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Abstract

In the present paper we prove that any family of hyperkähler manifolds
over a compact simply connected base can be pulled back from a family
over a curve.

Introduction

Let H be the skew-field of quaternions.

Definition 1. A manifold M with a left H-action in the tangent bundle is
called quaternionic. Any quaternion q with q2 = −1 defines an almost complex
structure on M , and if all these complex structure are integrable, M is called
hypercomplex.

One does not need to check the integrability condition for all the 2-shpere
q2 = −1, but only for three quaternions spanning the space of imaginary ones.

Any hypercomplex structure admits a unique torsion-free connection pre-
serving the hypercomplex structure, called Obata connection [Ka].

Definition 2. A Riemannian hypercomplex manifold (M, g) is called hyperkähler,
if its Obata and Levi-Civita connections are equal.

One can think of hyperkähler manifolds as of Riemannian manifolds with
three integrable almost complex structures I, J , K such that IJ = −JI = K
which are Kähler with respect to the Riemannian metric, or as of Riemannian
manifolds with holonomy in the group Sp(n). When n = 1, Sp(1) = SU(2) and
all the hyperkähler manifolds are either K3 surfaces or tori.

One can wonder what are the families of hyperkähler manifolds, i. e. submer-
sions of complex manifolds with hyperkähler fibers. This question is ultimately
closely related to the variations of Hodge structures, because any family of
complex manifolds give rise to a variation of Hodge structures. Some geomet-
ric structures on complex manifolds are completely determined by their Hodge
structures; statements of such type are known as “Torelli theorems”. Although
the global Torelli theorem for hyperkähler manifolds was proved in 2009 [V],
its local version (for Kähler manifolds with vanishing first Chern class) was es-
tablished in 1964 by G. N. Tjurina [T] and its global version for K3 surfaces
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was obtained in 1977 by Vik. S. Kulikov [Ku] (earlier proceedings in this topic
include a 1971 paper by I. I. Pyatetski-Shapiro and I. R. Shafarevich [PShSh]).
Because of that study of the families of complex manifolds was reduced to study
of variations of Hodge structures since olden times. The first proceeding in this
direction is due to Griffiths.

Fact (Ph. A. Griffiths, 1970). Any variation of Hodge structures over a compact
simply connected base is trivial.

Of course, Griffiths has proved much stronger statement, called “Theorem
of the Fixed Part” [G, Ch. II, Application 7], but we shall not need it in its
full generality. It follows from this fact that any polarized family of hyperkähler
manifolds over a compact simply connected base is trivial. The following defini-
tion asserts that one cannot drop out the polarization condition in the Griffiths’
statement.

Definition 3. If X is a hypercomplex (for example, hyperkähler) manifold,
then any imaginary unit quaternion q defines a complex structure. That gives
rise to a nontrivial almost complex structure on the space X × CP 1, where
we identify CP 1 with the unit sphere in the space of imaginary quaternions:
namely, tangent space at point (x, q) splits as TxX ⊕ TqCP 1, and one can put
the complex structure q on TxX and the standard one on TqCP 1.

Theorem (M. Obata, 1953 [Ob], S. Salamon, 1982 [S], D. Kaledin, 1996 [Ka]).
This almost complex structure is integrable.

We shall call the manifold X ×CP 1 with this complex structure the twistor
space.

The projection X × CP 1 → CP 1 is holomorphic and defines a nontrivial
family of hyperkähler manifolds. Clearly, the twistor space cannot bear any
Kähler form. The concept of twistors has appeared in physics, in works of
R. Penrose and M. A. H. MacCallum, in the beginning of 1970ies [PMC], and
has been trasferred to geometry by M. F. Atiyah, N. J. Hitchin and I. M. Singer
[AHS] (in context of 4-dimensional Riemannian geometry) and S. Salamon [S]
(in context of quaternionic Kähler geometry).

