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Abstract

The permanent of a multidimensional matrix is the sum of products of entries over all diagonals.

A nonnegative matrix whose every 1-dimensional plane sums to 1 is called polystochastic.

A latin square of order n is an n×n array of n symbols in which each symbol occurs exactly once

in each row and each column. A transversal of such a square is a set of n entries such that no two

entries share the same row, column, or symbol. Let T (n) be the maximum number of transversals

over all latin squares of order n.

Here we prove that over the set of multidimensional polystochastic matrices of order n the per-

manent has a local extremum at the uniform matrix for whose every entry is equal to 1/n. Also,

we obtain an asymptotic value of the maximal permanent for a certain set of nonnegative multidi-

mensional matrices. In particular, we get that the maximal permanent of polystochastic matrices

is asymptotically equal to the permanent of the uniform matrix, whence as a corollary we have an

upper bound on the number of transversals in latin squares

T (n) ≤ nne−2n+o(n).

Keywords: permanent, multidimensional matrix, polystochastic matrix, latin square, transversal.

MSC 05A16; 05B15

Introduction

Let A be a matrix of order n, A = (ai,j)
n
i,j=1. The permanent of a matrix A is defined as

perA =
∑
σ∈Sn

n∏
i=1

ai,σi,

where Sn is the symmetric group on a set of n symbols.
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A matrix A is called nonnegative if ai,j ≥ 0 for all i, j ∈ {1, . . . , n}. Here we consider only nonnegative

matrices. A nonnegative matrix A is said to be doubly stochastic if
n∑

j=1

ai,j = 1 for all i ∈ {1, . . . , n} and

n∑
i=1

ai,j = 1 for all j ∈ {1, . . . , n}. By Jn denote the matrix of order n all of whose entries are 1/n.

It is not hard to prove [6], [8] that Jn is a local minimum for the permanent among all doubly stochastic

matrices. In Section 3 we prove that the uniform matrix is a local extremum for the permanent among

all multidimensional polystochastic matrices.

In 1926, van der Waerden conjectured that the uniform matrix Jn has strictly the smallest permanent

over all doubly stochastic matrices. The conjecture was proved in 1980 by Egorychev [3] and Falik-

man [4]. Also, in 1963 Minc conjectured that the permanent of n-ordered (0,1)-matrices is not greater

than
n∏

i=1

ri!
1/ri , where ri is the number of 1’s in the ith row. This conjecture was proved by Bregman [2],

Schrijver [10], and Radhakrishnan [9]. For additional information about the permanent of matrices see [8].

Here we extend the set of polystochastic matrices and obtain an asymptotic upper bound on their

permanent which depends on their dimension and sum of entries.

The permanent may be generalized to higher-dimensional matrices by different ways. We consider

only one of them. Then the number of tilings of some regular graph (the number of partitions into

copies of some subgraph) is equal to the permanent of a certain multidimensional nonnegative matrix. In

particular, the number of 1-perfect codes is expressed as a multidimensional permanent [1]. Moreover, the

number of transversals in a latin square coincides with the permanent of a certain 3-dimensional matrix.

Another generalization of the permanent makes it possible to estimate the number of latin hypercubes [5].

A latin square of order n is an n × n array of n symbols, in which each symbol occurs exactly once

in each row and each column. A transversal is a set of n entries, one selected from each row and each

column of a latin square of order n such that no two entries contain the same symbol. Define T (n) to be

the maximum number of transversals over all latin squares of order n.

In [7], McKay, McLeod, and Wanless proved that bn1 ≤ T (n) ≤ bn2
√
nn! for n ≥ 5, where b1 ≈ 1.719

and b2 ≈ 0.614. As n → ∞, the right-hand side of the inequality may be written as T (n) ≤ nne−cn+o(n),

where c ≈ 1.487. In Section 5 we obtain the asymptotic upper bound on the number of transversals in

latin squares

T (n) ≤ nne−2n+o(n)

as a corollary from the bound on the permanent of tristochastic matrices.

By using the symbols of a latin square to index its rows and columns, each latin square can be

interpreted as the Cayley table of a quasigroup. In [11], Wanless proposes:

Conjecture 1. Let Ln be the Cayley table of the cyclic group of order n and let n be odd. Denote by zn
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the number of transversals in Ln. Then

lim
n→∞

1

n
ln(zn/n!) = −1.

Let us remark that Conjecture 1 implies that our upper bound on T (n) is achieved.

For additional information about transversals in latin squares see [11].

