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Abstract
A locally conformally Kähler (LCK) manifold is a complex manifold

whose universal cover is Kähler with monodromy group acting on the
universal cover by holomorphic homotheties. A Vaisman manifold M is
a compact non-Kähler LCK manifold admitting a holomorphic conformal
action of a group G = C lifting to an action on a Kähler cover by nontrivial
homotheties. When the orbits of the action on M are compact, it is known
that every stable holomorphic vector bundle over M , dim(M) ≥ 3, is G-
equivariant and filtrable. In the present paper we generalize this result to
irregular Vaisman manifolds.

1 Introduction
1.1 Overview and statement of the problem
Let E be a holomorphic vector bundle over a compact complex manifold X.
In order to investigate properties of E, it is often convenient to construct fil-
trations 0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E by coherent subsheaves and study the
successive quotients Ei+1/Ei. Well-known examples of this kind include the
Harder-Narasimhan filtration with semistable quotients and the Jordan-Hölder
filtration of a semistable sheaf (see Chapter 1 of [HL10]). Another example is
given by the following definition.

Definition 1.1.1. A holomorphic vector bundle E is filtrable if there exists a
filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E such that quotients Ei+1/Ei have rank 1.

Remark 1.1.1. In the above case the reflexive hulls Li = (Ei+1/Ei)∗∗ are line
bundles.

Every vector bundle on a projective variety is filtrable (see e. g. [B96], p.
91). It’s no longer true for nonalgebraic manifolds. For instance, the tangent
bundle of a generic K3 surface has no rank 1 subsheaves. As for non-Kähler
examples, R. Moraru [M] proved that on a Hopf surface a generic vector bundle
of rank 2 is non-filtrable. The presence of non-filtrable bundles makes the study
of moduli spaces of polystable vector bundles on surfaces very difficult. Hence,
nonalgebraic manifolds admitting only filtrable stable bundles deserve a lot of
attention.

Indeed, the theorem of M. Verbitsky states that on a diagonal Hopf manifolds
of dimension at least 3 every stable bundle is filtrable. The same result holds for
positive principal elliptic fibrations ([V05, V06]). In fact, the argument in [V06]
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is valid for a larger class of non-Kähler manifolds, the so-called quasiregular
Vaisman manifolds.

The goal of this paper is to establish an analogous result for irregular Vais-
man manifolds. Sections 2 and 3 are expository; we present there some relevant
facts about Vaisman geometry and stability of vector bundles. Our argument
is carried out in Section 4.

2 Complex geometry of Vaisman manifolds
For a general information on LCK and Vaisman geometry see [DO98] and ref-
erences therein.

2.1 Basic definitions
Definition 2.1.1. A complex Hermitian manifold (M,ω, J) is locally confor-
mally Kähler (LCK) if dω = ω ∧ θ, where θ is a closed 1-form called the Lee
form.

Equivalently, a compact complex manifold is LCK if it is covered by a Käh-
ler manifold M̃ and π1(M) acts on M̃ by homotheties. The corresponding
representation of π1(M) defines a flat real line bundle L. Its complexification
LC := L ⊗R C is called the weight bundle of M ; the covering p : M̃ → M is
also called the weight covering.

Definition 2.1.2. A compact LCK manifold M is Vaisman if θ is parallel
with respect to the Levi-Civita connection on M : ∇θ = 0.

The geometry of Vaisman manifolds is extensively studied in [OV05]. This
class contains diagonal Hopf manifolds; conversely, every Vaisman manifold can
be holomorphically immersed in diagonal Hopf. The weight covering of a Vais-
man manifold has monodromy Z and M̃ is a conical Kähler manifold.

2.2 The fundamental foliation
Definition 2.2.1. LetM be a Vaisman manifold. Consider the dual vector field
to the Lee form θ. Then θ] and J(θ]) generate a one-dimensional holomorphic
Riemannian foliation Σ, called the fundamental foliation of M .

The fundamental foliation together with the form ω0 := ω−θ∧J(θ) = d(Jθ)
give the so-called transversely Kähler structure. This means that Σ is the
kernel of ω0 and ω0 is θ]-equivariant: Lθ]ω0 = d(ω(θ], ·)) + dω0(θ], ·) = 0
by Cartan formula. Thus the leaf space of the foliation Σ is locally a Kähler
manifold. The existence of such a structure has a lot of consequences for the
geometry of M (see [V06] for details).

Definition 2.2.2. A Vaisman manifold M is called quasiregular if the leaves
of Σ are compact; otherwise M is irregular.

Remark 2.2.1. In quasiregular case the space of leaves Q := M/Σ is a compact
Kähler orbifold and M is elliptically fibered over Q.