Seeking for a way to generalize a well-known fact about isotriviality of the
complete families of elliptic curves, R. E. Borcherds, L. Katzarkov, T. Pantev
and N. I. Shepherd-Barron proved in 1997 the following theorem, which allows
to drop out the condition of simply connectedness in Griffiths’ statement at
least for fibrations with fibers K3 surfaces.

Fact (R. E. Borcherds, L. Katzarkov, T. Pantev and N. I. Shepherd-Barron,
1997, [BKPShB]). Any complete family of minimal Kähler surfaces of Kodaira
dimension 0 and constant Picard number is isotrivial.

They dealt separately with the cases of hyperelliptic, Enriques and K3 fiber,
and the latter was the essential one. Their technique heavily uses the theory of
automorphic forms, namely the properties of the Borcherds’ automorphic form
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Φ12 on the Cartan symmetric space for the group O(II2,26), and one cannot
prove similar results for fibrations with hyperkähler fibers of dimension greater
than 28 in the same way. It seems that the only extent of their result to arbitrary
hyperkähler manifolds is the following theorem of K. Oguiso.

Fact (K. Oguiso, 2000, [Og]). Let X→ ∆ be a nontrivial family of hyperkähler
manifolds over a disk. Then the set of points where the Picard number of the
fiber jumps is a dense countable subset of a disk.

We shall deal with non-polarized case. The global Torelli theorem is known
for curves, tori, hyperkähler manifolds and some exotic cases such as cubic three-
folds [G, Ch. XII and XIII]. Curves and threefolds are automatically polarized,
so we are not interested in them. The tori are also out of the scope of our paper.
The main theorem we are going to prove is the following.

Theorem. Let X → B be a smooth fibration of compact complex manifolds
with smooth hyperkähler fibers and simply connected base. Then there exists a
smooth fibration X′ → C with hyperkähler fibers over a curve together with a

map B
f−→ C such that X = f∗(X′).

Here is a brief outline of the paper. In Section 1 we give some well-known
facts about hyperkähler manifolds, such as the global Torelli theorem. In Section
2 we describe some geometry of the moduli space of hyperkähler manifolds,
which is also widely known. Following those facts, we prove the main theorem.
After all, in Section 3 we give some other relevant observations.

1 Preliminaries

It follows from a straightforward calculation and is well-known that a form

ΩI(u, v) = g(Ju, v) +
√
−1g(Ku, v)

on a compact hyperkähler manifold (M, g, I, J,K) is holomorphic with respect to
the complex structure I.

One has h2,0(M, I) = 1, and the cohomology class [ΩI ] spans the line
H2,0(M, I) ⊂ H2(M,C). Consider a complex family (X,I) of hyperkähler man-
ifolds over a simply connected base B (so that R2π∗C is a trivial bundle), and
let Xb denote the fiber over a point b ∈ B. Then we can define the period map

B
per−−→ P(H2(X,C)) which sends the point b to the line spanned by the class

[ΩI|Xb
].

If the base B is not simply connected, the period map is defined as a map
from the universal cover B̃. The fundamental group of the base acts on the
universal cover and on the period space (as the monodromy group of the local
system R2π∗C), and the period map is equivariant with respect to these two
actions. One can try to obtain a period map from the base B into the quotient of
the period space by this action, but this quotient can have very poor topology.
It is known to be an orbifold at least in the case of the polarized fibration
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with fiber K3 surface. However, in other cases the topology on the factor can
be somewhat like codiscrete. The necessity of consideration an action of the
fundamental group is the source of automorphic forms in this science.

1.1 Bogomolov–Beauville–Fujiki form

For a K3 surface X the intersection form is an inner product on the space
H2(X,R); the Hodge index theorem states that its signature is (3, 19). We shall
need a similar inner product on the second cohomology space of a hyperkähler
manifold, which would have the signature (3, b2 − 3).

