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Abstract. A hypercomplex structure on a differentiable manifold consists of three
integrable almost complex structures that satisfy quaternionic relations. If, in addition,
there exists a metric on the manifold which is Hermitian with respect to the three
structures, and such that the corresponding Hermitian forms are closed, the manifold
is said to be hyperkähler. In the paper [KV], Kaledin and Verbitsky proved that the
twistor space of a hyperkähler manifold admits a balanced metric; these were first
studied by Michelsohn in [Mi]. In the present article, we review the proof of this result
and then generalize it and show that twistor spaces of general compact hypercomplex
manifolds are balanced.
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1. Introduction

The rapid progress in Kähler geometry in the middle of the XXth century opened
two natural directions of research in complex geometry: on the one hand, a quest for a
suitable quaternionic analogue of Kähler manifolds, and, on the other hand, the study
of various generalizations of the Kähler condition dω = 0 on Hermitian metrics. The
former question has been settled by Calabi in [C] with the introduction of hyperkähler
manifolds. These are smooth manifolds M with three integrable almost complex struc-
tures I, J,K ∶ TM → TM satisfying the quaternionic relations I2 = J2 = K2 = −1,
IJ = −JI = K, together with a metric g that preserves the three complex structures
and such that the form ΩI = ωJ +

√
−1ωK is closed. Hyperkähler manifolds appeared in

the much earlier work of Berger on the classification of irreducible holonomy groups on
Riemannian manifolds [Be], where they correspond to the holonomy group Sp(n). Yau’s
proof of the Calabi conjecture [Y] provides a wealth of examples of compact hyperkähler
manifolds by showing that these are equivalent to holomorphic symplectic manifolds.
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If we forget about the metric g and look only at the complex structures on M , the
resulting structure is called hypercomplex. Hypercomplex manifolds were first studied
by Boyer in [Bo], where he gave their complete classification in quaternionic dimension
1. In addition to hyperkähler metrics on hypercomplex manifolds, one can study their
various generalizations such as HKT metrics which are characterized by the condition
∂ΩI = 0, where the decomposition d = ∂ + ∂̄ is with respect to the structure I; HKT
metrics were first introduced in [HP].

For the generalizations of the Kähler condition dω = 0, there is the famous classifica-
tion result of Gray and Hervella. In their paper [GH], they used representation theory to
define and study sixteen classes of almost Hermitian manifolds, each of which presents a
generalization of the Kähler condition on metrics. A particularly useful class is that of
balanced metrics, characterized by the condition d∗ω = 0, where d∗ is the dual operator
of d with respect to the given metric. The terminology comes from the paper [Mi] of
Michelsohn where these metrics were first studied in depth; in the terminology of Gray
and Hervella, these are called special Hermitian metrics and correspond to the classW3.
Balanced metrics form a strictly greater class than Kähler metrics and are dual to them
in a sense made precise in [Mi]. An example illustrating the importance of balanced
metrics comes from the paper [V2] of Verbitsky, where he showed that balanced HKT
metrics play the role of Calabi-Yau metrics for the quaternionic Calabi conjecture (yet
to be proven). Another area where balanced metrics come to the fore is the theory of
stability of vector bundles and the Kobayashi-Hitchin correspondence (see, e.g., [LT]
for reference). The notion of stability was first introduced by Mumford in a purely
algebro-geometric setting in [Mu] for projective varieties and then generalized to Kähler
manifolds and then to general Hermitian manifolds. Stable vector bundles are important
because they form moduli spaces with meaningful structure. The Kobayashi-Hitchin cor-
respondence relates these (essentially algebro-geometric) moduli spaces of stable vector
bundles to the moduli spaces of Einstein-Herimitian vector bundles, a purely differential-
geometric notion introduced by Kobayashi in [Kob]. This correspondence was conjec-
tured independently by Kobayashi and Hitchin, and then gradually proved in increasing
generality: first for algebraic curves [Don1], surfaces [Don2] and manifolds [Don3] by
Donaldson, then for Kähler manifolds by Uhlenbeck and Yau [UY1, UY2], and finally
for general Hermitian manifolds by Li and Yau [LY]. Although the result of Li and Yau
establishes the correspondence for a general complex manifold M , the theory becomes
more complicated compared to the Kähler case, since the notion of degree of a vector
bundle, needed to define stability, is no longer a topological invariant of the vector bun-
dle, as in the case of Kähler manifolds, but only a holomorphic one. However, as shown
in [LY], if M is balanced, the degree still turns out to be a topological invariant, thus
making the theory in the case of balanced manifolds much simpler than in the general
case.

This property of balanced manifolds is extensively used by Kaledin and Verbitsky in
[KV]. Among other things, they use the twistor formalism to establish a correspon-
dence between non-Hermitian Yang-Mills connections over a hyperkähler manifold M
and holomorphic bundles over its twistor space Z, which essentially encodes the quater-
nionic structure of M in purely holomorphic data. The twistor space Z is never Kähler,
but it is balanced, as they show in section 4.4 of [KV], essentially generalizing a result
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from the original paper [Mi] of Michelsohn stating that twistor spaces of self-dual Rie-
mannian 4-manifolds are balanced. They then use the result of Li and Yau to study the
moduli space of stable bundles over the twistor space Z. It is the goal of our exposition
to present the argument of Kaledin and Verbitsky on the balancedness of the twistor
space Z of a hyperkähler manifold M , and then extend it to the case of an arbitrary
(compact) hypercomplex manifold M .

2. Balanced manifolds

Our first goal is to give the definition of balanced metrics on manifolds. We mostly
follow the original article [Mi] of Michelsohn. We start with some preliminaries from
differential geometry.

Let M denote a (real) C∞-manifold and E →M a (real) C∞-vector bundle over M .
Recall that a connection on E is an R-linear operator ∇ ∶ Γ(E)→ Γ(Λ1M⊗E) satisfying
the Leibniz rule:

∇(fs) = df ⊗ s + f∇s ∀f ∈ C∞M,s ∈ Γ(E).
Given a vector field X ∈ Γ(TM), we denote by ∇Xs ∈ Γ(E) the usual pairing of X
with ∇s ∈ Γ (Λ1M ⊗E). Associated to a connection ∇ is its curvature R∇ ∶ Λ2(TM) →
End(TM) defined by

R∇(X,Y ) ∶= ∇X∇Y −∇Y∇X −∇[X,Y ] ∀X,Y ∈ Γ (TM) .
In the special case of E = TM being the tangent bundle, we can also define the torsion
T∇ ∶ Λ2(TM)→ TM of the connection by

T∇(X,Y ) ∶= ∇XY −∇YX − [X,Y ] ∀X,Y ∈ Γ (TM) .
In fact, it’s easy to verify that both R∇ and T∇ are C∞-linear operators, hence we can
think of them as tensors: R∇ ∈ Γ(Λ2M ⊗ End(TM)), T∇ ∈ Γ(Λ2M ⊗ TM). If R∇ = 0,
the connection is said to be flat, while if T∇ = 0, it is called torsion-free.

