C = 𝑋 ×SpecR SpecC.
Note that there is a natural Galois group Γ = Gal(C/R) = ⟨𝜎⟩2 action on 𝑋C (here and later 𝜎
is an antiholomorphic involution on 𝑋C). As usual, 𝑋(C) denotes the set of complex points of
𝑋, and 𝑋(R) = 𝑋(C)𝜎 is its real part (with the Euclidean topology). Consider the canonical
projection

pr : 𝑋C → 𝑋.
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Let 𝑝 ∈ 𝑋 be a closed point. Then either pr−1(𝑝) = 𝑝 or pr−1(𝑝) = (𝑝, 𝜎(𝑝)). An exceptional curve
(or (−1)-curve) on a complex surface 𝑆 is a curve 𝐿 such that 𝐿 ∼= P1C and 𝐿2 = −1. A curve 𝐸
on real surface 𝑋 is said to be exceptional if:

(i): either pr−1(𝐸) = 𝐿 is exceptional on 𝑋C and 𝐿 = 𝜎(𝐿);
(ii): or pr−1(𝐸) = 𝐿+ 𝜎(𝐿), 𝐿 is exceptional on 𝑋C and 𝐿 ∩ 𝜎(𝐿) = ∅.

Recall that a surface 𝑋 is said to be R-minimal if any birational R-morphism 𝑋 → 𝑌 to smooth
projective real surface 𝑌 is an isomorphism. As in the complex case, one can show that any
birational morphism 𝑋 → 𝑌 is a composite of blowdowns, i.e. there is a sequence of contractions
of exceptional curves (in the sense of the previous definition). It follows that a surface is R-minimal
if and only if it has no exceptional curves [Man86, Chapter III, Theorem 21.8].

2.1. Rational 𝐺-surfaces. In the following definitions the ground field k is an arbitrary perfect
field.

Definition 2.1. A geometrically rational surface1 𝑋 is a smooth projective surface over k such
that 𝑋k = 𝑋 ×Spec k Spec k is birationally isomorphic to P2k. Geometrically rational surface 𝑋 is
called k-rational if it is k-birational to P2k.
Definition 2.2. Let 𝐺 be a finite group. A 𝐺-surface is a triple (𝑋,𝐺, 𝜄), where 𝑋 is a surface over
k and 𝜄 : 𝐺 →˓ Autk(𝑋) is a faithful 𝐺-action. A morphism of 𝐺-surfaces (𝑋1, 𝐺, 𝜄1) → (𝑋2, 𝐺, 𝜄2)
(or 𝐺-morphism) is a morphism 𝑓 : 𝑋1 → 𝑋2 such that 𝜄2(𝐺) ∘ 𝑓 = 𝑓 ∘ 𝜄1(𝐺). Rational maps and
birational maps of 𝐺-surfaces are defined in a similar way. We will often omit 𝜄 from the notation
and refer to the pair (𝑋,𝐺) or simply 𝑋, if no confusion arises.

Definition 2.3. A 𝐺-surface (𝑋,𝐺) is called minimal (we also say that 𝑋 is 𝐺-minimal) if any
birational 𝐺-morphism 𝑋 → 𝑋 ′ of 𝐺-surfaces is an isomorphism.

Remark 2.4. If 𝐺 = {id} then 𝐺-minimal surface is just a k-minimal surface in the sense of the
theory of minimal models.

Definition 2.5. Let 𝑓 : 𝑋 → 𝐵 be a 𝐺-morphism of 𝐺-surface (𝑋,𝐺), where 𝐵 is a curve. This
morphims is said to be relatively 𝐺-minimal if for any decomposition

𝑓 : 𝑋
𝑔−→ 𝑋 ′ ℎ−→ 𝐵,

where ℎ is a 𝐺-morphism and 𝑔 is a birational 𝐺-morphism, 𝑔 is in fact an isomorphism.

Definition 2.6. We say that a smooth 𝐺-surface (𝑋,𝐺) admits a conic bundle structure, if there
is a 𝐺-morphism 𝜋 : 𝑋 → 𝐶, where 𝐶 is a smooth curve and each scheme fibre is isomorphic to a
reduced conic in P2k.
Remark 2.7. If 𝑐 denotes the number of singular fibres of geometrically rational conic bundle
𝜋 : 𝑋 → 𝐶, then by Noether’s formula we have 𝐾2

𝑋 = 8 − 𝑐.

Definition 2.8. A Del Pezzo surface is a smooth projective surface 𝑋 with ample anticanonical
divisor class −𝐾𝑋 . The degree 𝑑 of a Del Pezzo surface 𝑋 is the self-intersection number 𝐾2

𝑋 .

Remark 2.9. It is well known that a Del Pezzo surface over an algebraically closed field k is
isomorphic either to P1k × P

1
k or P2k blown up in 9 − 𝑑 points in general position [Man86, Chapter

IV, Theorem 24.4].
1Note that many authors use the word «rational» to mean «geometrically rational».



SUBGROUPS OF ODD ORDER IN THE REAL PLANE CREMONA GROUP 4

Definition 2.10. The 𝑛-th Hirzebruch surface (or rational ruled surface) F𝑛 is the projectivisation
of a vector bundle E ∼= OP1k ⊕ OP1k(−𝑛).

2.2. Regularization of finite group action. Let (𝑋,𝐺) be a rational 𝐺-surface. A birational
map 𝜓 : 𝑋 99K P2k yields an injective homomorphism

𝑖𝜓 : 𝐺→ Cr2(k), g ↦→ 𝜓 ∘ g ∘ 𝜓−1.

We say that 𝐺 is linearizable if there is a birational map 𝜓 : 𝑋 99K P2k such that 𝑖𝜓(𝐺) ⊂ PGL3(k).
If (𝑋 ′, 𝐺) is another rational 𝐺-surface with birational map 𝜓′ : 𝑋 99K P2k, then it is obvious
that the subgroups 𝑖𝜓(𝐺) and 𝑖𝜓′(𝐺) are conjugate if and only if 𝐺-surfaces (𝑋,𝐺) and (𝑋 ′, 𝐺)
are birationally isomorphic. In other words, a birational isomorphism class of 𝐺-surfaces defines a
conjugacy class of subgroups of Cr2(k) isomorphic to 𝐺.

It can be shown that any conjugacy class is obtained in this way. In fact, the modern approach
to classification of finite subgroups in the Cremona group is based on the following result [DI09b,
Lemma 6].

Lemma 2.11. Let 𝐺 ⊂ Cr2(k) be a finite subgroup. Then there exists a k-rational smooth projec-
tive surface 𝑋, an injective homomorphism

𝜄 : 𝐺→ Autk(𝑋)

and a birational 𝐺-equivariant k-map 𝜓 : 𝑋 99K P2k, such that

𝐺 = 𝜓 ∘ 𝜄(𝐺) ∘ 𝜓−1

Of course, the 𝐺-surface (𝑋,𝐺, 𝜄) can be replaced by a minimal k-rational 𝐺-surface, so there
is a natural bijection between the conjugacy classes of finite subgroups 𝐺 ⊂ Cr2(k) and birational
isomorphism classes of minimal smooth k-rational 𝐺-surfaces (𝑋,𝐺). The following result is of
crucial importance. Its proof can be found in [Isk79, Theorem 1G], [DI09b, Theorem 5].

Theorem 2.12. Let (𝑋,𝐺) be a minimal geometrically rational 𝐺-surface over a perfect field k.
Then one of the following two cases occurs:

C: 𝑋 admits a conic bundle structure with Pic(𝑋)𝐺 ∼= Z2;
D: 𝑋 is a Del Pezzo surface with Pic(𝑋)𝐺 ∼= Z.

We will also need an important criterion of k-rationality, which is due to V. A. Iskovskikh and
Yu. I. Manin. For more details we refer the reader to [Isk96, §4].

Theorem 2.13. A minimal geometrically rational surface 𝑋 over a perfect field k is k-rational if
and only if the following two conditions are satisfied:

(i): 𝑋(k) ̸= ∅;
(ii): 𝑑 = 𝐾2

𝑋 ≥ 5.

From now on we set k = R. Denote by 𝑄𝑟,𝑠 the smooth quadric hypersurface

{[𝑥1 : . . . : 𝑥𝑟+𝑠] : 𝑥21 + . . .+ 𝑥2𝑟 − 𝑥2𝑟+1 − . . .− 𝑥2𝑟+𝑠 = 0} ⊂ P𝑟+𝑠−1
R .

The description of minimal geometrically rational real surfaces with real point is essentially due
to A. Comessatti [Com12]. Modern proofs can be found in [Man67], [Isk79], [Pol97], [Kol97].

Theorem 2.14. Let 𝑋 be a minimal geometrically rational real surface with 𝑋(R) ̸= ∅. Then
one and exactly one of the following cases occurs:
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(1) 𝑋 is R-rational: it is isomorphic to P2R, to the quadric 𝑄3,1 or to a real Hirzebruch surface
F𝑛, 𝑛 ̸= 1;

(2) 𝑋 is a Del Pezzo surface of degree 1 or 2 with 𝜌(𝑋) = 1;
(3) 𝑋 admits a minimal conic bundle structure 𝜋 : 𝑋 → P1 with even number of singular fibers

𝑐 ≥ 4 and 𝜌(𝑋) = 2.

Remark 2.15. Here is a simple but important observation. The condition 𝑋(R) ̸= ∅ implies
that Pic(𝑋C)Γ = Pic(𝑋) [Silh89, I, 4.5]. In particular, rk Pic(𝑋C)Γ×𝐺 = rk Pic(𝑋)𝐺 and a surface
𝑋 with a real point is 𝐺-minimal if and only if 𝑋C is Γ ×𝐺-minimal.

2.3. A bit of group theory. The following facts are well-known. We include some proofs for
completeness and the reader’s convenience.

Lemma 2.16. Let 𝐺 be a finite group of odd order. Then every faithful projective representation
𝜃 : 𝐺→ PGL𝑛(R), 𝑛 ≥ 2, can be lifted to a faithful representation ̃︀𝜃 : ̃︀𝐺 ∼= 𝐺→ SL𝑛(R).

Proof. Since 𝐺 ⊂ PGL𝑛(R) is of odd order, we have 𝐺 ∼= 𝛼−1(𝐺) ⊂ PSL𝑛(R) (see the diagram
below). For the same reason 𝛼−1(𝐺) lifts isomorphically to ̃︀𝐺 = 𝛾−1 ∘ 𝛼−1(𝐺) ⊂ SL𝑛(R).

1

��

1

��

1

��
1 // {±1}

��

// R*

��

// R+

��

// 1

1 // SL𝑛(R)

𝛾

��

// GL𝑛(R)

��

det // R*

��

// 1

1 // PSL𝑛(R)

��

𝛼 // PGL𝑛(R) //

��

{±1} //

��

1

1 1 1

�

We use Lemma 2.16 to describe all subgroups of odd order in PGL𝑘(R) for 𝑘 = 2, 3, 4.