1 Definitions

Let n, d ∈ N, and I = {(α1, . . . , αd) : αi ∈ {1, . . . , n}}. A d-dimensional matrix A of order n is an array

(aα)α∈I , aα ∈ R.

Let k ∈ {0, . . . , d}. A k-dimensional plane in A is the set of entries obtained by fixing d − k indices

and letting the other k indices vary from 1 to n. A (d− 1)-dimensional plane is said to be a hyperplane.

By Lk(A) denote the set of k-dimensional planes in a matrix A.

Let α belong to I. Let (A|α) denote the d-dimensional matrix of order n−1 obtained from the matrix

A by deleting the entries aβ such that αi = βi for some i ∈ {1, . . . , d}.

A nonnegative matrix A is said to be polystochastic if the sum of its entries in each 1-dimensional

plane is equal to 1. In the sequel, 3-dimensional polystochastic matrices are called tristochastic.

Denote by w the function that maps a matrix (or a part of a matrix) to the sum of all its entries. The

function w is said to be the norm of a matrix.

For a d-dimensional matrix A of order n, denote by D(A) the set of its diagonals

D(A) =
{
(aα1 , . . . , aαn) | aαi ∈ A ∀i ̸= j ρ(αi, αj) = d

}
,

where ρ is the Hamming distance (the number of positions at which the corresponding entries are differ-

ent). Then the permanent of a matrix A is

perA =
∑
p∈D

∏
aα∈p

aα.

The correspondence between the latin squares of order n and 3-dimensional (0,1)-matrices is given by

the next rule: an element of a latin square with coordinates (i, j) equals k iff ai,j,k equals 1. Note that

the permanent of the matrix coincides with the number of transversals in the latin square.

For all even n there exists a tristochastic matrix of order n whose permanent vanishes. Indeed,

consider the matrix A such that ai,j,k = 1 if i+ j ≡ k mod n and ai,j,k = 0 otherwise. It can easily be
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checked that the matrix A is tristochastic. Assume that the permanent of A is nonzero, that is, there

exists a diagonal in A composed of 1. Summing i+ j ≡ k mod n over all entries of the diagonal, we find

0 ≡ n(n+ 1) =
n∑

i=1

i+
n∑

j=1

j =
n∑

k=1

k =
n(n+ 1)

2
̸≡ 0 mod n;

a contradiction.

Let n, d ∈ N, d ≥ 3, γ ∈ R, 0 ≤ γ ≤ nd−2. Consider the following set of d-dimensional matrices of

order n:

Md
n,γ =

{
(aα)α∈I | aα ≥ 0,

∑
α∈I

aα = γn, ∀l ∈ L1(A)
∑
aα∈l

aα ≤ 1

}
.

By definition, put

P d
n(γ) = max

A∈Md
n,γ

perA

and

φd
n(γ) =

lnP d
n(γ)

n
− ln γ + d− 1, i.e., P d

n(γ) = γne−(d−1)n+φd
n(γ)n.

Since Md
n,γ is a compact set, P d

n(γ) and φd
n(γ) are well defined. Note that Md

n,nd−2 is the set of

d-dimensional polystochastic matrices of order n.

Our main aim is to prove that

P d
n(γ) = γne−(d−1)n+o(n)

for d ≥ 3 and γ = nd−3+δ, where δ ∈ (0, 1] is arbitrary.

2 Properties of P d
n (γ) and φd

n(γ)

Property 1. P d
n(γ) and φd

n(γ) are continuous because the permanent is continuous and the set Md
n,γ

changes continuously as γ varies.

Property 2. P d
n(γ) and φd

n(γ) have a left derivative for all γ ∈ (0, nd−2].

The points of differentiability of φd
n(γ) and P d

n(γ) are the same. If there exist several maximizing

matrices for fixed γ = γ0, then P d
n(γ) may be not differentiable at γ0. For each d-dimensional matrix from

Md
n,γ we can construct a matrix of the same order and dimension, but with lesser γ and permanent, by

decreasing one entry (there are some examples of these matrices in Property 5). The entries of maximizing

matrices are continuous piecewise linear functions of γ. This implies that P d
n(γ) has the left derivative

equal to a linear combination of the permanents of submatrices.

Below, all derivatives are considered as left derivatives.
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Property 3. Let n, d ∈ N, d ≥ 3, γ ∈ R, 0 ≤ γ ≤ nd−2. Then 0 ≤ φd
n(γ) ≤ d− 1.

