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Abstract

The goal of the paper is to give an analytic proof of the formula of G. Farkas for the
divisor class of spinors with multiple zeros in the moduli space of odd spin curves. We
make use of the technique developed by Korotkin and Zograf that is based on properties
of the Bergman tau function.

1 The moduli space of odd spin curves.

LetMg be the moduli space of smooth genus g algebraic curves, assume that g ≥ 3. LetMg be
its Deligne-Mumford compactification. The boundaryMg rMg consists of

[
g
2

]
+ 1 irreducible

divisors ∆0, . . . ,∆[ g2 ] where ∆0 is the closure of the locus of irreducible curves with one node

and ∆j for j ≥ 1 is the closure of the locus of reducible one-nodal curves.
The moduli space S−g of smooth odd spin curves is 2g−1(2g − 1) cover of Mg. The cover

is extended to a branched cover of Mg by the Cornalba compactification S−g of S−g ramified
over ∆0.

Cornalba compactification. A nodal curve C is called quasi-stable if it satisfies two
conditions:

1) A rational component E of C intersects C r E at two or more points;
2) Any two rational components E1, E2 of C such that #Ei ∩ C r Ei = 2 are disjoint.

Rational component E of C intersecting C r E at exactly two points is called exceptional.
Following [2] we define a spin curve as a triple (C, η, β) consisting of a quasi-stable curve

C, a line bundle η of degree g − 1 on it and a homomorphism β : η⊗2 → ωC with the following
properties:

1) η is of degree one on every exceptional component of C;
2) β is not a zero on every non-exceptional component of C.

The parity of the spin curve (C, η, β) is the parity of dimH0(C, η). The parity is invariant
under continuous deformations (see [11] or [1]).

An isomorphism between (C, η, β) and (C ′, η′, β′) is an isomorphism σ : C → C ′ such that
σ∗η′ and η are isomorphic and the following diagram

η2
φ⊗φ //

β

��

σ∗(η′)2

σ∗β′

��
ωC

' // σ∗ωC′

is commutative, where φ is an isomorphism between η and σ∗η′. The moduli space S−g con-
sists of all equivalence classes of odd spin curves under such isomorphisms. The projection
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ρ : S−g → Mg maps (an equivalence class of) a triple (C, η, β) to (an equivalence class of) a

curve C̃ which is obtained from C by contracting all exceptional components to points.

Rational Picard group of S−g . We follow notations of [4] in the description of the Picard
group here.

The boundary S−g rS−g is the union of irreducible divisors A0, . . . , A[g/2], B0, . . . , B[g/2] such

that ρ(Aj) = ρ(Bj) = ∆j for j = 0, . . . ,
[
g
2

]
.

Description of Aj and Bj for j 6= 0. Note that there are no spin curves (C, η, β) with a
reducible one-nodal base curve C, since the relative dualizing sheaf ωC on a reducible curve
with one node being restricted to each component must be of odd degree (see [2], [4, p.5] for
more details).

Let (C, η, β) be a spin curve such that C = C1 ∪ E ∪ C2 where C1 and C2 are smooth
curves of genus j and g − j respectively and E is an exceptional component. The divisor Aj
parametrizes the closure of the locus of such curves with the property that η restricted to C1

is odd. The divisor Bj is the closure of the locus of the same type spin curves such that η
restricted to C1 is even.

Description of A0 and B0. Unlike the case j 6= 0 a spin curve (C, η, β) such that ρ(C, η, β)
is an irreducible one-nodal curve, does not necessary have exceptional components. Let A0

parametrize the closure of the locus of spin curves with one-nodal irreducible underlying curve
and B0 parametrize the closure of the locus of spin curves mapping to ∆0 under ρ and having
an exceptional component.

Recall that ρ has a two-order branching along B0 and is unramified on S−g rB0.

Denote by αj and βj the classes of Aj and Bj in the rational Picard group Pic(S−g ) ⊗ Q
respectively. Let λ be the pullback of the Hodge class on Mg under ρ. The Picard group is
generated by the classes

Pic(S−g )⊗Q = spanQ(λ, α0, . . . , α[ g2 ], β0, . . . , β[ g2 ]). (1.1)

Consider the divisor Zg on S−g parametrizing the closure of the locus of smooth spin curves
(C, η) such that sections of η has multiple zeros. The class of Zg in the rational Picard group

Pic(S−g ) ⊗ Q can be expressed as a linear combination of generators (1.1) (see (4.13)). G.
Farkas determined the coefficients in this expansion and used it for the birational classification
of moduli spaces of odd spin curves (see [4]). The goal of this paper is to show how this
coefficients can be computed analytically from properties of the Bergman tau function on the
moduli space of abelian differentials.