Observe that a connection ∇ ∶ Γ(E)→ Γ(Λ1M ⊗E) on E induces a canonical connec-
tion on the dual bundle E∗ = HomR(E,R), also denoted by ∇, and defined by

⟨∇η, s⟩ + ⟨η,∇s⟩ = d (⟨η, s⟩) ∀η ∈ Γ(E∗), s ∈ Γ(E),
where we denote by ⟨ , ⟩ the pairing of E∗ with E. Given connections ∇E ,∇F on vector
bundles E,F , we can consider the induced connections ∇E⊕F , ∇E⊗F on E ⊕ F , E ⊗ F
defined by

∇E⊕F (s⊕ t) ∶= (∇Es)⊕ (∇F t) ∀s ∈ Γ(E), t ∈ Γ(F ).
∇E⊗F (s⊗ t) ∶= (∇Es)⊗ t + s⊗ (∇F t) ∀s ∈ Γ(E), t ∈ Γ(F ).

Thus, starting with a single connection ∇ on E, we can form induced connections on
all tensor products (E∗)⊗r ⊗E⊗q. Moreover, it’s not hard to see that the subspaces of
symmetric and antisymmetric tensors are invariant under these connections. In what
follows, all these induced connections on tensor powers of E will be denoted by the same
symbol ∇, and when ∇s = 0 for some tensor s, we will say that the connection preserves
s.

We now specialize to the case that M is a complex manifold and E →M is a complex
vector bundle. Since E is in particular a real vector bundle, we can have connections on
E defined as above, but this time we can single out those that are C-linear as operators
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Γ(E)→ Γ(Λ1M ⊗E); these are precisely the connections which preserve the operator I ∶
E → E, I2 = −1, of multiplication by the imaginary unit in E viewed as a complex vector
bundle. In addition to the induced connections described in the previous paragraph,
a C-linear connection ∇ on E induces C-linear connections on the complex dual E∗ =
HomC(E,C) and the conjugate bundle Ē. For the special case that E = TM is the
tangent bundle, the operator I ∶ TM → TM above is called the almost complex structure
of M . It is a well-known result that the condition of M being a complex manifold is
equivalent to the integrability of I, i.e. the existence of a torsion-free conection ∇ that
preserves I [NN].

There is a canonical eigenvalue decomposition of the operator I on the complexified
tangent bundle TCM = TM ⊗R C = T 1,0M ⊕ T 0,1M , where

T 1,0M = {v ∈ TCM ∶ Iv =
√
−1v} = {X −

√
−1IX ∶X ∈ TM} ,

T 0,1M = {v ∈ TCM ∶ Iv = −
√
−1v} = {X +

√
−1IX ∶X ∈ TM} .

Observe that TM ≅ T 1,0M as complex bundles, while T 0,1M is the dual of T 1,0M . We
can also define the induced operator I ∶ T ∗M → T ∗M on the cotangent bundle by putting
IΩ(X) ∶= −Ω(IX), and more generally on ΛnM by I (Ω1 ∧ . . . ∧Ωn) = (IΩ1)∧. . .∧(IΩn).
There is a similar decomposition T ∗CM = T ∗M ⊗R C = (T ∗)1,0M ⊕ (T ∗)0,1M , where

(T ∗)1,0
M = {ω ∈ T ∗CM ∶ ω(v) = 0 ∀v ∈ T 0,1M} = {Ω +

√
−1IΩ ∶ Ω ∈ T ∗M} ,

(T ∗)0,1
M = {ω ∈ T ∗CM ∶ ω(v) = 0 ∀v ∈ T 1,0M} = {Ω −

√
−1IΩ ∶ Ω ∈ T ∗M} .

The higher differential forms on M can then be decomposed as

ΛkCM = ΛkM ⊗R C = Λk,0M ⊕Λk−1,1M ⊕ . . .Λ1,k−1M ⊕Λ0,kM,

where

Λp,qM ≅ Λp ((T ∗)1,0
M)⊗Λq ((T ∗)0,1

M) .

The (real) exterior derivative operator d ∶ ΛkM → Λk+1M can be extended by C-linearity
to ΛkCM , and on the spaces Λp,qM as above, it decomposes as d = ∂ + ∂̄, where

∂ ∶ Λp,qM Ð→ Λp+1,qM, ∂̄ ∶ Λp,qM Ð→ Λp,q+1M.

We also introduce the differential operator dc =
√
−1 (∂̄ − ∂) for convenience. Observe

that dc is a real operator like d, i.e. it takes real forms to real forms.
Define a Hermitian metric on the complex manifold M of dimCM = n to be a Rie-

mannian metric g on the tangent bundle TM satisfying

g(IX, IY ) = g(X,Y ) ∀X,Y ∈ Γ(TM),
where I is the almost complex structure. Hermitian metrics always exist, in fact, starting
with an arbitrary Riemannian metric g0 on TM , we can define

g(X,Y ) ∶= g0(X,Y ) + g0(IX, IY ) ∀X,Y ∈ Γ(TM),
and this is clearly Hermitian. Associated to each Hermitian metric is its Hermitian form
ω ∈ Λ2M given by

ω(X,Y ) ∶= g(IX,Y ) ∀X,Y ∈ Γ(TM).
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It’s easy to verify that ω is a non-degenerate real (1,1)-form which satisfies the strict
positivity property:

ω(X,IX) > 0 ∀X ≠ 0 ∈ Γ(TM).
Observe that because the metric g is non-degenerate it induces a (real) bundle isomor-
phism TM ≅ Λ1M . In this way, we can also consider g as an inner product on Λ1M ,
and more generally on ΛkM by the formula

g(α1 ∧ . . . ∧ αn, β1 ∧ . . . ∧ βn) ∶= det (g(αi, βj)) .
We can can also extend g by C-linearity to the complexified tangent bundle TCM , where
it induces an isomorphism of complex vector bundles T 1,0M ≅ Λ0,1M . The Riemann-
ian structure and the orientation on TM determined by the almost complex structure
uniquely determine the Hodge star operator on differential forms, ∗ ∶ ΛkM → Λn−kM ,
that satisfies