Let A ∈ Md
n,γ . We project the matrix A to one of its hyperplanes until we get the 2-dimensional

matrix Ã, ãi,j =
∑

α=(i,j,∗...∗)
aα. At each step of the projection the permanent does not decrease. This

is an easy generalization of the observation that the permanent of a nonnegative 2-dimensional matrix

is not greater than the product of its row sums. Therefore perA ≤ perÃ. By ri we denote the sum of

entries in the ith row of the matrix Ã. Then

perA ≤ perÃ ≤
n∏

i=1

ri ≤ γn.

On the other hand, if Jd
n,γ is the d-dimensional matrix of order n all of whose entries are equal to γ/nd−1,

then by Stirling’s formula we have

P d
n(γ) ≥ perJd

n,γ =
(n!)d−1γn

n(d−1)n
> γne−(d−1)n.

Property 4. Let n, d ∈ N, d ≥ 3, γ ∈ R, 0 < γ < nd−2, and let Jd
n,γ be the d-dimensional matrix of

order n all of whose entries are γ/nd−1. Then perJd
n,γ < P d

n(γ).

Proof. Consider ε such that 0 < ε ≤ nd−2−γ
nd−2 and the matrix B with entries

b1,...,1 = b2,...,2 = γ
nd−1 + ε,

b1,...,1,2 = b2,...,2,1 = γ
nd−1 − ε,

and the other entries equal γ
nd−1 .

It is easy to show that B ∈ Md
n,γ . Using the Laplace expansion for the permanent along some

hyperplane, we see by direct calculation that perJd
n,γ < perB ≤ P d

n(γ).

Property 5. Let n and d be fixed. Then φd
n(γ) is a nonincreasing function.

Proof. Using the definition of φd
n(γ), we have

dφd
n(γ)

dγ
=

1

nP d
n(γ)

dP d
n(γ)

dγ
− 1

γ
.

Let A ∈ Md
n,γ be a d-dimensional matrix of order n such that perA = P d

n(γ), and let ε be nonnegative.

Note that the difference between the permanent of the matrix A and the permanent of an arbitrary

matrix from Md
n,γ−ε is not less than the difference between P d

n(γ) and P d
n(γ − ε). Consequently,

dP d
n(γ)

dγ
≤ perA− perAε

ε
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for all sufficiently small ε and matrices Aε ∈ Md
n,γ−ε sufficiently close to A.

Let us construct appropriate matrices Aε. Let Γ be a hyperplane of the matrix A with the norm at

least γ. Such a hyperplane exists because the mean norm of hyperplanes of the matrix A equals γ. Find

a positive element aβ in Γ such that

per(A|β) = min {per(A|α) | aα ∈ Γ, aα > 0} .

Using the Laplace expansion for the permanent of A along the hyperplane Γ, we obtain

perA =
∑
aα∈Γ

aαper(A|α) ≥ per(A|β)
∑
aα∈Γ

aα ≥ γper(A|β).

Hence, per(A|β)
perA ≤ 1

γ .

For sufficiently small ε > 0 consider the set of matrices Aε ∈ Md
n,γ−ε whose entries are equal to the

entries of the matrix A except aεβ = aβ − εn. Using the definition of the permanent, we get

perA− perAε

ε
= nper(A|β).

This yields

dφd
n(γ)

dγ
=

1

nP d
n(γ)

dP d
n(γ)

dγ
− 1

γ
≤ nper(A|β)

nperA
− 1

γ
≤ 0,

and φd
n(γ) is a nonincreasing function.

3 A local extremum of a multidimensional permanent

Now we generalize the theorem about a local extremum of the permanent over the set of doubly stochastic

matrices [8]. Let us first prove the following lemma.

Lemma 1. Let A be a d-dimensional polystochastic matrix of order n. Then the norm of (A|α) equals

d−1∑
j=0

(−1)j
(
d

j

)
nd−j−1 + (−1)daα.

Proof. We prove the lemma using the inclusion-exclusion principle. Note that the norm of (A|α) is equal

to ∑
j=0...d,lj∈Lj(A):aα∈lj

(−1)d−jw(lj).
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There are
(
d
j

)
j-dimensional planes containing aα. Using the condition for the norm of 1-dimensional

planes, we get that the norm of these j-dimensional planes is equal to nj−1 if j ̸= 0 and aα if j = 0. Thus

w(A|α) =
d−1∑
j=0

(−1)j
(
d

j

)
nd−j−1 + (−1)daα.