The paper is organized as follows: we introduce the Bergman tau function and list its basic
properties in Section 2. In Section 3 we study the asymptotics of the theta function under
a degeneration of a curve; this asymptotics is well-known (see [13]) but we write it down to
fix notations. Then in Section 4 we construct an odd spinor using the theta function and
analyze the behavior of the tau function on the space of squares of these odd spinors. This
results in the Farkas formula for Zg. Finally in Section 5 we study the theta-null divisor on the
moduli space of even spin curves. The goal is to show how to express the theta-null in terms
of standard generators of the rational Picard group in the framework of the classical theory of
theta functions. This expression was also obtained by G. Farkas in his work [5] by different
methods. G. Farkas used this expression for the birational classification of the moduli space of
even spin curves.
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2 The Bergman tau function on moduli spaces of holo-

morphic differentials with double zeros.

Let Hg denote the moduli space of holomorphic differentials on smooth genus g curves (see [8]).
This space admits a natural stratification according to multiplicities of zeros of the differential.
Denote by Hg([2

g−1]) the stratum corresponding to differentials with g − 1 distinct zeros of
multiplicity two. Let C be a genus g curve and ω be a differential on C such that (C, ω) ∈
Hg([2

g−1]). If divω = 2D then the linear system |D| corresponds to a spin bundle on L→ C.
Let H−g ([2g−1]) be the connected component of Hg([2

g−1]) corresponding to the case when L is
an odd spin bundle (see [9]).

Homological coordinates. Consider the (non-holomorphic) vector bundleH1(·, {p1, . . . , pg−1},C)
overH−g ([2g−1]) whose fiber over a pont (C, ω) is the relative cohomology groupH1(C, {p1, . . . , pg−1},C),
where p1, . . . , pg−1 are zeros of ω. We have a natural map H−g ([2g−1])→ H1(·, {p1, . . . , pg−1},C)
which sends (C, ω) to the cohomology class of ω. The bundle H1(·, {p1, . . . , pg−1},C) has a
lattice H1(·, {p1, . . . , pg−1},Z) in it. Take an open coordinate (in the sense of orbifold) sub-
set of H−g ([2g−1]) and consider a trivialization H1(·, {p1, . . . , pg−1},C)|U → U × C3g−2 such
that H1(·, {p1, . . . , pg−1},Z) maps to the lattice Z3g−2 ⊂ C3g−2. The composition of the map
H−g ([2g−1]) → H1(·, {p1, . . . , pg−1},C) and such trivialization gives a set of holomorphic local
coordinates called homological (see [8]). Let us study this construction in more datails.

Denote by Tg the moduli space of Torelli marked curves (i. e. curves with a fixed symplectic
basis in H1(C)), and let H̃−g ([2g−1]) be the cover of H−g ([2g−1]) induced by the forgetful map
Tg →Mg.

Fix an arbitrary point (C, ν, ω) ∈ H̃−g ([2g−1]), where we denote the Torelli marking by
ν. Let p1, . . . , pg−1 ∈ C be the zeros of ω. Consider simple non-intersecting paths lj con-
necting pg−1 with pj for j = 1, . . . , g − 2. Let a1, . . . , ag, b1, . . . , bg be simple loops on C r
{p1, . . . , pg−1} representing that do not intersect {lj}g−2j=1. Then homological coordinates coor-
dinates at (C, {aj, bj}gj=1, ω) are given by:

zj =
∫
a◦j
ω, j = 1, . . . , g,

zj+g =
∫
b◦j
ω, j = 1, . . . , g,

zj+2g =
∫
lj
ω, j = 1, . . . , g − 2.

Denote by s1, . . . , s3g−2 the basis in H1(C r {p1, . . . , pg−1}) dual to the basis represented by
a1, . . . , ag, b1, . . . , bg, l1, . . . , lg−2 in the relative homology group H1(C, {p1, . . . , pg−1}); we have
sj = −bj, sg+j = aj and s2g+j is homologous to a small positive oriented circle around pj. We
will use this notations until the end of the paper.