α ∧ ∗β = g(α,β)Ω ∀α,β ∈ ΛkM,

where Ω is the Riemannian volume form on M . This operator can be extended by
C-linearity to ΛkCM and it is compatible with I, in the sense that it takes Λp,qM to
Λn−q,n−pM . Using ∗, we can define the Hodge duals of the operators d, dc, ∂, ∂̄:

d∗ = − ∗ d∗ ∶ ΛkM Ð→ Λk−1M,

(dc)∗ = − ∗ dc∗ ∶ ΛkM Ð→ Λk−1M,

∂∗ = − ∗ ∂̄∗ ∶ Λp,qM Ð→ Λp−1,qM,

∂̄∗ = − ∗ ∂∗ ∶ Λp,qM Ð→ Λp,q−1M,

where duality is understood to be the identity

∫
M
g(Pα,β)Ω = ∫

M
g(α,P ∗β)Ω

for P = d, dc, ∂, ∂̄, and α, β any complactly supported differential forms of the corre-
sponding degree. Observe that d∗ = ∂̄∗ + ∂∗ and (dc)∗ =

√
−1 (∂∗ − ∂̄∗). In case the

Hermitian form ω is closed, M is called a Kähler manifold. Our aim in this section is to
introduce a weaker condition on ω satisfied by a wider class of manifolds.

Given an arbitrary Hermitian manifold (M,I, g) there are three canonical connections
on the tangent bundle TM .

1. The Levi-Civita connection ∇LC is the unique R-linear connection which pre-
serves the metric tensor g and whose torsion is zero.

2. The Chern connection ∇Ch is the unique C-linear connection which preserves g
and whose torsion lies in Λ2,0M⊗CT

1,0M ⊆ (Λ2M ⊗R C)⊗CT
1,0M ≅ Λ2M⊗TM .

3. The Bismut connection ∇B, first studied in [Bi], is the unique C-linear connection
which preserves g and whose torsion is totally anti-symmetric in Λ2M ⊗Λ1M ≅
Λ2M ⊗ TM .

The last two are examples of Hermitian connections, i. e. those satisfying ∇g = ∇I = 0;
these were studied and classified by Gauduchon in [G]. When M is Kähler, all three
connections are in fact the same. This is so since the condition dω = 0 is equivalent
to ∇LCI = 0, making the Levi-Civita connection C-linear. Since in this case its torsion
tensor T = 0 trivially lies in both Λ2,0M ⊗ T 1,0M and Λ3M , ∇LC is equal to the other
two connections by their uniqueness. Thus the Kähler condition is equivalent to the
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vanishing of the torsion tensor for the connections ∇Ch and ∇B. One way to relax this
condition is to instead consider the vanishing of a certain trace of these tensors. Namely,
viewing the torsion tensor TCh of the Chern connection as a section of Λ2,0 ⊗C T

1,0M ⊆
Λ1,0M ⊗C EndC(T 1,0M) and taking the complex trace pairing on EndC(T 1,0M), we
obtain a (1,0)-form which we denote by τCh. More explicitly, let {e1, . . . , en} be a
local complex orthonormal frame of TM with respect to the Hermitian metric g. Let
ei = e1,0

i + e0,1
i be the decomposition of ei into the (1,0) and (0,1) parts. Then we have

∀X ∈ Γ(T 1,0M),

τCh(X) =
n

∑
i=1

g (TCh(X,e1,0
i ), e0,1

i ) .

Similarly, the torsion tensor TB of the Bismut connection is a section of Λ2M ⊗ TM ⊆
Λ1M ⊗ EndR(TM), and while taking the trace pairing on EndR(TM) doesn’t produce
anything meaningful as TB is totally anti-symmetric, we can consider the following (real)
1-form τB which ∀X ∈ Γ(TM) is equal to

τB(X) =
n

∑
i=1

g (TB(X,ei), Iei) .

Definition-Proposition 1. (Michelsohn) A Hermitian manifold (M,I, g) of complex
dimension n with Hermitian form ω is called balanced if it satisfies one of the following
equivalent conditions.

(1) τCh = 0.
(2) τB = 0.
(3) P ∗ω = 0, where P ∗ is any of the operators d∗, (dc)∗, ∂∗, ∂̄∗.
(4) P (ωn−1) = 0, where P is any of the operators d, dc, ∂, ∂̄.

Proof. We first investigate the relationship between the torsion tensors TCh and TB of
the Chern and Bismut connections. First, observe that we can extend the Chern con-
nection by C-linearity to the complexified tangent bundle TCM = T 1,0M ⊕T 0,1M . Since
∇Ch was C-linear to start with, and since T 1,0M is isomorphic to TM as a holomorphic

vector bundle, while T 0,1 ≅ T 1,0, it follows that the resulting connection on TCM is just

∇Ch⊕∇Ch. The torsion of this connection is then TCh +TCh, which can be regarded as
a section of Λ2,0M ⊗ Λ0,1M ⊕ Λ0,2M ⊗ Λ1,0M ⊆ Λ3

CM . Following Corollary 1.2 in [Mi],
we have that

dω = ∂ω + ∂̄ω =
√
−1TCh +

√
−1TCh,

giving us

TCh = −
√
−1∂ω, TCh =

√
−1∂̄ω.

On the other hand, we know from Proposition 2.1 in [Bi] that the torsion TB of the
Bismut connection viewed as an element of Λ3M satisfies

TB = I(dω) = I (∂ω + ∂̄ω) = dcω = −
√
−1∂ω +

√
−1∂̄ω = TCh + TCh.

Going back to the definition of τCh, τB, it’s not hard to see that

τB(X) = −
√
−1τCh(X1,0) +

√
−1τ̄Ch(X0,1)
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for any X ∈ Γ(TM), where X =X1,0 +X0,1 is the decomposition into the (1,0) and (0,1)
parts. By Proposition 1.5 in [Mi], we have that

τCh = −
√
−1∂̄∗ω, τ̄Ch =

√
−1∂∗ω,

and thus
τB = −d∗ω.