Let Jd
n be the d-dimensional matrix of order n all of whose entries are equal to 1/n.

Theorem 1. The matrix Jd
n is a local extremum for the permanent among all d-dimensional polystochastic

matrices of order n. In addition, if d is even, then Jd
n is a local minimum, and if d is odd, then Jd

n is a

local maximum.

Proof. Over the set of d-dimensional polystochastic matrices the permanent has a second derivative at

the point Jd
n. Consequently, it suffices to prove that Jd

n is a local extremum in any direction. Consider

a d-dimensional polystochastic matrix A of order n that is approximate to Jd
n. Let aα = min

β∈I
aβ , aα > 0

and θ0 = 1− naα > 0. Then

B =
1

θ0
(A− (1− θ0)J

d
n)

is a polystochastic matrix containing a null entry, and A = θ0B + (1− θ0)J
d
n. By definition, put

Lin(A) =
{
S|S = θB + (1− θ)Jd

n, 0 ≤ θ ≤ 1
}
.

Lin(A) is a linear subset of the set of polystochastic matrices, and the matrices A and Jd
n belong to

Lin(A).

Consider the function

f(θ) = per(θB + (1− θ)Jd
n), θ ∈ [0, 1].

Notice that perA = f(θ0). The function f(θ) is infinitely differentiable, and in a neighborhood of zero

f(θ) can be written as

perA = f(θ0) = f(0) + θ0f
′(0) +

θ20
2
f ′′(0) +O(θ30).

Using the definition of the permanent, we have

f ′(θ) =
∑
α∈I

(bα − 1/n)per(θB + (1− θ)Jd
n|α).
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Consequently,

f ′(0) =
∑
α∈I

(bα − 1/n)per(Jd
n|α) =

(n− 1)!d−1

nn−1

∑
α∈I

(bα − 1/n) = 0,

because the norms of B and Jd
n are the same and per(Jd

n|α) =
(n−1)!d−1

nn−1 is independent of α.

Find the second derivative of f(θ):

f ′′(θ) =
∑
α∈I

(bα − 1/n)
∑

β∈I:αi ̸=βi∀i

(bβ − 1/n)per(θB + (1− θ)Jd
n|α, β).

Therefore,

f ′′(0) =
∑
α∈I

(bα − 1/n)
∑

β∈I:αi ̸=βi∀i

(bβ − 1/n)per(Jd
n|α, β).

The permanent of (Jd
n|α, β) does not depend on α and β and equals (n−2)!d−1

nn−2 .

Note that
∑

β∈I:αi ̸=βi∀i
(bβ − 1/n) is equal to the difference between the norms of (B|α) and (Jd

n|α).

Applying Lemma 1 to (B|α) and (Jd
n|α), we get

f ′′(0) =
(n− 2)!d−1

nn−2
(−1)d

∑
α∈I

(bα − 1/n)2.

Recall that there exists a null entry in the matrix B. Consequently,
∑
α∈I

(bα − 1/n)2 > 0. Finally,

f ′′(0) > 0 if d is even, and f ′′(0) < 0 if d is odd. This completes the proof.

4 A differential inequality for P d
n (γ)

In this section we obtain a differential inequality for P d
n(γ). The inequality will be used to prove the

upper bound on P d
n(γ). First we demonstrate the following two lemmas.

Lemma 2. Let n, d ∈ N, d ≥ 3, γ ∈ R, 1 ≤ γ ≤ nd−2, and let A ∈ Md
n,γ be a matrix whose permanent

is nonzero. Then there exists an element aα > 0 such that

w(A|α) ≤ γ

(
n− d+

(
d

2

)
nd−3

γ

)
.

Proof. Since the permanent of A is nonzero, there exists a diagonal {aαi}ni=1 with all aαi > 0.

Denote by Si = γn − w(A|αi) = w(A) − w(A|αi) the norm of the ‘shell’ of (A|αi). Consider
n∑

i=1

Si.

Since the elements {aαi}ni=1 form a diagonal, every element of A occurs d times in this sum except the

elements in (d − 2)-dimensional planes that contain some aαi . The norm of every (d − 2)-dimensional
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plane is not greater than nd−3. Then

n∑
i=1

Si ≥ dw(A)−
(
d

2

)
nd−2 = dγn−

(
d

2

)
nd−2.

Thus the mean norm of the ‘shells’ equals

n∑
i=1

Si

n
≥ dγ −

(
d

2

)
nd−3.