Projective connections. Let f : U → V be a holomorphic map between two domains
U, V ⊂ CP 1. Recall that the Shcwarzian derivative of f with respect to a local parameter
z ∈ U is defined as

Sfz =
d3f
dz3

df
dz

− 3

2

(
d2f
dz2

df
dz

)2

.

If z = h(w) is a change of the parameter then

Sf◦hw dw2 = Sfz dz
2 + Shw dw

2.

We also have
Sfz dz

2 = −Szf df 2.

Note that two relations above implies that Sfz is invariant under mobius transformations of f
and z.
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Let C be a smooth curve of genus g and Uj, zj be a coordinate covering of C. A meromorphic
projective connection on C is a collection of meromorphic functions fj : Uj → CP 1 such that

fj dz
2
j = fk dz

2
k − Szkzj dz

2
j .

It is clear from the definition and properties of the Schwarzian derivative that all meromorphic
projective connections form an affine space over the space of meromorphic quadratic differentials
on C.

Denote the diagonal of C×C by ∆. Let π1 and π2 be projections to the first and the second
factors. We call a symmetric holomorphic section of the sheaf (π∗1KC ⊗ π∗2KC)(2∆) symmetric
bideffirential of the second kind. Consider such a section B and its expansion near ∆ with
respect to some local coordinate ζ on C:

B(x, y) =

(
α

(ζ(x)− ζ(y))2
+
S(ζ(x))

6
+O(ζ(x)− ζ(y))2

)
, as x→ y.

The number α is called biresidue of B. It does not depend on the choice of a local coordinate.
One can directly compute that S(ζ(x)) behaves as a projective connection.

Definition of the tau function and its basic properties. Let ζ be a local coordinate
on a curve C. For any differential ω on C introduce the meromorphic projective connection

Sω = ω′′

ω
− 3

2

(
ω′

ω

)2
(that is, the Schwarzian derivative of the abelian integral

∫ x
ω with respect

to a local parameter ζ on C). The canonical bidifferential is a symmetric bideffirential of the
second kind with biresidue 1 whose a-periods with respect to each coordinate are zero. Denote
the canonical bidifferential on C by B(x, y). It has the following expansion in terms of a local
parameter ζ:

B(x, y) =

(
1

(ζ(x)− ζ(y))2
+
SB(ζ(x))

6
+O(ζ(x)− ζ(y))2

)
dζ(x)dζ(y) as x→ y.

The projective connection SB is called the Bergman projective connection. The difference of
the two projective connections SB−Sω is a meromorphic quadratic differential on C. Introduce
a connection on the trivial line bundle on H̃−g ([2g−1]) by the formula

dB = d+
6

πi

3g−2∑
j=1

(∫
sj

SB − Sω
ω

)
dzj.

As it was shown in [6] this connection is flat. The tau function τ = τ(C, {aj, bj}gj=1, ω) is defined
up to a constant factor1 as a horizontal (covariant constant) section of the trivial line bundle
on H̃−g ([2g−1]). In other words, τ : H̃−g ([2g−1])→ C is a holomorphic function such that

dB τ = 0. (2.1)

A solution of (2.1) was explicitly constructed in [6].
The group Sp(2g,Z) × C∗ acts naturally on H̃−g ([2g−1]) by changing the Torelli marking

and multiplying the differential by a nonzero complex number. Note that H̃−g ([2g−1])/Sp(2g,Z)
coincides with H−g ([2g−1]).

Consider a natural map π : H−g ([2g−1])/C∗ → S−g which assigns to a differential the spin
bundle associated with the square root of the differential. The map π is generally one-to-one,
since an odd spin bundle generically has one-dimensional space of holomorphic sections. The
image of π is S−g r Zg.

1In fact this is the 72-th power of the Bergman tau function studied in [6]. The name ”tau function” is due
to the relation of τ to isomonodromic Jimbo-Miwa tau function in the case of Hurwitz spaces.
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Consider the tautological line bundle L → H−g ([2g−1])/C∗ with respect to the action of C∗.
Let Eg be the pullback of the Hodge vector bundle onMg to H−g ([2g−1])/C∗. Denote by Λ the
corresponding determinant bundle

∧g Eg.