This immediately shows that conditions (1), (2) and (3) are equivalent. For the other
condition, following Theorem 1.6 in [Mi], notice that

d∗ω = − ∗ d(∗ω) = − ∗ d( ωn−1

(n − 1)!) ,

hence d∗ω = 0 ⇐⇒ d(ωn−1) = 0. The vanishing of the other three operators follows from
this. �

Observe that in dimension dimCM = 2, the balancedness condition is equivalent to the
Kähler condition, since in this special case ∗ω = ω. In general dimension, however, the
condition of being Kähler is stronger than that of being balanced. Examples of balanced
non-Kähler manifolds are twistor spaces Z of certain self-dual Riemannian 4-manifolds
M . These are 3-dimensional complex manifolds which encode the conformal structure
of M . They are always balanced (see [Mi], section 6), but, as shown by N. Hitchin in
[H], the twistor space Z is Kähler only if M = S4 or CP2. In the next two sections, we
will extend the balancedness result to twistor spaces of hyperkähler manifolds (following
[KV]) and general compact hypercomplex manifolds.

We end this section with two lemmas of an essentially linear-algebraic nature that will
be useful for us in section 4. Recall that a real (1,1)-form η on a complex manifold (M,I)
is strictly positive if it satisfies the condition η(X,IX) > 0 for all nonzero X ∈ Γ(TM).
Similarly, we say that a real (n − 1, n − 1)-form η is strictly positive if for any nonzero
α ∈ Λ1M we have that η ∧ α ∧ Iα is a strictly positive multiple of (any) volume form
on M compatible with the orientation determined by the complex structure. There is
an intimate relationship between closed strictly positive (n − 1, n − 1)-forms on M and
balanced metrics.

Lemma 1. Let (M,I, g) be a Hermitian manifold of dimCM = n. The existence of a
closed strictly positive (n − 1, n − 1)-form on M is equivalent to the balancedness of M ,
not necessarily with respect to the given metric.

Proof. (cf. [Mi], pp. 279-280) Let η ∈ Λn−1,n−1M be a closed strictly positive form. The
Riemannian volume form Ω ∈ Λ2nM induces an isomorphism of bundles Λn−1,n−1M ≅
Λ1,1TM ≅ T 1,0M ⊗T 0,1M , whereas the metric g gives an isomorphism Λ1,1TM ≅ Λ1,1M .
Under these identifications, η can be thought of as a strictly positive (1,1)-form on M .
By basic linear algebra, there exists a local orthonormal frame {e1, Ie1, . . . , en, Ien} of
TM , such that η ∈ Λ1,1M can be expressed as

η =
n

∑
i=1

ai ei ∧ Iei,

where we think of ei as elements of Λ1M ≅ TM and all ai > 0. Since Ω = e1 ∧ Ie1 ∧ . . . ∧
en ∧ Ien, we have that, as element of Λn−1,n−1M , η can be expressed in terms of this
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basis as

η =
n

∑
i=1

ai e1 ∧ Ie1 ∧ . . . ∧ êi ∧ Iei ∧ . . . ∧ en ∧ Ien.

We are now looking for a strictly positive form ω ∈ Λ1,1M such that ωn−1 = η. If we
can establish the existence of such a form, our proof will be finished, since the condition
d (ωn−1) = 0 will imply that the Hermitian metric on M induced by ω is balanced. If we
write

ω =
n

∑
i=1

bi ei ∧ Iei,

we then have

ωn−1 =
n

∑
i=1

(n − 1)! b1 . . . b̂i . . . bn e1 ∧ Ie1 ∧ . . . ∧ êi ∧ Iei ∧ . . . ∧ en ∧ Ien.

If ωn−1 = η, observe that

ai
aj

= (n − 1)! b1 . . . b̂i . . . bn
(n − 1)! b1 . . . b̂j . . . bn

= bj
bi
.

Writing

a1 = (n − 1)! b2 . . . bn = (n − 1)! b2
b1
. . .

bn
b1

⋅ bn−1
1 = (n − 1)! a1

a2
. . .

a1

an
bn−1
1 ,

we can solve for b1 uniquely, since we know that b1 > 0 and all the ai > 0. Knowing
b1 clearly gives us all the other bi. This shows that ω exists locally, while its global
existence is a consequence of its uniqueness. �

Lemma 2. Let (M,I) be a compact complex manifold and suppose that its tangent space
TM decomposes into a direct sum TM = E⊕F of complex subbundles E and F . If ω,ω′

are real (1,1)-forms on M such that ω is strictly positive when restricted to E, while ω′

is strictly positive on F and E ⊆ kerω′, there exists a number T > 0 such that ω +Tω′ is
strictly positive on M .

Proof. The problem is local in nature by compactness of M , since if {Ui} is a cover of
M such that ω +Tiω′ is strictly positive on Ui, then taking a finite subcover and letting
T be the maximum of the corresponding Ti’s, we get a strictly positive form ω +Tω′ on
the whole M .

Let ω = ω1 + ω2 + ω3 be the decomposition of ω according to the direct sum

Λ2 (E∗ ⊕ F ∗) = Λ2(E∗)⊕ (E∗ ⊗ F ∗)⊕Λ2(F ∗),
and observe that ω′ lies entirely in the third summand. By assumption of strict positivity,
ω1 is a Hermitian form on E, hence comes from a Hermitian metric. Choosing a local
orthonormal frame {e1, Ie1, . . . , ek, Iek} for this metric, we can express ω1 as

ω1 =
k

∑
i=1

ei ∧ Iei,

where we regard the ei as elements of E∗ ≅ E. Similarly, ω′ is a Hermitian form on
F induced by some Hermitian metric. By simple linear algebra, there exists a local
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orthonormal frame {f1, If1, . . . , fl, Ifl} of F in which the two forms decompose as

ω3 =
l

∑
j=1

aj fj ∧ Ifj , ω′ =
l

∑
j=1

fj ∧ Ifj ,

where again we regard fj as sections of F ∗ ≅ F . Clearly, we can choose T > 0 such that
on some neighborhood, ω3 + Tω′ is strictly positive on F . This makes ω + Tω′ locally
strictly positive when restricted to both E and F , so we only need to take care of the
ω2 term. For this, it is enough to show that we can choose T such that ω1 + ω2 + Tω′ is
locally strictly positive. Let

X =
2k

∑
i=1

(X2i−1ei +X2iJei) , Y =
2l

∑
i=1

(X2i−1fi +X2iJfi)

be arbitrary nonvanishing sections of E, F written in the above bases and let t > 0. We
want to show that plugging in (X + tY, J(X + tY )) into the above form always gives a
strictly positive number:

ω1(X,JX) + ω2(X, tJY ) + ω2(tY, JX) + Tω′(tY, tJY ) > 0,

ω1(X,JX) + 2t ω2(X,JY ) + t2 Tω′(Y, JY ) > 0.