Proposition 2.17. Let 𝐺 be a finite group of odd order 𝑛.
(1) If 𝐺 ⊂ PGL2(R) then 𝐺 is a cyclic group generated by a single matrix

𝑅2(2𝜋/𝑛) =

(︃
cos 2𝜋

𝑛
sin 2𝜋

𝑛

− sin 2𝜋
𝑛

cos 2𝜋
𝑛

)︃
(2) If 𝐺 ⊂ PGL3(R) then 𝐺 is a cyclic group generated by a single matrix

𝑅3(2𝜋/𝑛) =

⎛⎜⎝1 0 0

0 cos 2𝜋
𝑛

sin 2𝜋
𝑛

0 − sin 2𝜋
𝑛

cos 2𝜋
𝑛

⎞⎟⎠
(3) If 𝐺 ⊂ PGL4(R), then 𝐺 ⊆

⟨︀
𝑅3(2𝜋/𝑙)

⟩︀
×
⟨︀
𝑅3(2𝜋/𝑚)

⟩︀
for some 𝑙,𝑚 ∈ N.
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Proof. Applying Lemma 2.16, we may assume that 𝐺 ⊂ GL𝑘(R), 𝑘 = 2, 3, 4, in the corresponding
cases above. Moreover, we may assume that 𝐺 ⊂ SO𝑘(R), 𝑘 = 2, 3, 4, since every real represen-
tation of a finite group is equivalent to an orthogonal one and 𝐺 is of odd order. Recall that any
finite subgroup of SO2(R) is cyclic, while any finite subgroup of SO3(R) is cyclic, dihedral group
𝒟𝑛, or one of the groups of a Platonic solid: A4, S4 or A5. Now (1) is obvious and to conclude
with (2) it remains to notice that the cyclic group of order 𝑛 acts as rotations in a plane, fixing
the axis perpendicular to that plane.

In order to prove (3), we use a well-known fact that SO4(R) is a double cover of SO3(R) ×
SO3(R) [Hat02, Chapter 3, §3D]. Hence, 𝐺 ⊂ SO3(R) × SO3(R) and the assertion follows. �

* * *

To sum up, let 𝐺 be a finite subgroup of odd order in Cr2(R). Then we may assume that 𝐺
acts on a R-rational surface 𝑋 making 𝑋 a 𝐺-minimal surface (in fact, in sections 4, 5 we will
need only that 𝑋(R) ̸= ∅, except the case 𝐾2

𝑋 = 3, as mentioned in Remark 1.3).

3. The conic bundle case

In this section we prove Theorem 1.1. We first recall what is an elementary transformation of
a Hirzebruch surface.

An elementary transformation of a comlex Hirzebruch surface F𝑛 99K F𝑚 is the following
birational transformation. Let 𝜎 : 𝑌 → F𝑛 be the blow-up of a point 𝑝 on a fiber 𝐹 , ̃︀𝐹 is a strict
transform of 𝐹 , ̃︀𝐶𝑛 is a strict transform of the (−𝑛)-section 𝐶𝑛 ⊂ F𝑛 and 𝐸 is the exceptional
divisor. We have ( ̃︀𝐹 )2 = (𝜎*𝐹 − 𝐸)2 = 𝐹 2 − 1 = −1. Then there is a morphism 𝜓 : 𝑌 → 𝑍

blowing down ̃︀𝐹 (over C). If 𝑝 /∈ 𝐶𝑛, then ̃︀𝐶2
𝑛 = 𝐶2

𝑛 = −𝑛 and ̃︀𝐶𝑛 intersects ̃︀𝐹 transversely in
exactly one point. Thus 𝜓( ̃︀𝐶𝑛)2 = −𝑛+ 1 and 𝑍 ∼= F𝑛−1. If 𝑝 ∈ 𝐶𝑛, then ̃︀𝐶2

𝑛 = 𝐶2
𝑛 − 1 = −𝑛− 1,̃︀𝐶𝑛 ∩ ̃︀𝐹 = ∅, so 𝜓( ̃︀𝐶𝑛)2 = −𝑛− 1 and 𝑍 ∼= F𝑛+1.

Note that over R we can blow up either a real point or two imaginary conjugate points. For
example, the blow-up of two conjugate imaginary points 𝑝, 𝑝 /∈ 𝐶𝑛 ⊂ F𝑛 with 𝑛 > 0 followed
by the contraction of the strict transform of the fibres passing through 𝑝, 𝑝, gives a birational
map F𝑛 99K F𝑛−2. An analogous procedure for a real point 𝑞 ∈ F𝑛(R) gives a birational map
F𝑛 99K F𝑛−1.

Remark 3.1. In the language of Sarkisov program these elementary transformations are both
Sarkisov links of type II between two Mori fibrations. For more details on factorization of birational
maps of rational surfaces over R see [Pol97] or [Isk96].

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let 𝑋 be a surface of type (C) (see Theorem 2.12). Since 𝑋 is assumed to
be R-rational, we have 𝑋(R) ̸= ∅. Thus 𝐶(R) ̸= ∅ and 𝐶 ∼= P1R.

We may assume that 𝑋 is relatively minimal. Indeed, suppose that there is an exceptional
curve 𝐸 whose components are contained in singular fibers of 𝜋. We have the following two
cases: (a) 𝐸 is a real irreducible component of some singular fiber 𝐸 + 𝐸 ′; (b) 𝐸 = 𝐹 + 𝜎(𝐹 ),
𝐹 ∩ 𝜎(𝐹 ) = ∅, where 𝐹 + 𝑁1 and 𝜎(𝐹 ) + 𝑁2 are two different singular fibers. Note that 𝐺-
minimality of 𝑋 implies that there exists 𝑔 ∈ 𝐺 such that 𝑔(𝐸) = 𝐸 ′ in the case (a), and
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𝑔(𝐹 ) = 𝑁1 or 𝑔(𝜎(𝐹 )) = 𝑁1 in the case (b). It is easy to see that in both cases 𝑔 has an even
order, a contradiction (cf. [DI09a, Lemma 5.6]).

Therefore 𝜌(𝑋) = 2 and 𝐺 acts trivially on Pic(𝑋). If 𝑋 is not minimal, then there is a
birational morphism 𝑋 → 𝑋 ′, where 𝑋 ′ is a Del Pezzo surface [Isk79, Theorem 4]. Since 𝐺 acts
trivially on Pic(𝑋), this morphism is 𝐺-equivariant and the assertion follows.

Now let 𝑋 be a minimal surface. Theorem 2.14 shows that 𝑋 ∼= F𝑛, 𝑛 ̸= 1. Denote by 𝐺′

the image of 𝐺 in Aut(𝐶) ∼= PGL2(R). Since 𝐺 is of odd order, 𝐺′ has to be a cyclic group by
Proposition 2.17. Suppose that 𝑛 > 0. We have only two possibilities.

1. 𝐺′ ̸= {id}. Then we have two fixed points 𝑝1, 𝑝2 = 𝜎(𝑝1) ∈ 𝐶C ∼= P1C, corresponding to 𝐺-
invariant fibres 𝐹1 and 𝐹2 = 𝜎(𝐹1). Making 𝐺-equivariant elementary transformations centered at
two fixed points 𝑞𝑖 ∈ 𝐹𝑖 not lying on the exceptional (−𝑛)-section, we obtain a surface 𝑋 ′ ∼= F𝑛−2

(note that 𝑞1, 𝑞2 are complex conjugate). Proceeding in this way, we come either to F1, being not
𝐺-minimal, or F0 ∼= P1R × P1R.

2. 𝐺′ = {id}. Then 𝐺 acts by automorphisms of fibres, which are P1R, so it has two complex
conjugate fixed points on each fiber (recall that the order of 𝐺 is odd). One of these points lies
on the (−𝑛)-section 𝐶𝑛, while the other lies on some 𝑛-section. But both sections are Γ-invariant,
hence the fixed points must be real. So, this case does not occur.

Now we are going to study automorphisms of P1R × P1R.

Proposition 3.2. Assume that 𝑋 ∼= P1R × P1R and Pic(𝑋)𝐺 ∼= Z2. Then

𝐺 ⊆
⟨︀
𝑅2(2𝜋/𝑙)

⟩︀
×
⟨︀
𝑅2(2𝜋/𝑚)

⟩︀
for some 𝑙,𝑚 ∈ N (see Proposition 2.17 for the notation).

Proof. Recall that
Aut(P1R × P1R) = (PGL2(R) × PGL2(R))o Z/2Z.

As the order of 𝐺 is odd, 𝐺 ⊂ PGL2(R) × PGL2(R). Let

𝜋𝑖 : PGL2(R) × PGL2(R) → PGL2(R), 𝑖 = 1, 2,

be the projection on the 𝑖th component. Then 𝐺 ⊆ 𝜋1(𝐺) × 𝜋2(𝐺) and the assertion follows from
Proposition 2.17. �

Corollary 3.3. If the conditions of Proposition 3.2 are satisifed, then 𝐺 is a product of at most
two cyclic groups.

Theorem 1.1 now is proved.
�

4. Del Pezzo surfaces with 𝐾2
𝑋 ≥ 5

Throughout the next two sections 𝑋 will denote a real Del Pezzo surface with 𝑋(R) ̸= ∅.
We shall additionally assume that 𝑋 is R-rational in Proposition 5.4 (see Remark 1.3). Note that
this automatically holds if 𝐾2

𝑋 ≥ 5 by Iskovskikh’s Theorem 2.13.

As we already mentioned in Section 2, if 𝑋 is a Del Pezzo surface, then 𝑋C is isomorphic to
one of the following surfaces: P2C, P1C × P1C, or P2C blown up in 𝑟 ≤ 8 points in general position.
Obviously, we have 𝑑 = 𝐾2

𝑋 = 9 − 𝑟.
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The following simple lemma will be useful for us.

Lemma 4.1. Let 𝑋 be a real Del Pezzo surface of degree 𝑑 > 2 and there is a 𝐺-invariant (−1)-
curve on 𝑋. Then rk Pic(𝑋)𝐺 > 1.

Proof. Suppose that the converse holds. Denote by 𝐿 a 𝐺-invariant (−1)-curve. The curve 𝜎(𝐿),
where 𝜎 is a complex conjugation, is 𝐺-invariant too. This implies that the divisor 𝐿 + 𝜎(𝐿)
is 𝐺-invariant, so 𝐿 + 𝜎(𝐿) ∼ −𝑎𝐾𝑋 . Computing degrees of both sides, we see that this is
impossible. �

The number of (−1)-curves on Del Pezzo surfaces is classically known [Man86, Chapter IV,
Theorem 26.2]. Since this information will be used throughout the paper, we provide it in Table 1.

Table 1. (−1)-curves on Del Pezzo surfaces

𝑑 1 2 3 4 5 6
# of (−1)-curves 240 56 27 16 10 6

4.1. Birational maps between Del Pezzo surfaces. We will need the following result about
birational maps between two Del Pezzo surfaces. It is probably well-known, but we provide the
proof for the sake of completeness.

Lemma 4.2. Let 𝑋 be a Del Pezzo surface.
(1) Let 𝜎 : 𝑋 → 𝑍 be a birational morphism. Then 𝑍 is a Del Pezzo surface.
(2) Let 𝜋 : 𝑌 → 𝑋 be the blow-up of any point 𝑝 ∈ 𝑋. Assume that the following conditions

are satisfied: (i) 𝐾2
𝑋 > 1; (ii) 𝑝 does not lie on any (−1)-curve when 𝐾2

𝑋 > 1; (iii)
additionally, 𝑝 does not lie on the ramification divisor of the double cover 𝜙|−𝐾𝑋 | : 𝑋 → P2

C
when 𝐾2

𝑋 = 2. Then 𝑌 is a Del Pezzo surface with 𝐾2
𝑌 = 𝐾2

𝑋 − 1.

Remark 4.3. Although we shall apply this lemma to real surfaces, it is enough to state and prove
it for complex ones. The reason is that a line bundle L on a projective k-variety 𝑋 is ample if
and only if Lk is ample on 𝑋k. One can deduce this from the cohomological criterion of ampleness
and the compatibility of cohomology and base change.