Lemma 2.1 (see [6] for the proof). The tau function has the following properties:
1) τ is a nowhere vanishing holomorphic function on H̃−g ([2g−1]).
2) For any t ∈ C∗

τ(C, {aj, bj}gj=1, t ω) = t16(g−1) τ(C, {aj, bj}gj=1, ω).

3) For any symplectic transformation σ in H1(C)

τ(C, {σ(aj), σ(bj)}gj=1, ω) = det(bΩ + a)72 τ(C, {aj, bj}gj=1, ω),

where σ =

(
a b
c d

)
in the basis {aj, bj}gj=1.

Equivalently, τ is a section of a bundle Hom(L16(g−1),Λ72) on H−g ([2g−1])/C∗.

3 Asymptotic behavior of the theta function under a

curve degeneration.

All facts written down in this section are well-known and can be found in classical literature.

Theta characteristics. Let F be a vector space over Z/2Z of dimension 2g with non-
degenerate skew-symmetric pairing. Fix a symplectic basis e1, . . . , eg, f1, . . . , fg ∈ F . The set of
all quadratic forms on F is in natural bijection with points from (Z/2Z)2g: given (η1, . . . , η2g) ∈
(Z/2Z)2g we construct a quadratic form by the rule

g∑
j=1

(ajej + bjfj) 7→
g∑
j=1

(η2j−1aj + η2jbj) +

g∑
j=1

ajbj.

It is convenient for us to define theta characteristic to be a vector η ∈ (Z/2Z)2g. The parity
of a theta characteristic η is given by the Arf invariant of the corresponding quadratic form

(recall that the Arf invariant is equal to
g∑
j=1

η2jη2j−1). We call 0 ∈ (Z/2Z)2g zero characteristic.

The action of Sp(g,Z) on F pulls back to the action on the set of all theta characteristics.
Consider a smooth curve C of genus g. Any spin bundle L over C defines a quadratic form

qL on the Z/2Z-vector space J2(C) := {X ∈ Jac(C) | 2X = 0} (the symplectic pairing on
J2(C) is induced from the Jacobian) by the following rule (see [11]):

qL(X) = h0(C,L⊗X) + h0(C,L) mod 2.

The correspondence L 7→ qL is a bijection between the set of isomorphism classes of spin
bundles over C and the set of quadratic forms on J2(C). The parity of L coincides with the
Arf invariant of qL. It we fix a Torelli marking of C, then we obtain a basis in J2(C). Therefore
a choice of a Torelli marking induces a natural correspondence between spin bundles and theta
characteristics. This correspondence respects the parity and commutes with the action of the
symplectic group.

Plumbing families. We introduce families in S−g whom intersect the boundary of S−g
transversally at generic points.
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For 0 ≤ j ≤
[
g
2

]
consider a one-nodal curve Cj representing a generic point in ∆j. Let p1, p2

be points in the normalization of Cj which are identified to form a node of and ζ1, ζ2 be local
coordinates in neighborhoods U1, U2 of p1 and p2 respectively such that Cj is give locally by
the equation ζ1ζ2 = 0. For small t ∈ C consider a family of curves

Cj
t = (Cj r (U1 ∪ U2)) ∪ {(x1, x2) ∈ U1 × U2 | ζ1(x1) ζ2(x2) = t}. (3.1)

We call Cj
t a plumbing family. It is well-known that Cj

t defines a smooth family inMg and this
family intersects the boundary transversally.

Consider j > 0. Given Torelli markings ν1 and ν2 of irreducible components of Cj we can
form a Torelli marking ν1∪ν2 of Cj

t in natural way: take a collection of loops a1, . . . , ag, b1, . . . , bg
such that a1, . . . , aj, b1, . . . , bj represents ν1 and aj+1, . . . , ag, bj+1, . . . , bg represents ν2; then
classes of a1, . . . , ag, b1, . . . , bg in the first homology group give a Torelli marking of Cj

t for all
small t. We will consider Torelli markings of Cj

t formed only in such way.
Fix now a Torelli marking of Cj

t . Let η = η1 ⊕ η2 be some odd theta characteristic such
that η1 ∈ (Z/2Z)2j and η2 ∈ (Z/2Z)2(g−j). The family Cj

t equipped with η defines a family

of in S−g (recall the correspondence between theta characteristics and spin bundles). By the
definition of Aj, Bj this family intersects Aj if η1 is odd and Bj is η1 is even. The intersection

is transversal because the map S−g →Mg is unbranched over a generic point of ∆j for j > 0.
We call this family plumbing family for Aj (resp. Bj) if η1 is odd (resp. even).