Therefore there exists j ∈ {1, . . . , n} such that aαj > 0 and Sj ≥ dγ −
(
d
2

)
nd−3. Then

w(A|αj) = w(A)− Sj ≤ γ

(
n− d+

(
d

2

)
nd−3

γ

)
.

The following statement binds the permanent of a matrix to the permanent of a matrix with smaller

value of order and γ.

Lemma 3. Let n, d ∈ N, d ≥ 3, γ ∈ R, dnd−3 ≤ γ ≤ nd−2, and let A ∈ Md
n,γ be a matrix with

nonzero permanent. Then for all sufficiently small ε > 0 there exist a matrix Aε ∈ Md
n,γ−ε and a matrix

B ∈ Md
n−1,γB

, where γ − dnd−2−γ
n−1 ≤ γB ≤ γ

(
1− d−1−(d2)n

d−3/γ

n−1

)
, such that

perA = perAε + εnperB.

Proof. By Lemma 2, the matrix A contains an element aα > 0 such that w(A|α) ≤ γ(n− d+
(
d
2

)
nd−3

γ ).

Suppose that B = (A|α), B ∈ Md
n−1,γB

. Decreasing the element aα by εn, we get the matrix Aε. For

sufficiently small ε > 0, the matrices Aε belong to Md
n,γ−ε. By direct calculation and the definition of

the permanent, we obtain

perA = perAε + εnperB.

Using Lemma 2, we have

γB =
w(B)

n− 1
≤ γ

n− d+
(
d
2

)
nd−3/γ

n− 1
= γ

(
1−

d− 1−
(
d
2

)
nd−3/γ

n− 1

)
.

On the other hand, w(B) ≥ γn − dnd−2, because the norm of each of d hyperplanes bordering B is
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not greater than nd−2. Thus

γB ≥ γn− dnd−2

n− 1
≥ γ − dnd−2 − γ

n− 1
,

and the proof is complete.

Finally, let us prove a differential inequality for P d
n(γ).

Statement 1. Let n, d ∈ N, d ≥ 3, γ ∈ R, dnd−3 ≤ γ ≤ nd−2. Then

dP d
n(γ)

dγ
≤ nP d

n−1(γ̃)

for some γ̃ from

[
γ − dnd−2−γ

n−1 , γ

(
1− d−1−(d2)n

d−3/γ

n−1

)]
.

Proof. Let A ∈ Md
n,γ have the maximal permanent over Md

n,γ . Then perA > 0. By Lemma 3, there exist

a set of matrices Aε ∈ Md
n,γ−ε and a matrix B ∈ Md

n−1,γB
such that

γ − dnd−2 − γ

n− 1
≤ γB ≤ γ

(
1−

d− 1−
(
d
2

)
nd−3/γ

n− 1

)

and

P d
n(γ) = perA = perAε + εnperB.

Maximizing the right-hand side of the equality, we get

P d
n(γ) ≤ max

Aε∈Md
n,γ−ε

perAε + εn max
B∈Md

n−1,γB

perB = P d
n(γ − ε) + εnP d

n−1(γB).

Suppose that γ̃ = γB . Dividing the inequality by ε and letting ε → 0 , we obtain

dP d
n(γ)

dγ
≤ nP d

n−1(γ̃).

Corollary 1. Let n, d ∈ N, d ≥ 3, γ ∈ R, dnd−3 ≤ γ ≤ nd−2. Consider sufficiently large n and assume

that nd−3 = o(γ). Then

dP d
n(γ)

dγ
≤ nP d

n−1(γ̃)

for some γ̃ from
[
γ − dnd−3, γ

(
1− d−1

n−1 + o(1/n)
)]

.
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5 An asymptotic upper bound on a multidimensional perma-

nent

In this section we prove that for all δ ∈ (0, 1] and γ = nd−3+δ

P d
n(γ) = γne−(d−1)n+o(n) as n → ∞,

whence an asymptotic upper bound on the number of transversals in latin squares follows

T (n) ≤ P 3
n(n) = nne−2n+o(n).