The proposition below (Proposition 4.6 in [OV05]) plays a crucial role in the
proof of our main result.
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Theorem 2.2.1. Every irregular Vaisman structure on a given manifoldM can
be approximated by quasiregular ones. More precisely, there exist arbitrarily
small quasiregular deformations M ′ with the same weight cover M̃ . �

2.3 Automorphism group of a Vaisman manifold
Vaisman manifolds can be described in terms of their automorphisms, as the
following theorem indicates (for a proof see [KO05]):

Theorem 2.3.1. An LCK manifold is conformally isomorphic to a Vaisman
manifold if and only if it admits an action of a holomorphic flow such that this
action lifts to non-trivial homotheties of the weight covering. �

Another remarkable property of Aut(M) easily follows from the results
stated in Section 3:

Theorem 2.3.2. The group Aut(M) of conformal holomorphic automorphisms
of a Vaisman manifold coincides with the group of holomorphic isometries
IsomH(M, g) and, as a consequence, is compact.

Proof. By Remark 3.1.1 a Vaisman metric is always Gauduchon, hence
unique in its conformal class. Therefore a conformal holomorphic automorphism
must preserve the metric. �

A holomorphic one-dimensional Lie group G (isomorphic to a quotient of
C) generated by the flow of θ] is called the complex Lee flow. The orbits of
G-action on M are precisely the leaves of the fundamental foliation. We denote
by G the closure of G in Aut(M); G is a closed connected abelian subgroup of
a compact Lie group, hence G ' (S1)k. If M is quasiregular we have k = 2, on
the other hand, in the case of M irregular the dimension of G can be anything.

3 Stability in non-Kähler geometry
In this short section we briefly recall the notions of stability in the non-Kähler
setting. The general references for this section are [LT95, Br05].

3.1 Stability, degree and slope
Definition 3.1.1. A Hermitian metric g on n-dimensional complex manifold
M is called Gauduchon if the corresponding form ω satisfies ∂∂(ωn−1) = 0.

Remark 3.1.1. On a Vaisman manifold the metric is automatically Gauduchon
[DO98].

As it was proved in [Ga84], a Gauduchon metric always exists and is unique
in any given conformal class. This allows to define the degree and slope of a
given holomorphic Hermitian bundle (E, h) or a torsion-free coherent sheaf E
on a compact manifold X:

degg(E) :=
∫
M

c1(det(E)) ∧ ωn−1

µ(E) :=
degg(E)
rk(E)
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Definition 3.1.2. A holomorphic vector bundle E is stable(resp. semistable)
if for any coherent subsheaf F ⊂ E we have µ(F ) ≤ µ(E)(resp. µ(F ) < µ(E));
polystable if E is a direct sum of stable bundles of the same slope.

3.2 Hermitian-Einstein metrics
Definition 3.2.1. Ametric h on a bundle E is (weakly) Hermitian-Einstein
if the curvature ΘE,h of the Chern connection satisfies

√
−1ΛωΘE,h = C · IdE

for some real constant (resp. a function) C. Here Λ is the formal dual to the
operator of multiplication by ω.

The proof of the following theorem can be found in [UY86, LT95]:

Theorem 3.2.1 (The Kobayashi - Hitchin Correspondence). A holomor-
phic vector bundle E over a compact Hermitian manifold admits a Hermitian-
Einstein metric if and only if it is polystable. �

4 Equivariance and filtrability of stable bundles
Everywhere in this sectionM stands for a compact Vaisman manifold of dimen-
sion n ≥ 3.

4.1 The action of the flow G

Theorem 4.1.1. Let (M,ω, θ) be a Vaisman manifold with fundamental foli-
ation Σ and E → M be a stable holomorphic vector bundle endowed with a
Hermitian metric h. Then the curvature of E satisfies ΘE,h(v, ·) = 0 for any
v ∈ Σ. As a consequence, E admits a natural G-equivariant structure.

Proof. See [V06], Theorem 4.1 and Remark 4.3. �

Remark 4.1.1. We give an outline of the proof of filtrability in quasiregular
case. Let E be a stable bundle of degree λ; then by Theorem 4.1.1 E ⊗ L−λ
is equivariant and flat on the leaves of Σ. Hence, E ⊗ L−λ is isomorphic to a
pullback p∗(E0) of some orbibundle E0 on the leaf space Q. By Proposition
3.6 of [OV05] p∗LC an ample line orbibundle on Q. By Baily’s generalization
of Kodaira embedding theorem [Ba57] Q is projective. Consequently, E0 is
filtrable, as an algebraic bundle on a projective orbifold; therefore E ' E0⊗Lλ
is also filtrable.