Proof. For (1) see [Man86, Chapter IV, Corollary 24.5.2]. Let us prove (2). We have 𝐾𝑌 =
𝜋*𝐾𝑋+𝐸, where 𝐸 is the exceptional divisor. Obviously,𝐾2

𝑌 = 𝐾2
𝑋−1 > 0. By the Riemann–Roch

theorem, dim |−𝐾𝑌 | ≥ 𝐾2
𝑌 > 0. Suppose that there is an irreducible curve 𝐶 ⊂ 𝑌 with 𝐾𝑌 ·𝐶 ≥ 0

and put 𝑅 = 𝜋(𝐶). If 𝑅 is nonsingular at 𝑝, then 𝐶 = 𝜋*𝑅− 𝐸, so

𝐾𝑌 · 𝐶 = (𝜋*𝐾𝑋 + 𝐸)(𝜋*𝑅− 𝐸) = 𝜋*𝐾𝑋 · 𝜋*𝑅− 𝐸2 = 𝐾𝑋 ·𝑅 + 1 ≤ 0,

where the last inequality is caused by ampleness of −𝐾𝑋 . We see that 𝐾𝑌 · 𝐶 = 0, 𝐾𝑋 ·𝑅 = −1.
By the Hodge index theorem, 𝐶2 < 0, so by the adjunction formula 𝐶2 = −2 and 𝐶 ∼= P1

C. This
means that 𝑅 is a (−1)-curve, a contradiction.

Now let 𝑝 be a singular point of 𝑅. Note that 𝑅 must be a proper component of some divisor
𝜋*(𝑅

′) where 𝑅′ ∈ | − 𝐾𝑌 |. It is easy to see that 𝑅 = 𝜋*(𝑅
′) and 𝑝𝑎(𝑅) = 1, so 𝑝 is either an

ordinary double point or a cusp. Therefore,
𝐶 = 𝜋*𝑅− 2𝐸 ∼ 𝜋*(−𝐾𝑋) − 2𝐸 = −𝐾𝑌 − 𝐸.



SUBGROUPS OF ODD ORDER IN THE REAL PLANE CREMONA GROUP 9

Thus −𝐾𝑌 · 𝐶 = 𝐾2
𝑌 − 1 ≥ 0. It follows that 𝐾𝑌 · 𝐶 = 0, 𝐾2

𝑌 = 1 and 𝐾2
𝑋 = 2. We see that

𝜙|−𝐾𝑋 |(𝑅) touches the branch curve at 𝜙|−𝐾𝑋 |(𝑝), a contradiction. �

4.2. The Weyl groups. There is a powerful tool for studying the geometry of Del Pezzo surfaces,
namely the Weyl groups. For convenience of the reader we recall definitions and basic facts (see
[Man86], [Dol12]).

Let 𝑋C be a complex Del Pezzo surface of degree 𝑑 ≤ 6, obtained by blowing up P2C in 𝑟 = 9−𝑑
points. The group Pic𝑋C ∼= Z𝑟+1 has a basis 𝑒0, 𝑒1, . . . , 𝑒𝑟, where 𝑒0 is the pull-back of the class
of a line on P2C, and 𝑒𝑖 are the classes of exceptional curves. Put

∆𝑟 = {𝑠 ∈ Pic(𝑋C) : 𝑠2 = −2, 𝑠 ·𝐾𝑋C = 0}.
Then ∆𝑟 is a root system in the orthogonal complement to 𝐾⊥

𝑋C
⊂ Pic(𝑋C)⊗R. As usual, one can

associate with ∆𝑟 the Weyl group 𝒲(∆𝑟). Depending on degree 𝑑, the type of ∆𝑟 and the size of
𝒲(∆𝑟) are the following:

Table 2. The Weyl groups

𝑑 1 2 3 4 5 6
∆𝑟 E8 E7 E6 D5 A4 A1×A2

|𝒲(∆𝑟)| 21435527 210345 · 7 27345 273 · 5 233 · 5 12

Moreover, there are natural homomorphisms
𝜌 : Aut(𝑋C) → 𝒲(∆𝑟), 𝜂 : Γ = Gal(C/R) → 𝒲(∆𝑟),

where 𝜌 is an injection for 𝑑 ≤ 5. We denote by 𝑔* the image of 𝑔 ∈ Γ × 𝐺 in the corresponding
Weyl group.

Denote by E𝑟 the sublattice of Pic(𝑋C) generated by the root system ∆𝑟. For an element
𝑔* ∈ 𝒲(∆𝑟) denote by tr(𝑔*) its trace on E𝑟. To determine whether a finite group Γ × 𝐺 acts
minimally on 𝑋C, we use the well-known formula from the character theory of finite groups

rk Pic(𝑋C)Γ×𝐺 = 1 +
1

|Γ ×𝐺|
∑︁

𝑔∈Γ×𝐺

tr(𝑔*). (1)

Thus the group Γ × 𝐺 is minimal if and only if
∑︀

𝑔∈Γ×𝐺 tr(𝑔*) = 0. On the other hand, by the
Lefschetz fixed point formula (see [Hat02, Chapter 2, §2C]) for any ℎ ∈ 𝐺 we have,

Eu(𝑋ℎ
C) = tr(ℎ*) + 3. (2)

Denote by Sp(𝑔*) the set of eigenvalues of 𝑔*. For a cyclic group Γ×𝐺 ∼= ⟨𝑔⟩𝑛 of order 𝑛 it is very
easy to determine whether this group acts minimally on 𝑋C.
Lemma 4.4. A Del Pezzo surface 𝑋 is ⟨𝑔⟩𝑛-minimal if and only if 1 /∈ Sp(𝑔*).
Proof. According to the formula (1), we have to show that the sum of the traces tr(𝑔*𝑘) adds up
to 0 if and only if 1 /∈ Sp(𝑔*). Let 𝜆1, . . . , 𝜆𝑟 be the eigenvalues of 𝑔*. We have

𝑛−1∑︁
𝑘=0

tr(𝑔*𝑘) =
𝑛−1∑︁
𝑘=0

𝑟∑︁
𝑖=1

𝜆𝑘𝑖 =
𝑟∑︁
𝑖=1

𝑛−1∑︁
𝑘=0

𝜆𝑘𝑖 .

It remains to notice that
∑︀𝑛−1

𝑘=0 𝜆
𝑘
𝑖 equals 𝑛 for 𝜆𝑖 = 1 and 0 otherwise. �
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4.3. Del Pezzo surfaces of degree 9. Let 𝑋 be a real Del Pezzo surface of degree 9. Then 𝑋
is a Severi-Brauer variety of dimension 2. As 𝑋(R) ̸= ∅, we have 𝑋 ∼= P2R and 𝐺 ⊂ PGL3(R).
Applying Proposition 2.17, we obtain the following

Proposition 4.5. Let 𝑋 be a real Del Pezzo surface of degree 9 and 𝐺 be a subgroup of odd order
𝑛 in the automorphism group of 𝑋. Then 𝐺 ⊂ PGL3(R) and 𝐺 is isomorphic to a cyclic group of
order 𝑛, generated by 𝑅3(2𝜋/𝑛).

4.4. Del Pezzo surfaces of degree 8. In this section 𝑋 denotes a real Del Pezzo surface of
degree 8. Recall that 𝑋C ∼= P1C × P1C, so either 𝑋 ∼= 𝑄3,1 or 𝑋 ∼= 𝑄2,2 [Kol97, Lemma 1.16].

Proposition 4.6. Let 𝑋 be a real Del Pezzo surface of degree 8 with Pic(𝑋)𝐺 ∼= Z, where 𝐺 is a
group of odd order. Then 𝐺 is linearizable (and hence is cyclic).

Proof. Since 𝐺 is of odd order, the two components of 𝑋C ∼= P1C × P1C are exchanged by the
Galois group only. Thus Pic(𝑋)𝐺 = Pic(𝑋) ∼= Z and 𝑋 is R-minimal. Theorem 2.14 shows, that
𝑋 ∼= 𝑄3,1, so 𝑋(R) is homeomorphic to a sphere S2. Suppose that 𝐺 has a real fixed point 𝑝.
Blowing it up and contracting the strict transforms of the lines passing through 𝑝, we see that our
group 𝐺 is conjugate to a subgroup of PGL3(R). In particular, as we saw in the previous section,
𝐺 must be cyclic.

It remains to explain why 𝐺 always has a real fixed point. First, let us notice that 𝐺 is a
direct product of at most two cyclic groups. Indeed, any automorphism of 𝑋 is a restriction of a
projective automorphism of P3R, so we can identify automorphisms of 𝑋 with elements of PGL4(R).
By Proposition 2.17 𝐺 is a direct product of two cyclic groups, say 𝐺1

∼= ⟨𝑔1⟩ and 𝐺2
∼= ⟨𝑔2⟩.

Applying the topological Lefschetz fixed point formula, we see that

Eu((S2)𝑔1) =
∑︁
𝑘≥0

tr𝐻𝑘(S2,R) 𝑔
*
1 = tr𝐻0(S2,R) 𝑔

*
1 + tr𝐻2(S2,R) 𝑔

*
1 = 2 ̸= 0

(here we denote by 𝑔*1 the induced action on cohomology). Thus, (S2)𝑔1 consists of two points, say
𝑝 and 𝑝′. Then 𝐺2 acts on the set {𝑝, 𝑝′} and the action is trivial, because the order of 𝐺2 is odd.
The rest is obvious. �

Example 4.7. One can explicitly write the action of some cyclic group 𝐺 on the quadric 𝑋 ∼=
𝑄3,1 = {[𝑥 : 𝑦 : 𝑧 : 𝑤] : 𝑥2 + 𝑦2 + 𝑧2 = 𝑤2} as

[𝑥 : 𝑦 : 𝑧 : 𝑤] ↦→ [𝑥 cos 𝜃 + 𝑦 sin 𝜃 : −𝑥 sin 𝜃 + 𝑦 cos 𝜃 : 𝑧 : 𝑤].

This is obviously a rotation around 𝑧-axis that fixes two points (the North and the South poles)
on the sphere.

4.5. Del Pezzo surfaces of degree 6. In this section𝑋 denotes a real Del Pezzo surface of degree
6. Recall that 𝑋C is isomorphic to the surface obtained by blowing up P2C in three noncollinear
points 𝑝1, 𝑝2, 𝑝3. The set of (−1)-curves on 𝑋C consists of six curves: the exceptional divisors of
blow-up 𝑒𝑖 = 𝜋−1(𝑝𝑖) and the strict transforms of the lines 𝑑12 = 𝑝1, 𝑝2, 𝑑13 = 𝑝1, 𝑝3, 𝑑23 = 𝑝2, 𝑝3.
In the anticanonical embedding 𝑋C →˓ P6C these exceptional curves form a hexagon: each curve
meets two others. We denote this hexagon by Σ. Obviously, Aut(𝑋C) preserves Σ, so there is a
homomorphism

𝜌 : Aut(𝑋C) → Sym(Σ) ∼= 𝒟6
∼= S3 × Z/2Z,
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where 𝒟6
∼= 𝒲(A1×A2) is a dihedral group of order 12 and S3 is a symmetric group on 3-letters.

The kernel Ker(𝜌) is isomorphic to an algebraic torus 𝑇 ∼= (C*)2 (it comes from an automorphism
of P2C, that fixes all the points 𝑝𝑖). In fact, one can show that Aut(𝑋C) ∼= 𝑇 o𝒟6. Put 𝐺𝑇 = 𝐺∩𝑇 ,̂︀𝐺 = 𝜌(𝐺). Then we get a short exact sequence

1 −→ 𝐺𝑇 −→ 𝐺
𝜌−→ ̂︀𝐺 −→ 1 (⋆)

Proposition 4.8. Let 𝑋 be 𝐺-minimal real Del Pezzo surface of degree 6, where the order of 𝐺
is odd. Then ̂︀𝐺 ∼= Z/3Z and the exact sequence (⋆) splits, i.e. 𝐺 ∼= 𝐺𝑇 o (Z/3Z).