Let δ, ε ∈ (0, 1]. Consider the function

F d
n(γ) = γne

−n

(
d−2+

ln(γ/nd−3)
δ lnn

)
(1−ε)

. (1)

Now we define two functions which will be used as boundaries of some intervals. Suppose that

0 < σ ≤ δ and C ≥ 1 are some constants. Put g2(n,C) = C lnn for d = 3, and g2(n,C) = Cnd−3+σ for

d > 3. Let g1(n) = g2(n, 1)− dnd−3. Note that

nd−3

g1(n)
→ 0 as n → ∞. (2)

The main idea of the proof is to show that P d
n(γ) is majorized by F d

n(γ) for all sufficiently large n and

γ ∈ Λ(n) =
[
g1(n), n

d−3+δ
]
. For this purpose, we prove that if n is sufficiently large and if the function

F d
n−1(γ) majorizes P d

n−1(γ) for all γ from some interval ∆(n− 1), then F d
n(γ) majorizes P d

n(γ) for all γ

from some interval Θ(n) ⊃ ∆(n).

Statement 2. Let n, d ∈ N, d ≥ 3, δ, ε ∈ (0, 1], n be sufficiently large, and let the function F d
n(γ) be

defined by (1).

Assume that F d
n−1(γ) ≥ P d

n−1(γ) for all γ ∈ ∆(n− 1) = [g1(n− 1), g2(n− 1, C)], and F d
n(γ) ≥ P d

n(γ)

for all γ ∈ ∆0(n) = [g1(n), g2(n, 1)]. Then

F d
n(γ) ≥ P d

n(γ)

for all γ ∈ Θ(n) =
[
g1(n), g2(n,C)n−1

n−2

]
.

Proof. Taking into account the condition (2) for g1(n), the definition of Θ(n), and Corollary 1, we have
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dPd
n(γ)
dγ ≤ nP d

n−1(γ̃) for all γ ∈ Θ(n) and for some

γ̃ ∈
[
γ − dnd−3, γ

(
1− d− 1

n− 1
+ o(1/n)

)]
.

Note also that there exist N0 ∈ N and µ ∈ R, µ > 0 such that for n > N0 and for all γ ∈ Θ(n) the

following inequalities hold:

1− d− 1

n− 1
+ o(1/n) ≥ 1− µ

n

and (
1− d− 1

n− 1
+ o(1/n)

)n−1

≤ e−(d−1)+(d−2)ε.

Let us prove that

dF d
n(γ)

dγ
≥ nF d

n−1(γ̃) (3)

for all γ ∈ Θ(n).

Indeed, note that F d
n−1(γ) is an increasing function for all sufficiently large n. Using these inequalities

and the definition of F d
n−1

(
γ
(
1− d−1

n−1 + o(1/n)
))

, we have

F d
n−1(γ̃) ≤ F d

n−1

(
γ

(
1− d− 1

n− 1
+ o(1/n)

))
≤ γn−1e−(d−1)+(d−2)ε−(n−1)(d−2+

ln(χ(1−µ/n))
δ ln(n−1) )(1−ε),

where χ = γ/nd−3.

Consequently, to obtain the inequality (3) it is sufficient to prove that

dF d
n(γ)

dγ
≥ nγn−1e−(d−1)+(d−2)ε−(n−1)(d−2+

ln(χ(1−µ/n))
δ ln(n−1) )(1−ε) (4)

for some µ > 0 and for all γ ∈ Θ(n).

Let us prove the inequality (4) now. It can be rewritten as:

nγn−1e
−n

(
d−2+

ln(γ/nd−3)
δ lnn

)
(1−ε)

(
1− 1− ε

δ lnn

)
≥ nγn−1e−(d−1)+(d−2)ε−(n−1)(d−2+

ln(χ(1−µ/n))
δ ln(n−1) )(1−ε). (5)

Reducing (5) by the factor nγn−1e−(d−2)n(1−ε), we rewrite (5) as follows:

1− 1− ε

δ lnn
≥ e−1+(1−ε)κn(γ),
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where

κn(γ) = n

(
lnχ

δ lnn
−
(
1− 1

n

)
ln(χ(1− µ/n))

δ ln(n− 1)

)
.

Using the Taylor series of the natural logarithm and ignoring sufficiently small summands, we obtain

that

κn(γ) ≤ 1 + ε

for all large enough n and γ ∈ Θ(n).

Since ε is nonzero, there exists N ∈ N such that for all n > N and γ ∈ Θ(n)

1− 1− ε

δ lnn
≥ e−ε2 ≥ e−1+(1−ε)κn(γ),

whence the inequality (3) follows.

Since for all γ ∈ Θ(n) \∆0(n) we have that γ ≤ n−1
n−2g2(n,C) and γ̃ ≤ γ

(
1− d−1

n−1 + o(1/n)
)
, it can

be checked that γ̃ ≤ g2(n− 1, C) for sufficiently large n. Also, by the definitions of g1 and g2, we obtain

that g1(n− 1) < g2(n, 1)− dnd−3 ≤ γ̃. Consequently, γ̃ belongs to ∆(n− 1) for all γ ∈ Θ(n) \∆0(n).