Thinking of this as a quadratic equation in t, its strict positivity is equivalent to the
discriminant being negative:

4ω2(X,JY )2 − 4T ω1(X,JX)ω′(Y, JY ) < 0,

ω2(X,JY )2 < T ω1(X,JX)ω′(Y, JY ).

Writing out the right hand side in the bases {ei}, {fj}, we get

T (
2k

∑
i=1

X2
i )(

2l

∑
i=1

Y 2
i ) ,

whereas

ω2(X,JY ) =∑
i,j

cijXiYj ,

for some coefficients cij . Applying the Cauchy-Schwarz inequality to ω2(X,JY )2, we
get

⎛
⎝∑i,j

cijXiYj
⎞
⎠

2

≤∑
i,j

(cij)2∑
i,j

X2
i Y

2
j =∑

i,j

(cij)2 (
2k

∑
i=1

X2
i )

⎛
⎝

2l

∑
j=1

Y 2
j

⎞
⎠
.

The sum ∑i,j (cij)2 is clearly locally bounded by some T > 0, which gives the required
inequality. �
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3. Twistor spaces of hyperkahler manifolds

In this section we introduce hypercomplex and hyperkähler manifolds and their twistor
spaces. We then present the argument given by Kaledin and Verbitsky in section 4.4 of
[KV] that shows that twistor spaces of hyperkähler manifolds are balanced.

A hypercomplex manifold M is a C∞ manifold equipped with three almost complex
structures I, J,K ∶ TM → TM that are integrable and satisfy the quaternionic relations
I2 = J2 = K2 = −1, IJ = −JI = K. Thus, there is an action of the quaternion algebra H
on the tangent bundle TM , making each tangent space TmM into a quaternionic vector
space. Observe that each element in

S2 = {x1I + x2J + x3K ∶ x2
1 + x2

2 + x2
3 = 1} = {q ∈ H ∶ q2 = −1} ⊆ ImH,

defines an almost complex structure on TM , which is integrable since I, J and K
are. Thus, we have a sphere S2 of complex structures associated to each hypercomplex
manifold M . A hyperhermitian metric on M is a Riemannian metric on TM which is
Hermitian with respect to the complex structures I, J , K, and hence also with respect
to the whole sphere of complex structures on M . Just like the usual Hermitian metrics,
these always exist, since starting with an arbitrary Riemannian metric g0, we can define
∀X,Y ∈ Γ(TM),

g(X,Y ) ∶= g0(X,Y ) + g0(IX, IY ) + g0(JX,JY ) + g0(KX,KY ),

which is clearly hyperhermitian. For any complex structure A ∈ S2 on M , let

ωA(X,Y ) ∶= g(AX,Y ) ∀X,Y ∈ Γ(TM)

denote the corresponding Hermitian form. If all the ωA are closed, the manifold M is
called hyperkähler. This is clearly equivalent to ωI , ωJ and ωK being closed, and in fact
it’s enough to check only two of them, since we have ∀A ∈ S2,

dωA = 0 ⇐⇒ ∇LCA = 0,

so if ∇LCI = ∇LCJ = 0, for example, then ∇LCK = ∇LCIJ = 0. In view of this, an
equivalent formulation of the hyperkähler condition is that the form

ΩI = ωJ +
√
−1ωK

is closed. This turns out to be a form of type (2,0) with respect to the structure I.
For M hypercomplex, we define its twistor space Z to be the product manifold Z =

M × S2, where S2 parametrizes the complex structures on M , as above. The space Z
itself has a natural complex structure, as follows. The sphere S2 = {x2

1 + x2
2 + x2

3 = 1} is

identified with the complex projective line CP1 via stereographic projections

PN ∶ S2 ∖ {(0,0,1)} ←→ C
(x1, x2, x3) z→ x1−

√

−1x2

1−x3

( z+z̄
1+∣z∣2

,
√

−1(z−z̄)
1+∣z∣2

,
−1+∣z∣2

1+∣z∣2
) ←Ð [ z

PS ∶ S2 ∖ {(0,0,−1)} ←→ C
(x1, x2, x3) z→ x1+

√

−1x2

1+x3

( w+w̄
1+∣w∣2

,
√

−1(w̄−w)

1+∣w∣2
,

1−∣w∣
2

1+∣w∣2
) ←Ð [ w

Let ICP1 ∶ TCP1 → TCP1 denote the almost complex structure on CP1. Given any point

(m,A) ∈ M × CP1 = Z, note that T(m,A)Z = TmM ⊕ TACP1. We define I ∶ T(m,A)Z →
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T(m,A)Z as follows:

I ∶ TmM ⊕ TACP1 Ð→ TmM ⊕ TACP1.
(X,V ) z→ (AX, ICP1V )

It’s clear that this defines an almost complex structure on Z, and in fact it can be shown
that it is integrable, making Z into a complex manifold [K] of complex dimension n+ 1,
where dimCM = n. There are canonical projections

Z

π

!!
σ

��
M CP1,

the second of which is a holomorphic map, and also, ∀m ∈M , the canonical section CP1 →
{m}×CP1 is holomorphic; it is called the horizontal twistor line corresponding to m ∈M .
Continuing the analogy, in the direct sum decomposition T(m,A)Z = TmM ⊕ TACP1,

vectors in TmM are called vertical, while vectors in TACP1 are horizontal, and similarly
for 1-forms. The canonical antiholomorphic involution ι ∶ CP1 → CP1, which is just the
antipodal map on S2, induces an antiholomorphic map

ι′ = id×ι ∶M ×CP1 Ð→M ×CP1

on Z = M × CP1, which satisfies ι ○ π = π ○ ι′. It can be shown [HKLR, V1] that the
hypercomplex manifold M can be recovered from the horizontal twistor lines in Z which
are completely described by three pieces of information, namely the complex structure
on Z, the holomorphic projection π ∶ Z → CP1, and the antiholomorphic involution ι′

that satisfies ι ○ π = π ○ ι′.
In case M is hyperkähler, there is one extra structure on the twistor space Z, which

comes from the Kähler metric on M . Let gM denote this metric, and gCP1 the usual

Fubini-Study metric on CP1. Then

g ∶= σ∗ (gM) + π∗ (gCP1)
is easily verified to be a Hermitian metric on Z. To simplify notation, we write g =
gM + gCP1 . At a point (m,A) ∈ Z, the corresponding Hermitian form ω decomposes as
follows:

ω ((X,V ), (X ′, V ′)) = ωM(X,X ′) + ωCP1(V,V ′) = gM(AX,X ′) + gCP1(ICP1V,V ′),
where (X,V ), (X ′, V ′) ∈ TmM ⊕ TACP1 = T(m,A)Z. By analogy with the case of twistor
spaces of self-dual 4-manifolds, ω need not be closed; in fact, if M is compact, Z can
never be Kähler, as we will show in the next section. However, the Hermitian metric on
Z is always balanced when M is hyperkähler, as we show next.