Fact (F. A. Bogomolov, 1978 [Bo], A. Beauville, 1983 [Be], A. Fujiki, 1985,
1987 [F]). Let X be a hyperkähler manifold of real dimension 4n. There exists
a unique primitive quadratic form q : H2(X,Z)→ Z and a constant c such that
for any α ∈ H2(X) one has ∫

X

λ2n = cq(α)n

and for non-zero σ ∈ H2,0(X) one has q(σ + σ) > 0.

For more details, see [OG].
This form is uniquely determined by this condition. One can write down

an explicit formula for q (here we use same letter q for the polarization of the
Bogomolov–Beauville–Fujiki quadratic form):

cq(α, β) = 2

∫
X

α ∧ β ∧ Ωn−1
I ∧ ΩI

n−1−

− n− 1

n

(
∫
X
α ∧ Ωn−1

I ∧ ΩI
n
)(
∫
X
β ∧ Ωn

I ∧ ΩI
n−1

)∫
X

Ωn
I ∧ ΩI

n ,

where the positive constant on the left-hand side is needed for the form q to
be integer.

It is positive definite on the real part of the space spanned by ΩI , ΩI and
the Kähler form ω, and negative definite on the primitive forms (i. e. it has
signature (3, b2 − 3)). The image of the period map lies in the set of lines
spanned by the classes α such that q(α) = 0 and q(α+α) > 0 (or, equivalently,
q(α, α) > 0).

1.2 Global Torelli theorem

The main reference for this section is [V].

Definition 4. Let (X, g) be a Riemannian manifold, and I be the set of complex
structures on X which can be extended to hyperkähler structures. The group
Diff0(X) of oriented diffeomorphisms of X act on I. The Teichmüller space
Teich(X) of X is the factor I/Diff0(X).
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The space Teich(X) admits a period map into P(H2(X,C)) in the same way
as the base of any fibration with hyperkähler fibers (provided that the base
is simply connected). The image of the period map lies in the period space
Per(X) = {[α] ∈ P(H2(X,C)) | q(α) = 0, q(α, α) > 0}. Actually, Teich is not
Haussdorff, but its non-Haussdorff points correspond to the bimeromorphically
equivalent hyperkähler manifolds, so there exists a Haussdorff space Teichb with
map Teich→ Teichb such that any map from Teich to a Haussdorff space factor-
izes through this map (so the period map Teichb(X)→ Per(X) is well-defined).

Fact (M. Verbitsky, 2009 [V]). The map per : Teichb → Per is a diffeomorphism
on each connected component of Teichb.

2 Geometry of the period space

2.1 Positive Grassmannians

Definition 5. Let V be an R-vector space with non-degenerate inner product
〈·‖·〉. The subset in the oriented Grassmannian Gr2(V ) consisting of oriented
2-planes with positive definite restriction of inner product (we shall call such
planes positive) is called the positive Grassmannian and denoted Gr++(V ).

Lemma (C. LeBrun, 1993 [LB]). The set Gr++(V ) is in one-to-one correspon-
dence with the projectivization of the set of vectors v ∈ V ⊗C such that 〈v‖v〉 = 0
and 〈v‖v〉 > 0 (we shall call them positive null-vectors).

Proof. If W ⊆ V is a point in Gr++(V ), then the cone of null-vectors in W ⊗C
consists of two lines, which are interchanged by the complex conjugation. If w
is a vector spanning one of the lines, then one needs to be 〈w‖w〉 > 0 for the
inner product on W to be positive definite, and vectors w and w correspond
to two copies of the plane W coming with different orientations: if the basis
{w + w, i(w − w)} is positively oriented, then the null-vector corresponding to
the plane W is w, and w otherwise.

Conversely, if v ∈ V ⊗ C is such that 〈v‖v〉 = 0 and 〈v‖v〉 > 0, then vectors
v+v and i(v−v) are both real and linearly independent, so they span a plane in
V with an orientation. It is easy to see that the metric on this plane is positive
definite.