Proof. Note that ̂︀𝐺 ̸= id, since 𝑋 is not R-minimal by Theorem 2.14. Thus ̂︀𝐺 ∼= Z/3Z. Now let
us show that the exact sequence (⋆) splits. To find a splitting map 𝜉 : ̂︀𝐺→ 𝐺, one can choose any
element ℎ ∈ 𝐺 such that 𝜌(ℎ) generates ̂︀𝐺 ∼= Z/3Z. Then it suffices to check that ℎ3 = id. Pick
up any point 𝑞 ∈ 𝑋(C) which is fixed by ℎ (such a point always exists) and blow it up (over C).
Note that 𝑞 /∈ Σ, so the obtained surface is a Del Pezzo surface of degree 5. Moreover, it has 3
disjoint (−1)-curves forming one ⟨ℎ⟩-orbit. Blowing this orbit down, we get 3 points on P1

C × P1
C

which are fixed by ℎ3. It follows that ℎ3 = id. Proposition 4.8 now is proved. �

From now on, until the end of this section, we assume that 𝑋 satisfies the conditions of
Proposition 4.8. Clearly, 𝜂(Γ) = Z/2Z (otherwise all (−1)-curves are real, while there is a dis-
connected orbit of the 𝐺-action on Σ). There are three principally distinct ways of the Galois
group Γ action on the hexagon (see Fig. 1). Since neither the action of type (A) nor the action

(a) (b) (c)

Figure 1. Galois group acting on the set of exceptional curves

of type (B) commutes with (Z/3Z)-action, the complex conjugation acts as in Fig. 1c. Then
𝜎*(𝑒0) = 2𝑒0 − 𝑒1 − 𝑒2 − 𝑒3 = −𝐾𝑋 − 𝑒0, 𝜎*(𝑒0 − 𝑒𝑖) = −𝐾𝑋 − 𝑒0 − (𝑒0 − 𝑒𝑗 − 𝑒𝑘) = 𝑒0 − 𝑒𝑖, so
the pencil of conics |𝑒0 − 𝑒𝑖| defines a map 𝜙𝑖 : 𝑋 → P1R over R. The product map 𝜙1 × 𝜙2 × 𝜙3

embeds 𝑋 into P1R × P1R × P1R and the image is a divisor of 3-degree (1,1,1). Hence

𝑋 =
{︁

[𝑥1 : 𝑥2] × [𝑦1 : 𝑦2] × [𝑧1 : 𝑧2] ∈ P1R × P1R × P1R : F =
2∑︁

𝑖,𝑗,𝑘=1

𝑎𝑖𝑗𝑘𝑥𝑖𝑦𝑗𝑧𝑘 = 0, 𝑎𝑖𝑗𝑘 ∈ R
}︁
. (⋆⋆)

According to [Old37, Theorem 2], any binary trilinear form F is equivalent over R (i.e. there is a
nondegenerate change of variables on each factor) to one of the following canonical forms:

(a): 𝑥1𝑦1𝑧1 + 𝑥2𝑦2𝑧2;
(b): 𝑥1𝑦1𝑧1 + 𝑥2𝑦1𝑧2 + 𝑥2𝑦2𝑧1;
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(c): 𝑥1𝑦1𝑧1 + 𝑥1𝑦2𝑧2 + 𝑥2𝑦1𝑧2 − 𝑥2𝑦2𝑧1;
(d): 𝑥1𝑦1𝑧1 + 𝑥1𝑦2𝑧2;
(e): 𝑥1𝑦1𝑧1.

It is easy to check that forms (b), (d), (e) define singular surfaces, while (a) and (c) are smooth.
On the other hand, all (−1)-curves on the surface (a) are real, contradicting our assumption that
Γ acts as in Fig. 1c. Thus, we may assume that 𝑋 is given by the equation (c).

Remark 4.9. Let us clarify the topology of 𝑋(R). A real Del Pezzo surface of degree 6 is
isomorphic to one of the following surfaces: P2R blown up at 𝑎 ≥ 0 real points and 𝑏 ≥ 0 pairs of
conjugate points for some 𝑎 + 2𝑏 = 3 (then 𝑋(R) ≈ #(𝑎 + 1)RP2), 𝑄3,1 blown up at a pair of
conjugate points (so 𝑋(R) ≈ S2), or 𝑄2,2 blown up at a pair of conjugate points (then 𝑋(R) ≈
T2 = S1×S1) [Kol97, Proposition 5.3]. As we saw earlier, the complex conjugation acts on the set
of (−1)-curves as in Fig. 1c. This immediately gives 𝑋(R) ≈ T2. Indeed, 𝑋 does not dominate P2

R
since there are no real (−1)-curves on 𝑋. On the other hand, 𝑋(R) cannot be a sphere because
otherwise there would be two pairs of conjugate intersecting (−1)-curves (as in Fig. 1a).

Proposition 4.10. Assume the conditions of Proposition 4.8 are satisfied. Then

𝐺 ∼= (Z/𝑛Z× Z/𝑚Z)o (Z/3Z)

for some odd integer numbers 𝑛,𝑚 ≥ 1. This group is linearizable if and only if 𝑛 = 𝑚 = 1.

Proof. Recall that there is a single isomorphism class of complex Del Pezzo surfaces of degree 6,
since any three non-collinear points on P2C are PGL3(C)-equivalent. Thus, we can view 𝑋C as a
surface in P1C × P1C × P1C defined by the equation 𝑥1𝑦1𝑧1 = 𝑥2𝑦2𝑧2. It is a compactification of the
standard torus 𝑇 = (C*)2 = {(𝜆1, 𝜆2, 𝜆3) ∈ (C*)3 : 𝜆1𝜆2𝜆3 = 1}. The action of 𝐺𝑇 on 𝑋C can be
written as follows: [𝑥1 : 𝑥2] ↦→ [𝑥1 : 𝑒𝑖𝛼𝑥2], [𝑦1 : 𝑦2] ↦→ [𝑦1 : 𝑒𝑖𝛽𝑦2], [𝑧1 : 𝑧2] ↦→ [𝑧1 : 𝑒𝑖(−𝛼−𝛽)𝑧2], where
𝛼 = 2𝜋/𝑛, 𝛽 = 2𝜋/𝑚 for some odd integer numbers 𝑛,𝑚 ≥ 1, so 𝐺𝑇

∼= Z/𝑛Z× Z/𝑚Z.
Now let us prove the second part of the Proposition. Assume that 𝐺 is linearizable. Then

𝐺 is a cyclic group (see Proposition 4.5), so 𝐺𝑇 must be a cyclic group of order coprime to 3,
and the action of ̂︀𝐺 on 𝐺𝑇 must be trivial. It is clear from the description above that there are
exactly three (Z/3Z)-fixed points on the torus 𝑇 (C), namely the fixed points of the transformation
𝜆1 ↦→ 𝜆2 ↦→ 𝜆3. Thus, 𝐺𝑇

∼= Z/3Z. In particular, we see that 𝐺 is not cyclic, hence not linearizable.
Now assume that 𝑛 = 𝑚 = 1, i.e. 𝐺 ∼= Z/3Z and 𝐺 acts on Σ «rotating» it by 2𝜋/3. Let us

denote this transformation by 𝜏 . We claim that 𝜏 has a real fixed point. First note that 𝐺 has
a discrete fixed point locus on 𝑋C (if there are fixed points at all). Otherwise, the curve of fixed
points meets Σ (which is an ample divisor). But this is impossible since 𝐺 rotates the hexagon by
2𝜋/3. For the same reason a fixed point cannot lie on Σ.

Applying the Lefschetz fixed point formula, we obtain

Eu(𝑋𝜏
C) =

4∑︁
𝑘=0

(−1)𝑘 tr𝐻𝑘(𝑋,R)(𝜏
*) = tr𝐻0(𝑋,R)(𝜏

*) + trPic(𝑋C)(𝜏
*) + tr𝐻4(𝑋,R)(𝜏

*) = 2 + trPic(𝑋C)(𝜏
*).

As 𝑒0 ↦→ 𝑒0, 𝑒1 ↦→ 𝑒2, 𝑒2 ↦→ 𝑒3, 𝑒3 ↦→ 𝑒1, we have trPic(𝑋C)(𝜏
*) = 1 and Eu(𝑋𝜏

C) = 3. Since the fixed
point locus is discrete, the number of fixed points equals to the Lefschetz number. Finally, at least
one of those three fixed points must be real.

Denote by 𝑌 the blow-up of this point. By Lemma 4.2, 𝑌 is a Del Pezzo surface of degree 5.
Topologically, each blowing up at a real point is connected sum with RP2, so 𝑌 (R) ≈ T2#RP2 by
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Remark 4.9. Since 𝑌 (R) is nonorientable and Eu(T2#RP2) = Eu(T2) + Eu(RP2) − 2 = −1, we
get 𝑌 (R) ≈ #3RP2. Note that there are 3 disjoint real (−1)-curves after blow-up. Blowing them
down, we obtain a Del Pezzo surface 𝑍 of degree 8 either with 𝑍(R) ≈ S2 (then 𝑌 is isomorphic to
𝑍 ∼= 𝑄3,1 blown up at 3 real points), or 𝑍(R) ∼= T2 (then 𝑌 is isomorphic to 𝑍 ∼= 𝑄2,2

∼= P1
R × P1

R
blown up at one real point and a pair of complex conjugate). Since 𝐺 has an odd order, in the
last case each point must be fixed by 𝐺. We see that in both cases 𝐺 has a real fixed point on 𝑍.
The rest is obvious. �

Example 4.11. Let us give an explicit example of an automorphism 𝜏 ∈ Aut(𝑋) such that
⟨𝜏⟩ ∼= Z/3Z acts minimally on the surface 𝑋 given by the equation (c). Namely, consider the map

𝜏0 ∈ Aut(P1R × P1R × P1R), 𝜏0 : [𝑥1 : 𝑥2] × [𝑦1 : 𝑦2] × [𝑧1 : 𝑧2] ↦→ [𝑦1 : 𝑦2] × [𝑧1 : −𝑧2] × [𝑥1 : −𝑥2]

and denote by 𝜏 its restriction to 𝑋. Let 𝐿±
𝑘 denote the equations of the two (complex conjugate)

singular fibres of the conic bundle obtained by projecting to the 𝑘-th factor in (⋆⋆). The equations
𝐿±
𝑘 are:

𝐿±
1 = 𝑦1𝑧1 + 𝑦2𝑧2 ± 𝑖(𝑦1𝑧2 − 𝑦2𝑧1);

𝐿±
2 = 𝑥1𝑧1 + 𝑥2𝑧2 ± 𝑖(𝑥1𝑧2 − 𝑥2𝑧1);

𝐿±
3 = 𝑥1𝑦1 − 𝑥2𝑦2 ± 𝑖(𝑥1𝑦2 + 𝑥2𝑦1).

It is immediately checked that 𝜏 3 = id, 𝜏(𝐿±
1 ) = 𝐿±

2 , 𝜏(𝐿±
2 ) = 𝐿±

3 and 𝜏(𝐿±
3 ) = 𝐿±

1 . The fixed
locus consists of three points [𝑡 : 1] × [𝑡 : 1] × [−𝑡 : 1], 𝑡 ∈ {0,±

√
3}.