Theorem 1. (Kaledin-Verbitsky) Let (M,I, J,K, gM) be a hyperkahler manifold of com-
plex dimension n. Then its twistor space Z with the Hermitian metric induced from the
hyperkahler structure is balanced.

Proof. We closely follow the argument laid out in section 4.4 of [KV]. In the notation
used above, we need to show that d (ωn) = 0. This is clearly equivalent to showing

ωn−1 ∧ dω = 0.
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Observe that we have a decomposition of the differential operator d = dM+dCP1 according

to the direct sum TZ = TM ⊕ TCP1. Since ω = ωM + ωCP1 , we have

dω = dMωM + dCP1ωM + dMωCP1 + dCP1ωCP1 .

The first term is zero by the hyperkähler condition on M , while the last two terms are
zero because ωCP1 is a pullback of a closed form on CP1 to Z. We need to investigate
the second term. To simplify our argument, we will work over a fixed horizontal twistor
line {m} ×CP1 ⊆ Z.

Let
W ∶= ImH = {aI + bJ + cK} ≅ R3,

and let W = CP1 ×W be the corresponding trivial bundle. When we view CP1 as a
parametrization of the complex structures on M , it’s just the unit sphere S2 ⊆W , hence
we can view W as the restriction W = TW ∣S2 . There is a canonical embedding of W
into the (trivial) bundle of vertical 2-forms over the horizontal line {m} ×CP1:

W = CP1 ×W Ð→ {m} ×CP1 ×Λ2
mM

(A,aI + bJ + cK) z→ (m,A,aωI + bωJ + cωK) .
Given an element V = aI + bJ + cK of W , we denote by ωV = aωI + bωJ + cωK its image
under this mapping. In this way, we can think of W as a bundle of vertical 2-forms over
{m}×CP1 with global frame {ωI , ωJ , ωK}. Since dCP1ωI = dCP1ωJ = dCP1ωK = 0, we can
think of the operator dCP1 on W as a flat connection

dCP1 = ∇ ∶ Γ (W) Ð→ Γ (Λ1CP1 ⊗W)
f1ωI + f2ωJ + f3ωK z→ df1 ⊗ ωI + df2 ⊗ ωJ + df3 ⊗ ωK .

Of course, this is just the usual Euclidean connection on R3 ≅ ImH restricted to S2 ≅ CP1.
Note that W = TW ∣S2 ≅ TR3∣

S2 = N ⊕ TS2, where N is the normal bundle of the

embedding S2 ⊆ R3 and TS2 is the tangent bundle. At the point A = (a1, a2, a3) ∈ S2 ≅
CP1, we have

NA = {λa1ωI + λa2ωJ + λa3ωK ∶ λ ∈ R} ,
TAS

2 = {v1 ωI + v2 ωJ + v3 ωK ∶ a1v1 + a2v2 + a3v3 = 0} .
Thus, N is a trivial bundle with a global trivialization given by ωM = x1ωI+x2ωJ +x3ωK ,
while the almost complex structure ICP1 ∶ TCP1 → TCP1 at the point A ∈ CP1 is given by
the quaternion multiplication V ↦ AV , where we once again think of A ∈ NA, V ∈ TAS2

as elements of W . We want to compute

dCP1ωM = ∇ (x1ωI + x2ωJ + x3ωK) = dx1 ⊗ ωI + dx2 ⊗ ωJ + dx3 ⊗ ωK .
Fix a point A = (a1, a2, a3) in {m} × CP1 and look at the decomposition dCP1ωM =
∂CP1ωM + ∂̄CP1ωM . We claim that ∂̄CP1ωM ∈ Γ (Λ0,1CP1 ⊗Λ2,0

m M), where the complex
structure on TmM is understood to be A. To verify this, we use the description of dCP1 as

the connection ∇ and plug in an arbitrary vector V +
√
−1ICP1V = V +

√
−1AV ∈ T 0,1

A CP1,

where V = (v1, v2, v3) ∈ TACP1 is real.

∇V +√−1AV ωM = v1ωI + v2ωJ + v3ωK+

+
√
−1(a2v3 − a3v2)ωI +

√
−1(a3v1 − a1v3)ωJ +

√
−1(a1v2 − a2v1)ωK =

= ωV +
√
−1ωAV .
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Plugging into this form an arbitrary vector X ∈ TmM and a (0,1)-vector Y ∈ T 0,1
m M

(with respect to the complex structure A), we get

ωV (X,Y ) +
√
−1ωAV (X,Y ) = g(V X,Y ) +

√
−1g(AVX,Y ) =

= g(V X,Y ) +
√
−1g(A(AV )X,AY ) = g(V X,Y ) +

√
−1g(−V X,−

√
−1Y ) = 0.

Hence ∂̄CP1ωM ∈ Γ (Λ0,1CP1 ⊗Λ2,0
m M) and ∂CP1ωM ∈ Γ (Λ1,0CP1 ⊗Λ0,2

m M), since ωM is

real and ∂̄CP1ωM is the conjugate of ∂CP1ωM .
We now examine the form ωn−1 ∧ dω. We have

ωn−1 ∧ dω = (ωM + ωCP1)n−1 ∧ dCP1ωM = ωn−1
M ∧ ∂CP1ωM + ωn−1

M ∧ ∂̄CP1ωM+

+(n − 1)ωn−2
M ∧ ωCP1 ∧ ∂CP1ωM + (n − 1)ωn−2

M ∧ ωCP1 ∧ ∂̄CP1ωM .

Since ωn−1
M ∈ Λn−1,n−1

m M , the vertical bidegree of the first two terms is (n − 1, n + 1),
(n+1, n−1), respectively, making them zero, since dimCM = n. On the other hand, the
degree of the horizontal part of the last two terms is 3 > 2 = dimRCP1, making them
zero as well.

�

4. Twistor spaces of hypercomplex manifolds

We now come to the main part of our exposition: a generalization of Theorem 1 for
compact hyperhermitian (and hence general hypercomplex) manifolds M . In contrast to
the hyperkähler case, the product metric on Z =M ×CP1 need not be balanced. Instead
of looking at the form

ωn = (ωM + ωCP1)n = ωnM + nωn−1
M ∧ ωCP1 ,

we will instead use Lemma 2 to show that a certain linear combination of forms

αωnM + β ddc (ωn−1
M )

is a closed strictly positive (n,n)-form on Z = M × CP1, and then use Lemma 1 to
conclude that Z is balanced. We will need compactness of M in order to apply Lemma
2.