Consider now the case j = 0. The cover Tg →Mg has an infinite branching when we turn
around the bundary divisor ∆0, thus we cannot trivialize the bundle H1(C

0
t ,Z), t 6= 0 as we

did in the reducible case. Let us restrict C0
t to the family C0

t , t ∈ C r R≥0. Consider loops
a1, . . . , ag−1, b1, . . . , bg−1 representing a Torelli marking of the normalization of C0

0 . Let ag be a
small positive oriented loop around p1 and bg be a path from p2 to p1 which does not intersect
a1, . . . , ag−1, b1, . . . , bg−1. Then a1, . . . , ag, b1, . . . , bg induces a Torelli marking of C0

t , t /∈ R≥0.
We will consider only such Torelli markings of C0

t .

Consider an odd theta characteristic η = η1 ⊕
(
ε
δ

)
such that η1 ∈ (Z/2Z)2(g−1) and ε, δ ∈

Z/2Z. The family C0
t , t ∈ CrR≥0 equipped with η and a Torelli marking gives us a family in

S−g .
If δ = 1 then this family extends to a family over all small t ∈ C. The extended family

intersects the boundary at A0 and the intersection is transversal (since the cover S−g →Mg is
unbranched at a generic point of A0). We call the extended family plumbing family for A0.

If δ = 0 then we have to take the double cover r =
√
t of the parameter space and then the

family C0
r2 , r ∈ C r R≥0 equipped with η pulls back to the family in S−g which intersects B0

transversally. We call this family plumbing family for B0 and denote it simply by C0
r .

Let us now describe the asymptotic behavior of the theta function with respect to degenerations
described above. We refer to [13] for more information.

The case of reducible curves. Fix j > 0, consider the plumbing family Cj
t equipped

with a Torelli marking and a theta characteristic η. Denote the matrix of b-periods for Cj
t by

Ωt. Let
θ[η](·,Ωt) : Cg → C

be the theta function corresponding to Ωt with the characteristic η. Let C1, C2 be irreducible
components of Cj

0 . Denote matrices of b-periods on C1 and C2 by Ω1 and Ω2 respectively.

Proposition 3.1. Let W1 = (w1, . . . , wj) ∈ Cj and W2 = (wj+1, . . . , wg) ∈ Cg−j. Put Ri =
vi
dζ1
|p1 if i ≤ j and Ri = vi

dζ2
|p2 if i > j. Then one has

θ[η](W,Ωt) = θ[η1](W1,Ω1) θ[η2](W2,Ω2)

− t
2πi

[
j∑
i=1

∂
∂wi

θ[η1](W1,Ω1)Ri

] [
g−j∑
k=1

∂
∂wk

θ[η2](W2,Ω2)Rk

]
+O(t2)
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as t→ 0 uniformly on compact subsets of Cg, where W = W1 ⊕W2 ∈ Cg.

Proof. Proposition immediately follows from the expansion (see [13])

Ωt =

(
B1 0
0 B2

)
− t
(

0 RT
1R2

RT
2R1 0

)
+O(t2).

The case of irreducible curves. Consider a plumbing family C0
t equipped with a Torelli

marking and a theta characteristic η = η1 ⊕
(
ε
δ

)
such that η1 ∈ (Z/2Z)2(g−1) and ε, δ ∈ Z/2Z.

Denote by Ωt the matrix of b-periods of C0
t , and consider the corresponding theta function

with the characteristic η:
θ[η](·,Ωt) : Cg → C.

Denote by Ω the matrix of b-periods on C0
0 .

Proposition 3.2. Assume that δ = 1. Then θ[η](·,Ωt) has the following asymptotics on every
compact subset of Cg

θ[η](w1, . . . , wg,Ωt) = t1/8
(
e−cwg+r θ[η1](w1, . . . , wg−1,Ω)+ecwg θ[η1](w1+c1, . . . , wg−1+cg−1,Ω)+O(t)

)
,

where c, r, cj are independent on {wj} but depend on moduli of curve and c 6= 0 and θ[η1](c1, . . . , cg−1,Ω) 6=
0 outside of some divisor in the moduli space Mg−1,2.