4.6. Del Pezzo surfaces of degree 5. In this section 𝑋 denotes a real Del Pezzo surface of
degree 5. Recall that 𝑋C is the blow-up of P2C along the set of four points 𝑝1, 𝑝2, 𝑝3, 𝑝4 in general
position. Let 𝑒𝑖 be the exceptional divisor over the point 𝑝𝑖 and 𝑑𝑖𝑗 be the proper transform of the
line passing through the points 𝑝𝑖 and 𝑝𝑗. It is classically known that Aut(𝑋C) ∼= 𝒲(A4) ∼= S5

[Dol12, 8.5.4]. Thus either 𝐺 ∼= Z/3Z, or 𝐺 ∼= Z/5Z.

Proposition 4.12. Let 𝐺 ∼= Z/3Z. Then 𝑋 is not 𝐺-minimal.

Proof. Recall that there are exactly ten (−1)-curves on 𝑋C. We claim that there is exactly one
𝐺-invariant (−1)-curve on 𝑋 (in particular, this curve is real). Indeed, one can see it on the graph
of exceptional curves on 𝑋C. The incidence graph of the set of these 10 lines is the famous Petersen
graph (see Fig. 2a for its «3D» form). Our group 𝐺 ∼= Z/3Z acts on this tetrahedron by simply
rotating it. It remains to use Lemma 4.1.

�

Lemma 4.13. Let 𝑋 be a real Del Pezzo surface of degree 5 and 𝑔 ∈ Aut(𝑋) be an automorphism
of order 5 acting minimally on 𝑋. Then 𝑔 has exactly two fixed points on 𝑋C.

Proof. The ⟨𝑔⟩5-minimality assumption implies that all the (−1)-curves on 𝑋 are real, since the
total number of real (−1)-curves can be equal to 2, 4 or 10 [Kol97, Corollary 5.4]. Now look at the
Petersen graph Fig. 2b. One can check that the five components of each 𝑔-orbit form a pentagon
(there are no 𝑔-invariant (−1)-curves). Without loss of generality, we may assume that these
orbits are {𝑒1, 𝑑14, 𝑑23, 𝑒2, 𝑑12} and {𝑑13, 𝑒4, 𝑒3, 𝑑24, 𝑑34}. Obviously, 𝑔 permutes (−1)-curves in the
following way: 𝑒1 ↦→ 𝑑14 = 𝑒0− 𝑒1− 𝑒4, 𝑒2 ↦→ 𝑑12 = 𝑒0− 𝑒1− 𝑒2, 𝑒3 ↦→ 𝑑24 = 𝑒0− 𝑒2− 𝑒4, 𝑒4 ↦→ 𝑒3. If
𝑒0 ↦→ 𝑤, then 𝐾𝑋C = −3𝑒0+𝑒1+𝑒2+𝑒3+𝑒4 = −3𝑤+(𝑒0−𝑒1−𝑒4)+(𝑒0−𝑒1−𝑒2)+(𝑒0−𝑒2−𝑒4)+𝑒3
(since the canonical class is 𝑔-invariant), so 𝑒0 ↦→ 𝑤 = 2𝑒0−𝑒1−𝑒2−𝑒4. Therefore, trPic(𝑋C)(𝑔

*) = 0.
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(a) «3D» form

𝑑12

𝑒2

𝑑23𝑑14

𝑒1
𝑑34

𝑑24

𝑒3𝑒4

𝑑13

(b) «Classic» form

Figure 2. Graph of (−1)-curves on Del Pezzo surface of degree 5

As in the previous section, it is easy to see that the fixed point locus is discrete. It remains to
apply the Lefschetz fixed point formula:

Eu(𝑋𝑔
C) = tr𝐻0(𝑋,C)(𝑔

*) + tr𝐻4(𝑋,C)(𝑔
*) = 2

�

Lemma 4.14. Let 𝑋 be a Del Pezzo surface of degree 5 and 𝜋 : 𝑌 → 𝑋 is the blow-up of two
points 𝑞1, 𝑞2 ∈ 𝑋 lying neither on any exceptional curve, nor on any conic. Then 𝑌 is a Del Pezzo
surface of degree 3.

Proof. To show that −𝐾𝑌 is ample, we use the Nakai–Moishezon criterion. First, note that
(−𝐾𝑌 )2 = 𝐾2

𝑋 − 2 = 3. By Riemann-Roch,

dim | −𝐾𝑌 | ≥
1

2
((−𝐾𝑌 )2 − (−𝐾𝑌 ·𝐾𝑌 )) = 𝐾2

𝑌 = 3,

so | − 𝐾𝑌 | ≠ ∅. Assume that there is an irreducible curve 𝐶 ⊂ 𝑌 with −𝐾𝑌 · 𝐶 ≤ 0. Clearly,
there exists a linear system ℒ ⊂ | −𝐾𝑌 | of dimension ≥ 2 such that 𝐶 ⊆ 𝐹 , where 𝐹 is the fixed
part of ℒ. Let ℳ = ℒ − 𝐹 be the mobile part. Note that 𝐶 * Exc(𝜋) (since every exceptional
curve has positive intersection with −𝐾𝑌 ), so 𝐶 ′ = 𝜋*𝐶 is a curve. Put ℒ′ = 𝜋*ℒ, 𝐹 ′ = 𝜋*𝐹 ,
ℳ′ = 𝜋*ℳ. Then ℒ′ = 𝐹 ′ +ℳ′ ⊂ |−𝐾𝑋 | and 𝐶 ′ ⊆ 𝐹 ′ ⊂ Bs(ℒ′). Obviously, 𝑝1, 𝑝2 ∈ Bs(ℒ′)∖𝐶 ′.
Thus Bs(ℒ′) ⊂ 𝑋 ∩ P2 (we identify 𝑋 with its anticanonical model in P5). But the homogeneous
ideal of 𝑋 is generated by five linearly independent quadrics [Dol12, 8.5.2], so 𝑝1, 𝑝2 lie on the
curve of degree ≤ 2, a contradiction.

�

Now we are ready to prove the main result of this section.

Proposition 4.15. Let 𝑋 be a real Del Pezzo surface of degree 5 and 𝐺 ⊂ Aut(𝑋) is a subgroup
of order 5 acting minimally on 𝑋. Then 𝐺 is linearizable.

Proof. According to Lemma 4.13 𝐺 has two fixed points on 𝑋C. We denote them by 𝑞1 and 𝑞2.
Denote by 𝑌 the blown up surface Bl𝑞1,𝑞2(𝑋). We claim that 𝑌 is a Del Pezzo surface of degree 3.
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It is clear from the proof of Lemma 4.13 that 𝑞1, 𝑞2 do not lie on the (−1)-curves. According to
Lemma 4.14, we have to show that these points do not lie on any conic.

Suppose that 𝑞1, 𝑞2 ∈ 𝑄, where 𝑄 is a conic. Note that 𝑄 is unique. Indeed, assume that
𝑞1, 𝑞2 ∈ 𝑄 ∩ 𝑄′, where 𝑄′ is another conic. Blowing up 𝑋 at 𝑞1, we get a Del Pezzo surface
𝑋 ′ of degree 4 with 3 lines forming a triangle (possibly degenerated). On the other hand, it is
well-known that there cannot be such triangles on 𝑋 ′. Finally, 𝑄 is obviously Γ ×𝐺-invariant, so
𝑄 ∼ −𝑎𝐾𝑋C , 𝑎 ∈ Z. Multiplying by −𝐾𝑋C , we get 5𝑎 = −𝐾𝑋C ·𝑄 = 2, which is impossible.

It remains to notice that a smooth real cubic surface 𝑌 = Bl𝑞1,𝑞2(𝑋) with two skew complex
conjugate (case 𝑞1 = 𝜎(𝑞2)) or real (case 𝑞1, 𝑞2 ∈ 𝑋(R)) lines is birationally trivial over R. In our
case both lines are 𝐺-invariant, so the assertion follows. �

Example 4.16 (see [dFe04] or [BeBl04]). Let 𝑋 be a surface obtained from P2R by blowing up
four real points 𝑝1 = [1 : 0 : 0], 𝑝2 = [0 : 1 : 0], 𝑝3 = [0 : 0 : 1], 𝑝4 = [1 : 1 : 1]. Consider the
transformation 𝑔 ∈ Aut(𝑋) of order 5 defined as the lift over 𝑋 of the birational map

𝑔0 : P2R 99K P2R, 𝑔0 : [𝑥 : 𝑦 : 𝑧] ↦→ [𝑥(𝑧 − 𝑦) : 𝑧(𝑥− 𝑦) : 𝑥𝑧].

This map has exactly two real fixed points [𝛼 : 1 : 𝛼2], where 𝛼 = (1 ±
√

5)/2 (which give us two
real fixed points on 𝑋). It is can be checked that 𝑔 is conjugate by some real involution to the
linear automorphism of P2R (see [BeBl04] for explicit formulas).

5. Del Pezzo surfaces with 𝐾2
𝑋 ≤ 4

In the next four sections we use the known classification of conjugacy classes in the Weyl
groups. These classes are indexed by Carter graphs2. In particular, the Carter graph determines
the characteristic polynomial of an element from a given class and its trace on 𝐾⊥

𝑋C
.

5.1. Del Pezzo surfaces of degree 4. Again, consider representation in the Weyl group:

𝜂 × 𝜌 : Γ ×𝐺→ 𝒲(D5) ∼= (Z/2Z)4 oS5.

Proposition 5.1. Let 𝑋 be a real Del Pezzo surface of degree 4 and 𝐺 ⊂ Aut(𝑋) be a subgroup
of odd order. Then rk Pic(𝑋)𝐺 > 1.

Proof. Assume that rk Pic(𝑋)𝐺 = 1. Since the order of 𝐺 is odd, either 𝐺 ∼= Z/3Z or 𝐺 ∼= Z/5Z.
It is well known that the number 𝑁 of real (−1)-curves on a real Del Pezzo surface of degree 4
can be equal to 0, 4, 8 or 16 [Wall87, Table 2]. However, under our assumptions on 𝑋, we have
𝑁 = 0 (otherwise there exists 𝐺-invariant (−1)-curve, contradicting Lemma 4.1). In particular,
𝜂(Γ) ̸= id. On the other hand, 𝜎* ̸= id implies that 𝐺 � Z/5Z, as there are no elements of order
10 in 𝒲(D5).

It remains to consider the case 𝐺 = ⟨𝑔⟩3 ∼= Z/3Z. The only conjugacy class of elements of
order 3 in 𝒲(D5) is the class of type 𝐴2 [DI09a, 6.4], so Sp(𝑔*) = {1, 1, 1, 𝜔3, 𝜔3}. As 𝑔* and 𝜎*

commute, they are simultaneously diagonalizable and Sp(𝑔 ∘ 𝜎)* = {±1,±1,±1,±𝜔3,±𝜔3}. Note
that there are no involutions in 𝒲(D5) which act as −id in E5. Moreover, since 𝑋C is ⟨𝑔 ∘ 𝜎⟩-
minimal, 1 /∈ Sp(𝑔∘𝜎)* by Lemma 4.4. Thus Sp(𝑔∘𝜎)* = {−1,−1,−1, 𝜔3, 𝜔3}, and tr(𝑔∘𝜎)* = −4.
However, Table 3 from the loc. cit. shows that there are no such elements of order 6 in 𝒲(D5). �

2We follow the terminology of [DI09a] and refer the reader to the original paper [Car72] for details. All tables of
conjugacy classes in sections 5.2-5.4 and Appendix A are cribbed from [Car72].
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5.2. Del Pezzo surfaces of degree 3. Throughout this section𝑋 denotes a real Del Pezzo surface
of degree 3. Recall that 𝑋 is a cubic surface in P3R. Since the linear system | − 𝐾𝑋 | = |𝒪𝑋(1)|
is 𝐺-invariant, any automorphism of 𝑋 is a restriction of a projective automorphism, so we may
identify automorphisms of 𝑋 with elements of PGL4(R).