Theorem 2. Let (M,I, J,K, gM) be a compact hyperhermitian manifold of complex
dimension n. Then its twistor space Z is balanced.

Proof. The volume form on Z =M ×CP1 with respect to the product metric is given by

ΩZ = ωn+1

(n + 1)! =
(ωM + ωCP1)n+1

(n + 1)! = (n + 1)ωnM ∧ ωCP1

(n + 1)! = ΩM ∧ ωCP1 ,

where ΩM denotes the pullback of the volume form on M via the projection σ ∶ Z →M .
Note that ωnM = n! ΩM and ddc (ωn−1

M ) are closed (n,n)-forms on Z and we can think

of them as elements of Λ1,1TZ via the isomorphism induced by the volume form ΩZ .
Because the metric on Z induces an isomorphism TZ ≅ Λ1Z, we will be able to apply
Lemma 2 if we can show that ωnM is strictly positive and vertical forms lie in its kernel,

while ±ddc (ωn−1
M ) is strictly positive when restricted to vertical forms in Λ1M . The

first statement is easy, since ωnM is a constant multiple of the vertical volume form ΩM ,
and we know that ΩZ = ΩM ∧ ωCP1 . For the second statement, since we only need to
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establish strict positivity on vertical forms, it’s enough to restrict to a horizontal twistor
line {m} ×CP1 and consider the form

dCP1dcCP1 (ωn−1
M ) = 2

√
−1(n − 1) (∂CP1 ∂̄CP1ωM) ∧ ωn−2

M +

+2
√
−1(n − 1)(n − 2) (∂CP1ωM) ∧ (∂̄CP1ωM) ∧ ωn−3

M .

Note that if n = 2, the second term vanishes. We will now use our description of the
dCP1 operator as a connection from the proof of Theorem 1 to show that both of these
terms are multiples of ωCP1 ∧ ωn−1

M , which is strictly positive since products of positive
forms are positive (see [D], section III.1).

∂CP1 ∂̄CP1ωM = ∇1,0∇0,1ωM = ∂∂̄x1 ⊗ ωI + ∂∂̄x2 ⊗ ωJ + ∂∂̄x3 ⊗ ωK .

∂CP1ωM = ∇1,0ωM = ∂x1 ⊗ ωI + ∂x2 ⊗ ωJ + ∂x3 ⊗ ωK .

∂̄CP1ωM = ∇0,1ωM = ∂̄x1 ⊗ ωI + ∂̄x2 ⊗ ωJ + ∂̄x3 ⊗ ωK .
We will make the computation in the local holomorphic coordinate z = x +

√
−1y on

S2 ≅ CP1 coming from the stereographic projection PN from the point (1,0,0) (see
previous section). The computation in the other chart is completely analogous, and we
will omit it. The Fubini-Study metric ωCP1 takes the form

ωCP1 =
√
−1∂∂̄ log (1 + ∣z∣2) =

√
−1∂ ( z dz̄

1 + ∣z∣2) =
√
−1dz ∧ dz̄

(1 + ∣z∣2)2
.

Calculating the various partial derivatives of x1, x2, x3, we get

∂x1 = ∂ ( z+z̄
1+∣z∣2

) = 1−z̄2

(1+∣z∣2)2 dz ∂̄x1 = ∂̄ ( z+z̄
1+∣z∣2

) = 1−z2

(1+∣z∣2)2 dz̄

∂x2 = ∂ (
√

−1(z−z̄)
1+∣z∣2

) =
√

−1(1+z̄2
)

(1+∣z∣2)2 dz ∂̄x2 = ∂̄ (
√

−1(z−z̄)
1+∣z∣2

) = −

√

−1(1+z2
)

(1+∣z∣2)2 dz̄

∂x3 = ∂ (−1+∣z∣2

1+∣z∣2
) = 2z̄

(1+∣z∣2)2 dz ∂̄x3 = ∂̄ (−1+∣z∣2

1+∣z∣2
) = 2z

(1+∣z∣2)2 dz̄

∂∂̄x1 =
−2(z + z̄)dz ∧ dz̄

(1 + ∣z∣2)3
, ∂∂̄x2 =

−2
√
−1(z − z̄)dz ∧ dz̄
(1 + ∣z∣2)3

, ∂∂̄x3 =
−2 (−1 + ∣z∣2) dz ∧ dz̄

(1 + ∣z∣2)3
.

Thus,

√
−1∂CP1 ∂̄CP1ωM = −2(

√
−1dz ∧ dz̄

(1 + ∣z∣2)2
)⊗ ( z + z̄

1 + ∣z∣2 ωI +
√
−1(z − z̄)
1 + ∣z∣2 ωJ +

−1 + ∣z∣2
1 + ∣z∣2 ωK) =

= −2ωCP1 ∧ ωM ,
from which we conclude that

2
√
−1(n − 1) (∂CP1 ∂̄CP1ωM) ∧ ωn−2

M = −4(n − 1)ωCP1 ∧ ωn−1
M .

If n = 2, then, as we noted above, this is equal to dCP1dcCP1 (ωn−1
M ), so taking the negative

of ddc (ωn−1
M ) gives a form that is strictly positive on vertical 1-forms, and we can apply

Lemma 2 to conclude that ∃T > 0 such that

T ωnM − ddc (ωn−1
M )
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is strictly positive. For the case n > 2, we also need to examine the other term. We know
that at any point A ∈ CP1, for any V ∈ TACP1,

∂CP1ωM(V −
√
−1AV ) = ωV −

√
−1ωAV ,

∂CP1ωM(V +
√
−1AV ) = ωV +

√
−1ωAV .

If we take V = 1
2
∂
∂x , then V −

√
−1AV = ∂

∂z , V +
√
−1AV = ∂

∂z̄ , and we conclude from the
above that

∂CP1ωM = dz ∧ ω ∂
∂z

= dz ∧ (ωV −
√
−1ωAV ) ,

∂̄CP1ωM = dz̄ ∧ ω ∂
∂z̄

= dz̄ ∧ (ωV +
√
−1ωAV ) .