Recall that F d
n−1(γ) ≥ P d

n−1(γ) for all γ ∈ ∆(n− 1). It follows that

dF d
n(γ)

dγ
≥ nF d

n−1(γ̃) ≥ nP d
n−1(γ̃) ≥

dP d
n(γ)

dγ

for all γ ∈ Θ(n) \∆0(n).

Since
dFd

n(γ)
dγ ≥ dPd

n(γ)
dγ for all γ ∈ Θ(n) \∆0(n), and F d

n(γ) ≥ P d
n(γ) for all γ ∈ ∆0(n), we obtain

F d
n(γ) ≥ P d

n(γ)

for all γ ∈ Θ(n).

Statement 3. Let n, d ∈ N, d ≥ 3, γ ∈ R, δ, ε ∈ (0, 1], and let the function F d
n(γ) be defined by (1). Let

us fix sufficiently large k.

Assume that F d
n(γ) ≥ P d

n(γ) for all γ ∈ ∆0(n) = [g1(n), g2(n, 1)] and for all n ≥ k. Then there exists

m such that for all n ≥ k +m and γ ∈ Λ(n) =
[
g1(n), n

d−3+δ
]
we have

F d
n(γ) ≥ P d

n(γ).

13



Proof. By Statement 2, we have that F d
k+1(γ) ≥ P d

k+1(γ) for all γ from

∆1(k + 1) =

[
g1(k + 1), g2(k + 1, 1)

k

k − 1

]
=

[
g1(k + 1), g2

(
k + 1,

k

k − 1

)]
.

Then we apply Statement 2 to the interval ∆1(k+1) and obtain the same inequality for all γ from the

interval ∆2(k + 2) =
[
g1(k + 2), g2

(
k + 2, k+1

k−1

)]
, and so on. After m steps we obtain that F d

k+m(γ) ≥

P d
k+m(γ) for all γ from ∆m(k +m) =

[
g1(k +m), g2

(
k +m, k+m−1

k−1

)]
.

In case d > 3 find m such that k+m−1
k−1 ≥ (k +m)δ−σ, and in case d = 3 find m such that k+m−1

k−1 ≥
(k+m)δ

ln(k+m) . Then g2

(
k +m, k+m−1

k−1

)
≥ (k +m)d−3+δ, and we have that

F d
n(γ) ≥ P d

n(γ)

for all n ≥ k +m and for all γ ∈ Λ(n).

To obtain now the main result it is sufficient to prove that F d
n(γ) ≥ P d

n(γ) for all γ ∈ [g1(n), g2(n, 1)]

and for all sufficiently large n. For this purpose we use some extension of the following statement:

Statement 4. Let A be a 2-dimensional (0,1)-matrix of order n and let γi be the number of 1’s in the

ith row. Then

perA ≤
n∏

i=1

γi!
1/γi .

Corollary 2. Let A be a nonnegative 2-dimensional matrix of order n whose entries are not greater

than 1. Suppose that
n∑

i,j=1

ai,j = γn. Then

perA ≤ (γ + 1)ne−n(e
√
γ + 1)

n
γ+1 .

Proof. Let vi be the ith row of A and let γi = w(vi). Construct recursively nonnegative 2-dimensional

matrices A = A0, A1, . . . , An such that their entries are not greater than 1 and perAi ≤ perAi+1 for all

i ∈ {0, . . . , n− 1}.

Assume that the matrix Ai is constructed. Let us construct Ai+1. Rearrange the columns of the

matrix Ai so that per(Ai|(i + 1, k)) ≥ per(Ai|(i + 1, k + 1)) for all k. Call the resulting matrix Bi. Let

Ai+1 = (ai+1
j,k )nj,k=1 and Bi = (bij,k)

n
j,k=1. Put

ai+1
j,k = bij,k for j ̸= i+ 1,

ai+1
i+1,k = 1 for k ≤ ⌈γi+1⌉,

and ai+1
i+1,k = 0 for k > ⌈γi+1⌉.
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Then An is a (0,1)-matrix with ⌈γi⌉ ones in the ith row and
n∑

i=1

⌈γi⌉ ≤
n∑

i=1

(γi + 1) = (γ + 1)n. By

construction and by Statement 4, we have

perA ≤ perAn ≤
n∏

i=1

⌈γi⌉!
1

⌈γi⌉ .