Proposition 1. Let v ∈ V be a non-zero vector. Then the subset of positive
2-planes orthogonal to V is exactly Gr++(v⊥) ⊂ Gr++(V ).

Proof. Indeed, the positive 2-plane W is orthogonal to v if and only if both w
and w are.

The tangent space to Gr++(V ) at the point W is the same as to the Grass-
mannian, Hom(W,V/W ). But W is an oriented plane with positive definite
metric, so it can be regarded as a one-dimensional complex vector space, turn-
ing the tangent space into a complex one. It gives an almost complex structure
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on Gr++(V ), which is the same as the restriction of the complex structure from
the complex quadric {〈v‖v〉 = 0} ⊂ P(V ⊗ C).

Proposition 2. Gr++(R2,n) is a Stein manifold.

Proof. Gr++(R2,n) = SO(2, n)/ SO(2)× SO(n), so it is a symmetric domain of
non-compact type. Due to a theorem of É. Cartan [C], it can be holomorphically
embedded into a complex space as a bounded domain.

See [H, Theorem 7.1] for a complete proof.

Proposition 3. Gr++(R2,1) is a topological disk.

Proof. Let u, v, w be the orthogonal basis of R2,1 such that ‖v‖2 = ‖w‖2 = 1
and ‖u‖2 = −1. Any 2-plane W with positive definite restriction of the metric
projects along u onto the plane W0 = 〈v, w〉 isomorphically (just because W
cannot contain the kernel of this projection, the line spanned by u). So W =
〈v + au,w + bu〉 for some real numbers a and b, and different pairs of numbers
define different planes. The restriction of metric on W is positive definite iff
for any real numbers x, y (at least one of which is not equal to zero) one has
0 < ‖x(v+ au) + y(w+ bu)‖2 = x2 + y2− (ax+ by)2, which is equivalent to the
condition a2 + b2 < 1.

One can also send a positive plane in R2,1 into its orthogonal, which is a line
spanned by a negative vector, and obtain a representation of Gr++(R2,1) as the
projectivization of the negative cone in R2,1, which is precisely the Cayley–Klein
model for the Bolyai–Lobachevskian plane.

Proposition 4. Gr++(Rn,m) can be retracted onto Gr++(Rn,0). In particular,
Gr++(R2,n) is contractible.

Proof. Let l ⊂ V be a line spanned by a negative vector. Then if W is a positive
2-plane, then its projection along l in l⊥ is also a positive 2-plane. This defines
a fibration Gr++(V ) → Gr++(l⊥), and its fiber over a plane W ′ ⊆ l⊥ is a set
of positive 2-planes in the linear hull of W ′ and l, i. e. Gr++(R2,1), which is
contractible due to the previous Proposition.

2.2 Period space

Now we shall study the geometry of the period space of a hyperkähler manifold
X itself, which is, thanks to the global Torelli theorem, the space Gr++(H2(X,R)).
From now onwards the letter V stands for a real vector space with metric of
signature (3, n).

Let U ⊂ V be a 3-dimensional space with positive definite restriction of the
metric on it. Then any 2-plane in it is positive, and they constitute a rational
curve CP 1 = Gr++(U) ⊂ Gr++(V ). In the case V = H2(X,R) there exist
a natural positive 3-subspace in V spanned by the Kähler forms ωI , ωJ and
ωK , and the corresponding family is the twistorial family. Because of that we
shall call such curves twistorial lines, and denote the line consisting of 2-planes
in a positive 3-subspace U by TwU . Twistorial lines are parametrized by the
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manifold Gr+++(V ) of positive 3-subspaces in the space V . Unlike the positive
Grassmannian of 2-planes Gr++(V ), the Grassmannian of positive 3-subspaces
Gr+++(V ) do not carry a natural complex structure (for example, in the case of
period space of K3 surfaces its real dimension equals 57). On the other hand,
the rational curves in Gr++(V ) are parametrized by the Hilbert scheme, which
is a scheme over C, so twistorial lines cannot be the only rational curves in
Gr++(V ). It is also clear that the normal bundles of the twistorial lines are
ample. One can map into, say twistorial line, a curve of any genus via the
ramified covering, and then deform it into an embedded curve (that is possible
because of amplitude of the normal bundle due to a theorem of J. Kollár [Ko]).
That gives examples of many families of hyperkähler manifolds over curves.