Hence √
−1 (∂CP1ωM) ∧ (∂̄CP1ωM) =

√
−1dz ∧ ω ∂

∂z
∧ dz̄ ∧ ω ∂

∂z̄
=

=
√
−1dz ∧ dz̄

(1 + ∣z∣2)2
∧ (1 + ∣z∣2)ω ∂

∂z
∧ (1 + ∣z∣2)ω ∂

∂z
= ωCP1 ∧Ψ ∧ Ψ̄.

We now compute the expression Ψ ∧ Ψ̄ ∧ ωn−3
M . To simplify things we only do the com-

putation at the point z = 1, which corresponds to I ∈ CP1, where it takes the form

(ωK +
√
−1ωJ) ∧ (ωK −

√
−1ωJ) ∧ ωn−3

I = (ωJ +
√
−1ωK) ∧ (ωJ −

√
−1ωK) ∧ ωn−3

I ,

while at a general point A ∈ CP1 corresponding to z ∈ C, an entirely analogous argument

applies, except that (I, J,K) need to be replaced by (A, 1+∣z∣2

2
∂
∂x ,

1+∣z∣2

2
∂
∂y), which form

a quaternionic triple in the space W = NA ⊕ TACP1.
The vertical tangent space TmM to the point (m,I) ∈ M × CP1 is a quaternionic

vector space with respect to the triple (I, J,K), so we can identify it with Hk, where
k = dimHM = 1

2 dimCM = n
2 . The metric g restricted to TmM is quaternionic-hermitian,

hence we can find a quaternionic orthonormal basis {e1, . . . , ek} of TmM ; let {e∗1 , . . . , e∗k}
denote the dual basis of Λ1

mM . We define the following complex-valued 1-forms ∀1 ≤
i ≤ k, which constitute a complex basis of Λ1

mM ⊗ C = Λ1,0
m M ⊕ Λ0,1

m M , where the
decomposition is relative to the complex structure I.

dζ ∶= e∗i +
√
−1Ie∗i dξ = Je∗i +

√
−1Ke∗i

dζ̄ ∶= e∗i −
√
−1Ie∗i dξ̄ = Je∗i −

√
−1Ke∗i

With respect to this basis, it’s not hard to see that the forms ωI , ωJ , ωK decompose as
follows:

ωI =
k

∑
i=1

(
√
−1

2
dζi ∧ dζ̄i +

√
−1

2
dξi ∧ dξ̄i) ,

ωJ =
k

∑
i=1

(1

2
dζi ∧ dξi +

1

2
dζ̄i ∧ dξ̄i) ,

ωK =
k

∑
i=1

(−
√
−1

2
dζi ∧ dξi +

√
−1

2
dζ̄i ∧ dξ̄i) .
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Further computing,

ωJ +
√
−1ωK =

k

∑
i=1

dζi ∧ dξi,

hence
(ωJ +

√
−1ωK) ∧ (ωJ −

√
−1ωK) ∧ ωn−3

I =

= (
k

∑
i=1

dζi ∧ dξi,) ∧ (
k

∑
i=1

dζ̄i ∧ dξ̄i,) ∧ {
k

∑
i=1

(
√
−1

2
dζi ∧ dζ̄i +

√
−1

2
dξi ∧ dξ̄i)}

n−3

=

= −(
√
−1

2
)
n−3

(n − 1)(n − 3)!
k

∑
i=1

⎛
⎝
k

⋀
j=1

dζj ∧ dζ̄j
⎞
⎠
∧
⎛
⎝⋀j≠i

dξj ∧ dξ̄j
⎞
⎠
−

−(
√
−1

2
)
n−3

(n − 1)(n − 3)!
k

∑
i=1

⎛
⎝⋀j≠i

dζj ∧ dζ̄j
⎞
⎠
∧
⎛
⎝
k

⋀
j=1

dξj ∧ dξ̄j
⎞
⎠
.

On the other hand,

ωn−1
I = {

k

∑
i=1

(
√
−1

2
dζi ∧ dζ̄i +

√
−1

2
dξi ∧ dξ̄i)}

n−1

=

= (
√
−1

2
)
n−1

(n − 1)!
k

∑
i=1

⎛
⎝
k

⋀
j=1

dζj ∧ dζ̄j
⎞
⎠
∧
⎛
⎝⋀j≠i

dξj ∧ dξ̄j
⎞
⎠
+

+(
√
−1

2
)
n−1

(n − 1)!
k

∑
i=1

⎛
⎝⋀j≠i

dζj ∧ dζ̄j
⎞
⎠
∧
⎛
⎝
k

⋀
j=1

dξj ∧ dξ̄j
⎞
⎠
.

We conclude that

(ωJ +
√
−1ωK) ∧ (ωJ −

√
−1ωK) ∧ ωn−3

I = 4

n − 2
ωn−1
I

at the point z = 1, and generally, Ψ ∧ Ψ̄ ∧ ωn−3
m = 4

n−2ω
n−1
M . We thus have

2
√
−1(n − 1)(n − 2) (∂CP1ωM) ∧ (∂̄CP1ωM) ∧ ωn−3

M =

= 2(n − 1)(n − 2)ωCP1 ∧Ψ ∧ Ψ̄ ∧ ωn−3
M =

= 8(n − 1)ωCP1 ∧ ωn−1
M ,

and so if n > 2,
dCP1dcCP1 (ωn−1

M ) = 4(n − 1)ωCP1 ∧ ωn−1
M ,

which is strictly positive on vertical forms, hence applying Lemma 2, we get a T > 0 such
that

T ωnM + ddc (ωn−1
M )

is strictly positive.
Thus both in case n = 2 and n > 2, we are assured of the existence of a closed strictly

positive (n,n)-form on Z, which immediately implies that Z is balanced by Lemma 1.
We are finished. �

We conclude with a short corollary demonstrating that the Kähler condition is too
strong for twistor spaces, as opposed to balancedness.
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Corollary 1. Let (M,I, J,K, gM) be a compact hyperkähler manifold of complex dimen-
sion n. Then its twistor space Z is never Kähler.

Proof. In the notations of the previous proof, we have dMωM = dcMωM = 0 by the
hyperkähler condition on M , hence

ddcωM =
√
−1∂CP1 ∂̄CP1ωM = −2ωCP1 ∧ ωM ,

hence if ωZ is any Kähler form on Z,

−ddcωM ∧ (ωZ)n−1

is an exact strictly positive (n+1, n+1)-form on Z, in the sense that it is a strict positive
multiple of the volume form ΩZ . But this is impossible, since then

−∫
Z
d (dcωM ∧ (ωZ)n−1) = −∫

Z
ddcωM ∧ (ωZ)n−1 > 0

by compactness, whereas the first integral is zero by Stokes’ theorem. �
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