For real Del Pezzo surfaces of degree 3 one can prove the followning useful lemma (note that,
unlike Lemma 4.1, it deals with (−1)-curves on a complex surface):

Lemma 5.2. Let 𝑋 be a real Del Pezzo surface of degree 3 and suppose that there is a 𝐺-invariant
(−1)-curve on 𝑋C. Then 𝑋 is not 𝐺-minimal.

Proof. Assume that the contrary holds and 𝐿 ⊂ 𝑋C is such a curve. By Lemma 4.1, it suffices to
consider the case 𝐿 ̸= 𝜎(𝐿). Note that 𝐿∩𝜎(𝐿) ̸= ∅ (otherwise we have a 𝐺-invariant exceptional
curve 𝐿 + 𝜎(𝐿) on 𝑋). Denote by Π the 𝐺-invariant plane in P3C spanned by 𝐿 and 𝜎(𝐿). Then
Π∩𝑋C = {𝐿, 𝜎(𝐿),𝑀} where𝑀 is a real line. Obviously,𝑀 must be 𝐺-invariant which contradicts
the 𝐺-minimality assumption. �

According to Proposition 2.17, 𝐺 can be written as a direct product of at most two cyclic
groups. On the other hand, there is an injective homomorphism

𝜌 : 𝐺→ 𝒲(E6),

hence |𝐺| = 3𝑘5𝑙, 𝑘 ≤ 4, 𝑙 ≤ 1. If 𝑘 = 0, then there exists a 𝐺-invariant (−1)-curve on 𝑋C (as the
total number of (−1)-curves is 27). Thus 𝑋 is not 𝐺-minimal by Lemma 5.2. Note that there are
no elements of order 15 (hence 𝑙 = 0), 27 and 81 in 𝒲(E6). We see that 𝐺 is isomorphic to one of
the following groups:

Z/3Z, (Z/3Z)2, Z/9Z, (Z/9Z)2, Z/3Z× Z/9Z.

Denote by diag[𝛼 : 𝛽 : 𝛾 : 𝛿] the projective automorphism

[𝑥 : 𝑦 : 𝑧 : 𝑤] ↦→ [𝛼𝑥 : 𝛽𝑦 : 𝛾𝑧 : 𝛿𝑤], 𝛼, 𝛽, 𝛾, 𝛿 ∈ C*.

Let 𝑔 ∈ PGL4(R) be an element of order 3. Denote by Fix(𝑔, 𝑌 ) the fixed locus of 𝑔, viewed as an
automorphism of 𝑌 , where 𝑌 is P3C or 𝑋C. Obviously, Fix(𝑔,𝑋C) = Fix(𝑔,P3C) ∩𝑋C.

Proposition 5.3. Let 𝑋 be a real 𝐺-minimal Del Pezzo surface of degree 3. Then 𝐺 is not
isomorphic to any of the following groups: (Z/3Z)2, Z/9Z, (Z/9Z)2, Z/3Z× Z/9Z.

Proof. It is well-known that a smooth cubic surface over R has 𝑁 = 3, 7, 15 or 27 real lines (see
e.g. [Silh89, VI, 5.4], although the result goes back to L. Schläfli and L. Cremona). Clearly, 𝑁 ̸= 7
under our assumptions on 𝑋 (otherwise there would be at least one 𝐺-invariant (−1)-cuve on 𝑋).
Suppose that 𝐺 is isomorphic to one of the groups listed above. Let us consider the remaining
cases for 𝑁 .

Case 𝑁 = 3. We may assume that there are no 𝐺-invariant lines on 𝑋. Thus we have
a 𝐺-orbit consisting of 3 real lines, say ℓ1, ℓ2, ℓ3. Denote by 𝐺0 the stabilizer subgroup of ℓ1.
Obviously, 𝐺0 is nontrivial and stabilizes the whole orbit (because 𝐺 is abelian). Since 𝑋 is 𝐺-
minimal, the lines ℓ1, ℓ2, ℓ3 cannot be disjoint, so they either determine a triangle, or intersect
at a single Eckardt point. In the first case each projective automorphism 𝑔0 ∈ 𝐺0 stabilizes 3
real intersection points, hence must be trivial. Passing to affine coordinates, we see that it is also
trivial in the second case. Hence 𝐺0

∼= {id} and 𝐺 ∼= Z/3Z, a contradiction.
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Case 𝑁 = 15. Consider the action of 𝐺 on the set of real lines on 𝑋. It is easy to see that
there must be a 𝐺-orbit of cardinality 3 (or a 𝐺-invariant line). As we saw in the previous case,
this is impossible.

Case 𝑁 = 27. Then the Galois group Γ acts trivially on Pic(𝑋C) and 𝑋C is a 𝐺-minimal
surface. Take 𝑔 ∈ 𝐺. If the order of 𝑔 is 9, then tr(𝑔*) = 0 (there is a single conjugacy class in
𝒲(E6), see Table 3). If the order of 𝑔 is 3, then tr(𝑔*) ≥ 0. In fact, Table 3 shows that the only
negative value of tr(𝑔*) is −3, so Eu(Fix(𝑔,𝑋C)) = 0. Clearly, Fix(𝑔,𝑋C) is an elliptic curve, and
Fix(𝑔,P3C) is a plane. Thus 𝑔 has an eigenvalue of multiplicity 3, and hence 𝑔 /∈ PGL4(R).

We see that
∑︀

𝑔∈𝐺 tr(𝑔*) ̸= 0 (as tr(id*) ̸= 0). So, 𝑋C is not 𝐺-minimal, a contradiction.
�

Proposition 5.4. Let 𝑋 be a real R-rational Del Pezzo surface of degree 3, and 𝐺 ∼= Z/3Z. Then
𝑋 is not 𝐺-minimal.

Proof. Let 𝑔 be a generator of 𝐺. Table 3 shows that tr(𝑔*) ∈ {−3, 0, 3}. As we saw above,
tr(𝑔*) ̸= −3, as 𝑔 is defined over R. In the remaining two cases we see from the same table that
𝑔 has some eigenvalues equal to 1, so the complex involution 𝜎 maps nontrivially to 𝒲(E6) by
Lemma 4.4.

Table 3. Elements of order 2, 3, 6 and 9 in 𝒲(E6)

Order Carter graph Characteristic polynomial tr

2 𝐴1 𝑝1(𝑡− 1)5 4
2 𝐴2

1 𝑝21(𝑡− 1)4 2
2 𝐴3

1 𝑝31(𝑡− 1)3 0
2 𝐴4

1 𝑝41(𝑡− 1)2 −2

3 𝐴2 (𝑡2 + 𝑡+ 1)(𝑡− 1)4 3
3 𝐴2

2 (𝑡2 + 𝑡+ 1)2(𝑡− 1)2 0
3 𝐴3

2 (𝑡2 + 𝑡+ 1)3 −3

6 𝐸6(𝑎2) (𝑡2 + 𝑡+ 1)(𝑡2 − 𝑡+ 1)2 1
6 𝐷4 (𝑡+ 1)(𝑡3 + 1)(𝑡− 1)2 1
6 𝐴1 × 𝐴5 (𝑡+ 1)(𝑡5 + 𝑡4 + 𝑡3 + 𝑡2 + 𝑡+ 1) −2

6 𝐴2
1 × 𝐴2 (𝑡+ 1)2(𝑡2 + 𝑡+ 1)(𝑡− 1)2 −1

6 𝐴1 × 𝐴2 (𝑡+ 1)(𝑡2 + 𝑡+ 1)(𝑡− 1)3 1
6 𝐴1 × 𝐴2

2 (𝑡+ 1)(𝑡2 + 𝑡+ 1)2(𝑡− 1) −2

6 𝐴5 (𝑡5 + 𝑡4 + 𝑡3 + 𝑡2 + 𝑡+ 1)(𝑡− 1) 0
9 𝐸6(𝑎1) 𝑡6 + 𝑡3 + 1 0

Consider the case tr(𝑔*) = 3 first. We have Sp(𝑔*) = {1, 1, 1, 1, 𝜔3, 𝜔3}, so, as in the previous
section, we get Sp(𝑔 ∘ 𝜎)* = {±1,±1,±1,±1,±𝜔3,±𝜔3}. Since 𝑋C is ⟨𝑔 ∘ 𝜎⟩-minimal,

Sp(𝑔 ∘ 𝜎)* = {−1,−1,−1,−1,±𝜔3,±𝜔3},
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by Lemma 4.4. Thus tr(𝑔 ∘ 𝜎)* ∈ {−3,−5}. Table 3 shows that there are no such elements in
𝒲(E6).

Now let tr(𝑔*) = 0. In this case Sp(𝑔*) = {1, 1, 𝜔3, 𝜔3, 𝜔3, 𝜔3}. We have the following possi-
bilities for Sp(𝑔 ∘ 𝜎)*:

Eigenvalues Characteristic polynomial tr(𝜏 ∘ 𝜎)*

−1,−1, 𝜔3, 𝜔3, 𝜔3, 𝜔3 (𝑡+ 1)2(𝑡2 + 𝑡+ 1)2 −4

−1,−1,−𝜔3,−𝜔3, 𝜔3, 𝜔3 (𝑡+ 1)2(𝑡2 + 𝑡+ 1)(𝑡2 − 𝑡+ 1) −2

−1,−1,−𝜔3,−𝜔3,−𝜔3,−𝜔3 (𝑡+ 1)2(𝑡2 − 𝑡+ 1)2 0

Thus (𝑔 ∘𝜎)* belongs to the class 𝐴1×𝐴5. Moreover, Sp(𝜎*) = {−1,−1,−1,−1, 1, 1}, and 𝜎*

belongs to the class 𝐴4
1. It can be shown that there are exactly 3 real (−1)-curves on 𝑋 in this case,

and 𝑋(R) ≈ S2 ⊔ RP2 [Wall87, Table 2]. In particular, 𝑋 is not R-rational, a contradiction. �

Next example shows that the R-rationality condition in Proposition 5.4 cannot be omitted.

Example 5.5. Let 𝑆𝛼 be the cubic surface in P3R given by the equation

1

𝛼
𝑥30 + 𝑥31 + 𝑥32 + 𝑥33 − (𝑥0 + 𝑥1 + 𝑥2 + 𝑥3)

3 = 0

It can be shown that for 𝛼 ∈ (1/16, 1/4) the set of real points 𝑆𝛼(R) is not connected and
homeomorphic to S2 ⊔ RP2. In particular, 𝑆𝛼 are not R-rational for such 𝛼’s. There are only
3 real lines on 𝑆𝛼 which are given by the equations

ℓ1 : 𝑥0 = 𝑥1 + 𝑥2 = 0, ℓ2 : 𝑥0 = 𝑥2 + 𝑥3 = 0, ℓ3 : 𝑥0 = 𝑥1 + 𝑥3 = 0.

These lines form a triangle:

ℓ1 ∩ ℓ2 = [0 : 1 : −1 : 1], ℓ1 ∩ ℓ3 = [0 : −1 : 1 : 1], ℓ2 ∩ ℓ3 = [0 : −1 : −1 : 1].