Let v ∈ V be a positive vector. Then the space v⊥ has signature (2, n), and
Gr++(v⊥) can be identified with a contractible bounded domain in a complex
vector space. On the other hand, it is a divisor in the space Gr++(V ). We shall
call it a Cauchy divisor (because of reasons explained in Section 3) and denote
as Cauv. For any 2-plane W ∈ Gr++(V ) the set of Cauchy divisors passing
through W is the projectivization of the positive cone in W⊥. It is easy to see
that twistorial lines intersect the Cauchy divisors at one point.

Proposition 5. The period space contains no compact submanifolds of dimen-
sion greater than 1.

Proof. If X ⊂ Per is a compact submanifold, then Cauv ∩X is a divisor on X.
If it is not empty, it is a compact submanifold of the Stein manifold Cauv, i. e.
a set of points. Therefore the dimension of X needs to be equal to 1.

One can prove this theorem the other way around: the period space Per is a
subset of a quadric in a complex projective space, so it carries a positive (1, 1)-
form ω. Due to the positivity one has

∫
X

(ω|X)dimX > 0. But the period space

Per retracts onto the twistorial line, so ωdimX = dη for some (2 dimX−1)-form
η and the integral needs to vanish unless dimX > 1.

Now we can prove the main statement.

Proposition 6. Any family of hyperkähler manifold over a compact simply
connected base can be obtained as a pullback of a family of hyperkähler manifolds
over a curve.

Proof. The image of the period map per(B) is a compact submanifold in the
period space Per, thus a curve or a point. The period map factorizes through

the normalization of the image p̃er(B).

3 Lorentzian Kähler metric on the period space

In the present section, we shall also deal with the fibrations over noncompact
or non-simply connected base. All fibrations are assumed to be such that the
corresponding period map is an immersion (so that the universal covers of their
bases are subvarieties in the period space Per).
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Definition 6. Let (X, g, I) be a complex manifold equipped with a metric of
signature (+,+,−,−, . . . ). If the 2-form ω(u, v) = g(Iu, v) is closed, then we
shall call such manifold a Lorentzian Kähler manifold.

Due to the LeBrun’s lemma stated in the Section 2, the period space Per is
in fact the positive Grassmannian Gr++(R3,b2−3). Its tangent space at the point
W ⊂ V is equal to Hom(W,W⊥) and carries a natural (and hence SO(3, b2−3)-
invariant) metric of indefinite signature (2, 2b2 − 6). We shall denote in by gPer
and put ωPer(u, v) = gPer(Iu, v). This is a non-degenerate 2-form.

Proposition 7. dωPer = 0.

Proof. Stabilizer of a point W is a subgroup SO(W ) × SO(W⊥) ⊂ SO(3, b2 −
3). The group SO(W ) = SO(2) contains an operator − Id, so the SO(3, b2 −
3)-invariant form dωPer would be invariant under the fiberwise operator − Id.
However, it is a 3-form and thence vanishes.

Nevertheless, this form is not exact because of the following reason:

Proposition 8. Let U ⊂ V = R3,b2−3 be a 3-subspace with positive definite
metric, and Gr++(U) ⊂ Gr++(V ) be the corresponding twistorial line. Then
the restriction ωPer|Gr++(U) is the Fubini–Study form.

Proof. Actually, one can naturally associate such a form to any positive Grass-
mannian Gr++, and it would be compatible to its inclusions obtained from
ones of vector spaces. The fact that this form on the CP 1 = Gr++(R3,0) is its
Fubini–Study form may be regarded as its definition.