Using the approximation of a factorial

x! ≤ exx+1/2e−x,

we obtain

perA ≤
n∏

i=1

e−1+1/⌈γi⌉ ⌈γi⌉
1+ 1

2⌈γi⌉ .

It can be proved that e1/xx1+1/2x is a concave function for x > 1. Therefore,

perA ≤
n∏

i=1

e−1+ 1
γ+1 (γ + 1)1+

1
2(γ+1) = (γ + 1)ne−n(e

√
γ + 1)

n
γ+1 .

We are now ready to prove the main theorem.

Theorem 2. Let d ≥ 3. For all δ ∈ (0, 1] and γ = nd−3+δ, the maximal permanent of the matrices from

the set Md
n,γ is equal to γne−(d−1)n+o(n) as n → ∞:

P d
n(γ) = γne−(d−1)n+o(n).

Proof. Proceed by induction on the dimension of matrices.

Basis: d = 3.

For arbitrary δ, ε ∈ (0, 1] and γ ∈ Λ(n) =
[
lnn− 3, nδ

]
, consider the function

F 3
n(γ) = γne−n(1+ ln γ

δ lnn )(1−ε).

Let γ ∈ ∆0(n) = [lnn− 3, lnn] and let A be a matrix from M3
n,γ such that perA = P 3

n(γ). Denote by

Ã the projection of A on one of its hyperplanes. Recall that perA ≤ perÃ. By Corollary 2, we have

P 3
n(γ) = perA ≤ perÃ ≤ (γ + 1)ne−n(e

√
γ + 1)

n
γ+1 .
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Since ε is nonzero, there exists N such that for all n > N and γ ∈ ∆0(n)

F 3
n(γ) = γne−n(1+ ln γ

δ lnn )(1−ε) ≥ (γ + 1)ne−n(e
√
γ + 1)

n
(γ+1) ≥ P 3

n(γ).

Therefore, F 3
n(γ) ≥ P 3

n(γ) for all sufficiently large n and γ ∈ ∆0(n). Using Statement 3, we get this

inequality for all n ≥ N(ε) and for all γ ∈ Λ(n).

Put γ = nδ. Then

P 3
n(γ) ≤ F 3

n(γ) = γne−2n(1−ε)

starting from a certain N(ε). Since ε can be chosen arbitrarily close to zero, it follows that

P 3
n(γ) ≤ γne−2n+o(n) as n → ∞.

On the other hand, by the proof of Property 3

P 3
n(γ) ≥ γne−2n+o(n).

Finally, for all δ ∈ (0, 1] and γ = nδ

P 3
n(γ) = γne−2n+o(n) as n → ∞.

Inductive step: Assume that for all δ ∈ (0, 1] and γ = nd−4+δ the function P d−1
n (γ) is equal to

γne−(d−2)n+o(n) as n → ∞. Let us prove an analogous statement for P d
n(γ).

As before, we fix arbitrary δ ∈ (0, 1] and 0 < ε < 1
d−2 . Suppose that g2(n) = nd−3+σ, where

σ = εδ(d−3)
1−ε < δ.

Let γ ∈ ∆0(n) = [g1(n), n
d−3+σ] and let A be a matrix from Md

n,γ such that perA = P d
n(γ). Project

the matrix A on one of its hyperplanes and divide the result by n. We obtain the (d − 1)-dimensional

matrix Ã ∈ Md−1
n,γ̄ , where γ̄ = γ/n, and perA ≤ nnperÃ.

By the inductive assumption and Property 5, there exists N such that

P d
n(γ) = perA ≤ nnperÃ ≤ nnγ̄ne−n(d−2−ε) ≤ F d

n(γ)

for all n > N and γ ∈ ∆0(n), where F d
n(γ) is defined by (1).

The application of Statement 3 yields F d
n(γ) ≥ P d

n(γ) for all sufficiently large n and γ ∈ Λ(n). As in
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the 3-dimensional case, it follows that

P d
n(γ) = γne−(d−1)n+o(n) as n → ∞

for all δ ∈ (0, 1] and γ = nd−3+δ.

Corollary 3. Let d ≥ 3. Denote by Ωd
n the set of d-dimensional polystochastic matrices of order n. Then

max
A∈Ωd

n

perA = P d
n(n

d−2) = n(d−2)ne−(d−1)n+o(n) as n → ∞.
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