Clearly, the cyclic permutation of the coordinates 𝑔 : 𝑥1 ↦→ 𝑥2 ↦→ 𝑥3 induces the permutation of
lines: ℓ1 ↦→ ℓ2 ↦→ ℓ3, so 𝑆𝛼 is 𝑔-minimal.

5.3. Del Pezzo surfaces of degree 2. In this section 𝑋 denotes a real Del Pezzo surface of
degree 2. Recall that the anticanonical map

𝜙|−𝐾𝑋 | : 𝑋 → P2R
is a double cover branched over a smooth quartic 𝐵 ⊂ P2R. The Galois involution 𝛾 of the double
cover is called the Geiser involution. Let 𝐹 (𝑥, 𝑦, 𝑧) = 0 be the equation of 𝐵. Then 𝑋 can be
given by the equation

𝑤2 = 𝐹 (𝑥, 𝑦, 𝑧)

in the weighted projective space P(1, 1, 1, 2).

Remark 5.6. Recall that we denoted by E7 the sublattice in Pic(𝑋C) generated by the root
system E7. It is known that the Geiser involution 𝛾 acts as the minus identity in E7 [DI09a, 6.6].
Moreover, rk Pic(𝑋C)𝛾 = 1, so a Del Pezzo surface 𝑋C of degree 2 is always 𝛾-minimal.
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It is clear that 𝐵 should be invariant with respect to any automorphism of 𝑋, so there exists
a homomorphism

𝜒 : Aut(𝑋) → Aut(𝐵),

whose kernel is ⟨𝛾⟩. In fact, one can easily see that Aut(𝐵) ∼= Aut(𝑋)/⟨𝛾⟩. As 𝐺 has odd order,
we have 𝐺 ⊂ Aut(𝐵) ⊂ PGL3(R), so 𝐺 is cyclic by Proposition 2.17.

Denote by 𝑔 a generator of 𝐺 whose order equals 𝑛. Choose coordinates in such a way that
the action of 𝑔 on 𝐻0(𝑋,−𝐾𝑋) ⊗R C ∼= C3 has the form

(𝑥, 𝑦, 𝑧) ↦→ (𝑥, 𝜔𝑘𝑛𝑦, 𝜔
−𝑘
𝑛 𝑧), 0 < 𝑘 < 𝑛,

where 𝜔𝑛 is a primitive 𝑛-th root of unity. If 𝑛 ≥ 5, then 𝐹 (𝑥, 𝑦, 𝑧) is a linear combination of the
monomials 𝑥4, 𝑥2𝑦𝑧 and 𝑦2𝑧2, so 𝐵 is singular at the point [0 : 1 : 0]. Therefore, it remains to
consider the case

𝐺 = ⟨𝑔⟩3 ∼= Z/3Z.
Denote by 𝐵′ the quotient curve 𝐵/𝐺. Then, by Riemann–Hurwitz formula, we have

2 − 2𝑔(𝐵) = |𝐺|

(︃
2 − 2𝑔(𝐵′) −

∑︁
𝑥∈𝐵

(︂
1 − 1

| stab𝑥|

)︂)︃
,

where stab𝑥 denotes the stabilizer subgroup of a point 𝑥 ∈ 𝐵. Let 𝑁 be the number of points on
𝐵 fixed by 𝐺. Since 𝑔(𝐵) = 3 and 𝐺 ∼= Z/3Z, we have

𝑁 = 5 − 3𝑔(𝐵′),

so either 𝑁 = 2, or 𝑁 = 5. Obviously, an element 𝑔 ∈ PGL3(R) of order 3 cannot have five
(possibly nonreal) fixed points, so it remains to consider the first case 𝑁 = 2.

Note that there is the third fixed point 𝑝 /∈ 𝐵(C) (which is real). It means that we have 4
fixed points on 𝑋C in total.

Recall that there is a homomorphism

𝜂 × 𝜌 : Γ ×𝐺→ 𝒲(E7).

Lemma 5.7. Let 𝑋 be a real 𝐺-minimal Del Pezzo surface of degree 2 with 𝑋(R) ̸= ∅, where the
order of 𝐺 is odd. Then 𝜂(Γ) ̸= id.

Proof. Assuming that 𝜂(Γ) = id, we get rk Pic(𝑋C)𝐺 = 1. Let 𝐸1, 𝐸2, . . . , 𝐸𝑠 be 𝑠 (−1)-curves on
𝑋C, forming an orbit of 𝐺. Then 𝐸1 + . . .+ 𝐸𝑠 = 𝑎𝐾𝑋C , 𝑎 ∈ Z, so

2𝑎 = 𝑎𝐾2
𝑋C

=
𝑠∑︁
𝑖=1

(𝐸𝑖 ·𝐾𝑋C) =
𝑠∑︁
𝑖=1

(−1) = −𝑠.

It follows that 𝑠 is even, hence |𝐺| is even too, a contradiction. �

Lemma 5.7 shows that the complex conjugation 𝜎 ∈ Γ gives a nontrivial element 𝜎* ∈ 𝒲(E7).
It means that (𝑔 ∘ 𝜎)* is an element of order 6 in 𝒲(E7). All 17 classes of elements of order 6 in
𝒲(E7) are listed in Table 6 (see Appendix A). Since 1 /∈ Sp(𝑔 ∘ 𝜎)* by Lemma 4.4, there are in
fact only four possibilities for (𝑔 ∘ 𝜎)*:
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Table 4. Possibilities for (𝑔 ∘ 𝜎)*

Carter graph Characteristic polynomial tr(𝑔 ∘ 𝜎)*

𝐴5 × 𝐴2 (𝑡5 + 𝑡4 + 𝑡3 + 𝑡2 + 𝑡+ 1)(𝑡2 + 𝑡+ 1) −2

𝐷4 × 𝐴3
1 (𝑡3 + 1)(𝑡+ 1)4 −4

𝐷6(𝑎2) × 𝐴1 (𝑡3 + 1)2(𝑡+ 1) −1

𝐸7(𝑎4) (𝑡2 − 𝑡+ 1)2(𝑡3 + 1) 2

Since 𝑔 has exactly 4 fixed points on 𝑋C, we have tr 𝑔* = 1 by the Lefschetz fixed point
formula (2). According to Table 6, such 𝑔* belongs to the class 𝐴2

2 and

Sp(𝑔*) = {1, 1, 1, 𝜔3, 𝜔3, 𝜔3, 𝜔3}.

As 𝑋C is 𝑔 ∘ 𝜎-minimal, we have the following possibilities for Sp(𝑔 ∘ 𝜎)* by Lemma 4.4:

Eigenvalues Characteristic polynomial tr(𝑔 ∘ 𝜎)*

−1,−1,−1, 𝜔3, 𝜔3, 𝜔3, 𝜔3 (𝑡+ 1)3(𝑡2 + 𝑡+ 1)2 −5

−1,−1,−1, 𝜔3, 𝜔3,−𝜔3,−𝜔3 (𝑡+ 1)3(𝑡2 + 𝑡+ 1)(𝑡2 − 𝑡+ 1) −3

−1,−1,−1,−𝜔3,−𝜔3,−𝜔3,−𝜔3 (𝑡+ 1)3(𝑡2 − 𝑡+ 1)2 −1

Comparing it with the data of Table 4, we see that (𝑔 ∘ 𝜎)* belongs to the class 𝐷6(𝑎2) ×𝐴1.
The complex conjugation 𝜎 acts on𝐾⊥

𝑋C
as minus identity, so it coincides with the Geiser involution

𝛾. It follows from Remark 5.6 that 𝑋 is R-minimal. Therefore, 𝑋 is not R-rational by Theorem
2.13.

Though obtained conclusion is enough for classification of finite subgroups in Cr2(R) (see our
setup at the end of Section 2, and compare with Remark 1.3), we shall prove a slightly more general
fact. Namely, we can omit the R-rationality condition.

Proposition 5.8. Let 𝑋 be a real Del Pezzo surface of degree 2 with 𝑋(R) ̸= ∅ and 𝐺 ⊂ Aut(𝑋)
is a subgroup of odd order. Then 𝑋 is not 𝐺-minimal.

Proof. It is enough to show that 𝐺 = Z/3Z cannot act minimally on 𝑋. Assume the contrary. As
we saw earlier, 𝑋 must be minimal over R. It is known [Kol97, Theorem 6.3] that 𝐵(R) has the
maximal number of connected components (ovals) in this case, namely 𝐵(R) ≈ ⊔4S1. Moreover,
all the 28 bitangents of 𝐵 are real.

Bitangents of real quartics were studied by H. G. Zeuthen in [Zeu74]. He divided the real
bitangents into two classes. If a quartic curve has a pair of ovals exterior to each other, then these
ovals have exactly four common tangents, which Zeuthen called bitangents of the second kind.
If the quartic have four ovals exterior to each other the number of such bitangents is 24. The
remaining four bitangents are Zeuthen’s bitangents of the first kind, i.e. lines doubly touching a
single branch of the curve (see Fig. 3)

As the order of 𝐺 is odd, there exists at least one 𝐺-invariant bitangent of the first kind
touching a single connected component of 𝐵(R). It remains to notice that 𝐺 = Z/3Z ⊂ PGL3(R)
can neither exchange two real points of tangency, nor fix these points. �
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Figure 3. Real bitangents of the first kind

5.4. Del Pezzo surfaces of degree 1. In this section 𝑋 denotes a real Del Pezzo surface of
degree 1. The linear system | − 𝐾𝑋 | has a single base point 𝑞 and determines a rational map
𝜙 : 𝑋 99K 𝑆 = P1R. Blowing 𝑞 up, we get the following commutative diagram:̃︀𝑋

𝜋

��

̃︀𝜙
��

𝑋 𝜙
// 𝑆

where ̃︀𝜙 is an elliptic pencil. The linear system | − 2𝐾𝑋 | has no base points and exhibits 𝑋 as a
double cover of a quadratic cone 𝑄 ⊂ P3R ramified over the vertex of 𝑄 and a smooth curve 𝑄∩𝑌 ,
where 𝑌 is a cubic surface. The corresponding Galois involution 𝛽 is called the Bertini involution.

Remark 5.9. One can show that the Bertini involution 𝛽 acts as the minus identity in E8 and a
Del Pezzo surface 𝑋C of degree 1 is always 𝛽-minimal.

Note that 𝑞 must be real and it is a fixed point for any automorphism group 𝐺 ⊂ Aut(𝑋C).
It follows that there is the natural faithful representation

𝐺→ GL(𝑇𝑞𝑋) ∼= GL2(R),

so 𝐺 is a cyclic group of odd order. The tables of conjugacy classes in 𝒲(E8) show that the order
of 𝐺 can be equal to 3, 5, 7, 9 or 15 [Car72, Table 11].

Every singular member of | −𝐾𝑋C| is an irreducible curve of arithmetic genus 1. Therefore,
it is a rational curve with a unique singularity which is either a node or a simple cusp. Denote by
𝑛cusp the number of cuspidal curves 𝐶 and by 𝑛node the number of nodal curves 𝑁 .

Lemma 5.10. We have
𝑛node + 2𝑛cusp = 12.

Proof. All that we need is to compute the topological Euler characteristic of ̃︀𝑋C. Namely,

Eu( ̃︀𝑋C) = 𝑛node Eu(𝑁) + 𝑛cusp Eu(𝐶) = 𝑛node + 2𝑛cusp.