4.2 Extension of the action to the closure
The preceding argument has to be slightly modified to deal with irregular case.

Theorem 4.2.1. Suppose that a Vaisman manifoldM is irregular. Then under
the assumptions of Theorem 4.1.1 E is G-equivariant.

Proof. Indeed, the group G acts on M by holomorphic isometries and a
dense subgroup G ⊂ G acts on the total space Tot(E) by isometries. Consider
the bundle of unit vectors in the fibers of E; its total space N is a compact
Riemannian manifold acted on by G. As the isometry group of N is compact,
the action of G extends to G by the universal property. Taking conjugations
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by dilations (x, v) 7→ (x, v/||v||), we see that G acts on Tot(E). Moreover, the
action of a dense subgroup G preserves the metric, therefore the same is true
for G-action. Finally, it remains to prove that G acts on E holomorphically.
As the question is local, it suffices to show that for every element g ∈ G and
a holomorphic section s of E on an open ball U ⊂ M a section g(s) is also
holomorphic. We represent g as the limit of a sequence (gk) of holomorphic
transformations. Therefore, (gk(s)) is a sequence of holomorphic sections which
has a limit in topology of the ambient space of continuous sections. By Montel’s
theorem, g(s) = (lim gk)(s) = lim(gk(s)) must be holomorphic. �

Theorem 4.2.2. Let us denote by Pst(M) the category of polystable holomor-
phic vector bundles over a Vaisman manifold M . Also let G̃ denote the lift of
G to the weight cover. Consider the category Bun

G̃
(M̃) of G̃-equivariant holo-

morphic Hermitian vector bundles on M̃ satisfying the condition
√
−1ΛΘE,h =

C · IdE ; here Λ = Λp∗ω is a formal dual to multiplication by the pullback of the
Hermitian form on M and C is a real constant. The map E → p∗(E) gives an
equivalence of categories between Pst(M) and Bun

G̃
(M̃). For M quasiregular

we have G = G = T where T is a two-dimensional compact torus.

Proof. The correspondence E → p∗(E) is clearly functorial; it suffices to
prove that it is fully faithful and essentially surjective. Note that M ' M̃/Γ
where Γ ' Z is the monodromy group of the weight cover. It is clear that the
category of complex vector bundles overM is equivalent to that of Z-equivariant
complex vector bundles over M̃ . Suppose that Ẽ comes from M by pullback;
then it clearly satisfies the above Hermite-Einstein condition. In [OV05] it was
proved that the forgetful map gives an exact sequence 0 → Γ → G̃ → G → 0.
Hence, Γ ⊂ G̃ and thus any G̃-equivariant holomorphic vector bundle over M̃
satisfying the Hermite-Einstein condition is a pullback of a polystable bundle
on M . The same argument applies to morphisms:

Hom(E1, E2) ' Hom(p∗(E1), p∗(E2))G̃ ' HomBun
G̃

(M̃)(p
∗(E1), p∗(E2))

and this completes the proof. �

Corollary 4.2.1. There exists a quasiregular deformation M ′ of M such that
the category of polystable vector bundles Pst(M) is equivalent to a subcategory
of Pst(M ′).

Proof. Let γ be a generator of Γ and denote by Γ′ the group generated by
some other element γ′ ∈ G̃C. Then by [OV05], Proposition 4.6 we can take γ′
such that the quotient M ′ := M̃/Γ′ is a quasiregular Vaisman manifold. Then
by Theorem 4.2.2 we have an equivalence of Pst(M) and BunT̃ ′(M). As T ′ ⊂ G,
we have T̃ ⊂ G̃ which means that Bun

G̃
(M̃) ⊂ BunT̃ ′(M̃). Then composition

with equivalences constructed in Theorem 4.2.2 gives the desired embedding of
Pst(M) into Pst(M ′). �

Finally, we can prove the main theorem:

Theorem 4.2.3. Let E be a stable holomorphic Hermitian vector bundle of
degree λ over an irregular Vaisman manifold M . Then E is filtrable.
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Proof. Again, by Theorem 4.1.1 E ⊗ L−λ is equivariant and flat on the
leaves of Σ. By Theorem 4.2.1 E is also G-equivariant. Choose a quasiregular
deformation of M as constructed in Corollary 4.2.1. Then the pullback p∗(E)
is C∗-equivariant and trivial on the fibers of the map r : M̃ → M̃/C∗. Hence by
Corollary 4.2.1 p∗(E) is isomorphic to a pullback of some bundle from M̃/C∗
and Remark 4.1.1 implies that p∗(E) is filtrable. �
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