As Gr++(R3,n) retracts onto any twistorial line, its second cohomology is
one-dimensional, and it is spanned by the cohomology class [ωPer]. Moreover,
one holds the following

Proposition 9. The form ωPer is the unique up to rescaling SO(3, b2 − 3)-
invariant 2-form on the period space Per.

Proof. One needs to check that the form gPer|W is a unique SO(2)×SO(1, b2−3)-
invariant form on the space Hom(W,W⊥). This 2-form defines a represen-
tation homomorphism Hom(W,W⊥) → Hom(W⊥,W ). But Hom(W,W⊥) =
W ⊗ (W⊥)∗. W is an irreducible representation of SO(2), and (W⊥)∗ is an
irreducible representation of SO(1, b2 − 3), so Hom(W,W⊥) is an irreducible
representation of SO(2)×SO(1, b2−3). Schur’s lemma implies that the space of
homomorphisms between Hom(W,W⊥) and its dual is one-dimensional. This
proves the Proposition.

Because of invariance of the form ωPer on the period space, its pullback
per∗(ωPer) ∈ Ω2(B̃) is invariant under the π(B)-action, so it descends to the
base and thus defines an invariant of a family X→ B of hyperkähler manifolds
in the space of 2-forms on B. We shall denote the 2-form on B obtained via
this construction as $X ∈ Ω2(B).
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Proposition 10. The 2-form $X corresponding to a family X is non-degenerate.

Proof. The form $X is closed, so the distribution of its kernels is integrable. As
the form ωPer is non-degenerate, the leaves of this distribution map into points
in the period space. If these leaves are not 0-dimensional (i. e., the form $X is
degenerate), then the period map cannot be an immersion.

Due to the Proposition 8, if X → CP 1 is the twistorial family, then $X is
the Fubini–Study form on CP 1. One may hope that this form $X is the proper
substitute for the Fubini–Study form for the families other than twistorial in
the statements like [KV, Proposition 8.15].

Proposition 11. Base of any family of hyperkähler manifolds carries either a
Kähler or a Lorentzian Kähler structure.

Proof. The 2-form $ respects the complex structure on the base because of
naturality of its construction. The corresponding pseudo-Riemannian metric
has the positive index of inertia either two or zero. If latter, then −$ is a
Kähler form. If former, $ is a Lorentzian Kähler form.

One can find some similarities between the Lorentzian Kähler geometry of
the positive Grassmannian Gr++(R3,n) and geometry of usual Lorentzian man-
ifolds. For example, twistorial lines resemble timelike geodesics, whilst the di-
visors Cauv are similar to Cauchy hypersurfaces. Nevertheless, this similarity
is not complete: for example, while on a Lorentzian manifold X containing
a Cauchy hypersurface M a bunch of timelike geodesics startled orthogonally
from M defines a decomposition X = M ×R [ChN, Section 3], twistorial lines
orthogonal to a Cauchy divisor Cauv massively intersect, forming somewhat like
a Lefschetz pencil.
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“Sapienza” Università di Roma, March 1 2013

[PMC] R. Penrose, M. A. H. MacCallum. Twistor theory: An approach to the
quantisation of fields and space-time, doi:10.1016/0370-1573(73)90008-2

[PShSh] I. I. Pyatetskii-Shapiro, I. R. Shafarevich, A Torelli theorem for alge-
braic surfaces of type K3, Izv. Akad. Nauk SSSR Ser. Mat., 35:3 (1971),
530—572

[S] S. Salamon. Quaternionic Kähler manifolds, Inventiones mathematicæ,
February 1982, Volume 67, Issue 1, pp. 143—171

10



[T] G. N. Tjurina. On the deformation of complex structures of algebraic va-
rieties. Dokl. Akad. Nauk SSSR 152 1963 1316—1319.

[V] M. Verbitsky. A global Torelli theorem for hyperkähler manifolds,
arXiv:0908.4121

11