On the other hand,
Eu( ̃︀𝑋C) = Eu(𝑋C) + 1 = Eu(P2C) + 8 + 1 = 12.
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�

The action of 𝐺 on the pencil |−𝐾𝑋 | induces the action on 𝑆 = P1R. This gives us the natural
homomorphism 𝜇 : 𝐺→ Aut(𝑆) = PGL2(R). Consider two cases.

Case 𝜇(𝐺) = id. Since 𝑆 can be naturally identified with P(𝑇𝑞𝑋), the image of 𝐺 in GL(𝑇𝑞𝑋)
consists of scalar matrices. Obviously, this is impossible because the order of 𝐺 is odd.

Case 𝜇(𝐺) ̸= id. There are exactly two conjugate imaginary fixed points on 𝑆C ∼= P1C which cor-
respond to complex conjugate 𝐺-invariant curves 𝐶 and 𝜎(𝐶) = 𝐶 in the linear system | −𝐾𝑋C|.
We have three different cases.

a) Let 𝐶 and 𝐶 be nodal curves. Consider the normalization 𝜈 : ̂︀𝐶 → 𝐶. Then the cyclic
group 𝐺 has three fixed points 𝜈−1(node) and 𝜈−1(𝑞) on ̂︀𝐶 ∼= P1C. Hence, 𝐺 acts trivially on 𝐶, a
contradiction.

b) Now let 𝐶 and 𝐶 be cuspidal curves. Put 𝑛cusp = 𝑛′
cusp + 2. Then 𝑛node + 2𝑛′

cusp = 8, so
we have the following possibilities for a pair (𝑛node, 𝑛

′
cusp):

(0, 4), (2, 3), (4, 2), (6, 1), (8, 0).

It is obvious that none of these cases occurs, as the curves of the same singularity type must be
exchanged by 𝐺.

c) Finally, let 𝐶 and 𝐶 be smooth elliptic curves. Then 𝐺 = ⟨𝑔⟩3 ∼= Z/3Z. There are exactly
3 fixed points on each curve and {𝑞} = 𝐶(R) = 𝐶(R) is the only real point fixed by 𝐺. Note that
we have 5 fixed points in total. By the Lefschetz fixed point formula,

tr(𝑔*) = # Fix𝑋C(𝑔) − 3 = 2.

To find a specific type of action, we turn to the tables of conjugacy classes in 𝒲(E8). Now we are
interested in elements of order 3.

Table 5. Elements of order 3 in 𝒲(E8)

Carter graph Characteristic polynomial Trace on 𝐾⊥
𝑋C

𝐴2 (𝑡2 + 𝑡+ 1)(𝑡− 1)6 5
𝐴2

2 (𝑡2 + 𝑡+ 1)2(𝑡− 1)4 2
𝐴3

2 (𝑡2 + 𝑡+ 1)3(𝑡− 1)2 −1

𝐴4
2 (𝑡2 + 𝑡+ 1)4 −4

We see that 𝑔* belongs to the class 𝐴2
2 and

Sp(𝑔*) = {1, 1, 1, 1, 𝜔3, 𝜔3, 𝜔3, 𝜔3}.

According to Lemma 4.4, a surface 𝑋C is not ⟨𝑔⟩-minimal for such 𝑔. Thus 𝜂(Γ) ̸= id and we are
looking for elements of order 6 in 𝒲(E8). Note that there are only 3 possibilities for Sp(𝑔 ∘ 𝜎)*:



SUBGROUPS OF ODD ORDER IN THE REAL PLANE CREMONA GROUP 23

Eigenvalues Characteristic polynomial tr(𝑔 ∘ 𝜎)*

−1,−1,−1,−1, 𝜔3, 𝜔3, 𝜔3, 𝜔3 (𝑡+ 1)4(𝑡2 + 𝑡+ 1)2 −6

−1,−1,−1,−1,−𝜔3,−𝜔3, 𝜔3, 𝜔3 (𝑡+ 1)4(𝑡2 + 𝑡+ 1)(𝑡2 − 𝑡+ 1) −4

−1,−1,−1,−1,−𝜔3,−𝜔3,−𝜔3,−𝜔3 (𝑡+ 1)4(𝑡2 − 𝑡+ 1)2 −2

In Table 7 (see Appendix A) we list the conjugacy classes of elements of order 6 in 𝒲(E8).
It turns out that only the third case in the table above actually occurs. Such an element belongs
to the class 𝐷2

4. Moreover, we get that the complex involution acts on 𝐾⊥
𝑋C

as minus identity, i.e.
coincides with the Bertini involution. It follows that 𝑋 is R-minimal. Finally, according to 2.13,
𝑋 fails to be rational over R.

We close this section by proving an analogue of Proposition 5.8.

Proposition 5.11. Let 𝑋 be a real Del Pezzo surface of degree 1 with 𝑋(R) ̸= ∅ and 𝐺 ⊂ Aut(𝑋)
is a subgroup of odd order. Then 𝑋 is not 𝐺-minimal.

Proof. Clearly, it is sufficient to prove that 𝐺 = Z/3Z cannot act minimally on 𝑋. Assume the
contrary. As it was shown above, there is a single real fixed point 𝑞 ∈ 𝑋 (the base point of the
elliptic pencil). Moreover, 𝑋 has to be minimal over R. According to [Kol97, Theorem 6.8], we
have

𝑋(R) ≈ RP2 ⊔ 4S2.
Obviously, at least one sphere must be 𝐺-invariant. On the other hand, any continuous map
S2 → S2 has a fixed point and the same is true for any continuous map RP2 → RP2 (see e.g.
[Hat02, Chapter 2, §2C]). Therefore, there are at least two real fixed points, a contradiction.

�
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Appendix A. Conjugacy classes in some Weyl groups

Notation. We denote by 𝑝𝑘 a polynomial of the form 𝑡𝑘 + 𝑡𝑘−1 + . . .+ 𝑡+ 1.

Table 6. Elements of order 2, 3 and 6 in 𝒲(E7)

Order Carter graph Characteristic polynomial
2 𝐴1 𝑝1(𝑡− 1)6

2 𝐴2
1 𝑝21(𝑡− 1)5

2 (𝐴3
1)

′ 𝑝31(𝑡− 1)4

2 (𝐴3
1)

′′ 𝑝31(𝑡− 1)4

2 (𝐴4
1)

′ 𝑝41(𝑡− 1)3

2 (𝐴4
1)

′′ 𝑝41(𝑡− 1)3

2 𝐴5
1 𝑝51(𝑡− 1)2

2 𝐴6
1 𝑝61(𝑡− 1)

2 𝐴7
1 𝑝71

3 𝐴2 𝑝2(𝑡− 1)5

3 𝐴2
2 𝑝22(𝑡− 1)3

3 𝐴3
2 𝑝32(𝑡− 1)

6 𝐴2 × 𝐴1 𝑝2𝑝1(𝑡− 1)4

6 𝐴2 × 𝐴2
1 𝑝2𝑝

2
1(𝑡− 1)3

6 𝐷4 (𝑡3 + 1)(𝑡+ 1)(𝑡− 1)3

6 𝐴2 × 𝐴3
1 𝑝2𝑝

3
1(𝑡− 1)2

6 𝐴2
2 × 𝐴1 𝑝22𝑝1(𝑡− 1)2

6 (𝐴5)
′ 𝑝5(𝑡− 1)2

6 (𝐴5)
′′ 𝑝5(𝑡− 1)2

6 𝐷4 × 𝐴1 (𝑡3 + 1)(𝑡+ 1)2(𝑡− 1)2

6 (𝐴5 × 𝐴1)
′ 𝑝5𝑝1(𝑡− 1)

6 (𝐴5 × 𝐴1)
′′ 𝑝5𝑝1(𝑡− 1)

6 𝐷4 × 𝐴2
1 (𝑡3 + 1)(𝑡+ 1)3(𝑡− 1)

6 𝐷6(𝑎2) (𝑡3 + 1)2(𝑡− 1)

6 𝐸6(𝑎2) (𝑡2 + 𝑡+ 1)(𝑡2 − 𝑡+ 1)2(𝑡− 1)

6 𝐴5 × 𝐴2 𝑝5𝑝2

6 𝐷4 × 𝐴3
1 (𝑡3 + 1)(𝑡+ 1)4

6 𝐷6(𝑎2) × 𝐴1 (𝑡3 + 1)2(𝑡+ 1)

6 𝐸7(𝑎4) (𝑡2 − 𝑡+ 1)2(𝑡3 + 1)
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Table 7. Elements of order 6 in 𝒲(E8)

Order Carter graph Characteristic polynomial
6 𝐴2 × 𝐴1 𝑝2𝑝1(𝑡− 1)5

6 𝐴2 × 𝐴2
1 𝑝2𝑝

2
1(𝑡− 1)4

6 𝐷4 (𝑡3 + 1)(𝑡+ 1)(𝑡− 1)4

6 𝐴2 × 𝐴3
1 𝑝2𝑝

3
1(𝑡− 1)3

6 𝐴2
2 × 𝐴1 𝑝22𝑝1(𝑡− 1)3

6 𝐴5 𝑝5(𝑡− 1)3

6 𝐷4 × 𝐴1 (𝑡3 + 1)(𝑡+ 1)2(𝑡− 1)3

6 𝐴2 × 𝐴4
1 𝑝2𝑝

4
1(𝑡− 1)2

6 𝐴2
2 × 𝐴2

1 𝑝22𝑝
2
1(𝑡− 1)2

6 (𝐴5 × 𝐴1)
′ 𝑝5𝑝1(𝑡− 1)2

6 (𝐴5 × 𝐴1)
′′ 𝑝5𝑝1(𝑡− 1)2

6 𝐷4 × 𝐴2
1 (𝑡3 + 1)(𝑡+ 1)3(𝑡− 1)2

6 𝐷4 × 𝐴2 𝑝2(𝑡
3 + 1)(𝑡+ 1)(𝑡− 1)2

6 𝐷6(𝑎2) (𝑡3 + 1)2(𝑡− 1)2

6 𝐸6(𝑎2) (𝑡2 + 𝑡+ 1)(𝑡2 − 𝑡+ 1)2(𝑡− 1)2

6 𝐴3
2 × 𝐴1 𝑝32𝑝1(𝑡− 1)

6 𝐴5 × 𝐴2
1 𝑝5𝑝

2
1(𝑡− 1)

6 𝐴5 × 𝐴2 𝑝5𝑝2(𝑡− 1)

6 𝐷4 × 𝐴3
1 (𝑡3 + 1)(𝑡+ 1)4(𝑡− 1)

6 𝐷6(𝑎2) × 𝐴1 (𝑡3 + 1)2(𝑡+ 1)(𝑡− 1)

6 𝐸6(𝑎2) × 𝐴1 (𝑡2 − 𝑡+ 1)2(𝑡2 + 𝑡+ 1)(𝑡+ 1)(𝑡− 1)

6 𝐸7(𝑎4) (𝑡2 − 𝑡+ 1)2(𝑡3 + 1)(𝑡− 1)

6 𝐴5 × 𝐴2 × 𝐴1 𝑝5𝑝2𝑝1

6 𝐷4 × 𝐴4
1 (𝑡3 + 1)(𝑡+ 1)5

6 𝐷2
4 (𝑡3 + 1)2(𝑡+ 1)2

6 𝐸6(𝑎2) × 𝐴2 𝑝2(𝑡
2 − 𝑡+ 1)2(𝑡2 + 𝑡+ 1)

6 𝐸7(𝑎4) × 𝐴1 𝑝1(𝑡
2 − 𝑡+ 1)2(𝑡3 + 1)

6 𝐸8(𝑎8) (𝑡2 − 𝑡+ 1)4
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