Proposition 3.3. Assume that δ = 0. Then θ[η](·,Ωt) depends on the choice of a branch of√
t and has the following asymptotics uniformly on compact subsets of Cg:

θ[η](w1, . . . , wg,Ωt) = θ[η1](w1, . . . , wg−1,Ω)

+
√
t ecwg+r θ[η1](w1 + c1, . . . , wg−1 + cg−1,Ω)

+
√
t e−cwg−r θ[η1](w1 − c1, . . . , wg−1 − cg−1,Ω) +O(t),

where c, r, cj are moduli-dependent constants and c · θ[η1](c1, . . . , cg−1,Ω) 6= 0 outside of some
divisor in the moduli space.

The two propositions above follow directly from the asymptotics of Ωt (see [13]):

Ωt =

(
Ω RT

R 1
2πi

log t+ c

)
+O(t), (3.2)

where R ∈ Cg−1 and c ∈ C are moduli-dependent constants. The eight root of the parametr t
in Proposition 3.2 is determined by the branch of the logarithm in the asymptotics above.

4 Farkas’ formula for Zg.

4.1 Odd spinors.

Consider a point in H̃−g ([2g−1]) represented by a triple (C, ν, ω) as above. Then
√
ω is a section

of an odd spin bundle L. Denote by Ω the matrix of b-periods for C with respect to ν. Let
θ[η](·,Ω) : Cg → C be the theta function with the odd characteristic η given by L and ν.
Introduce the differential

ςC(p) = dx θ[η](A(x− p),Ω)|x=p ,
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where A is the Abel map (note that ςC(p) does not depend on a lift of A(x − p) to Cg since
θ[η](0,Ω) = 0). This differential is non-zero if and only if dimH0(C,L) = 1 and is the square
of a section of L. Therefore,

ςC = c ω

for some (moduli-dependent) constant c.
Let us describe the asymptotics of ς under a degeneration of a curve.
The case of reducible curve. Fix j > 0 and consider the plumbing family Cj

t , η for Aj.
Denote by C1 and C2 irreducible components of Cj

0 .
Let Ki ⊂ Ci r {pi} be a compact subset. We may assume that Ki ⊂ Ct for all sufficiently

small t. Then Proposition 3.1 implies that

ςCj
t
(p) = v1(p) + tv2(p), (4.1)

where v1 is a non-zero holomorphic differential on C1 and v2 is a holomorphic differential on
K1;

ςCj
t
(p) = t w1(p) + t2w2(p), (4.2)

where w1 is a non-zero meromorphic differential on C2 having double pole at p2 and no other
poles, and w2 is a holomorphic differential on K2.

The case of Bj is completely analogous.
The case of irreducible curves. Consider first the plumbing family C0

t , η for A0. Let K
be a compact subset of C0

0 disjoint from the node. Proposition 3.2 implies that ςCt is determined
up to an 8th root of unity and has the following asymptotics:

ςC0
t
(p) = t1/8(v1(p) + tv2(p)), (4.3)

where v1 is a non-zero meromorphic differential on C having simple poles at p1 and p2 and no
other poles, and v2 is a holomorphic differential on K.

Case 2. Consider now the plumbing family C0
r , η for B0. Let K be a compact subset of C0

0

disjoint from the node. Proposition 3.3 implies that ςCr is well-defined for all r 6= 0 and has
the asymptotics

ςC0
r
(p) = v1(p) + rv2(p) + r2v3(p) (4.4)

where v1 is a non-zero holomorphic differential, v2 is a meromorphic differential on C having
simple poles at p1, p2 and no other poles, and v3 is a holomorphic differential on K.

Let us analyze the global behavior of ς. Let f : H̃−g ([2g−1]) → H−g ([2g−1]) be the forgetful

projection. We first consider ς as a section of the tautological line bubdle f ∗L → H̃−g ([2g−1])/C∗.
Recall that the group Sp(g,Z) acts on H̃−g ([2g−1]) by changing a Torelli marking, and we

have H̃−g ([2g−1])/Sp(g,Z) = H−g ([2g−1]). The fact that the theta function is a modular form of
the weight 1/2 can be restated in the following way:

Proposition 4.1. Let (C, ν, L) be a Torelli marked curve, and σ be a Sp(g,Z) - transformation

acting on H1(C). Denote by

(
a b
c d

)
the matrix of σ with respect to the basis ν. Then

ςσ∗C = γ
√

det(bΩ + a) · ςC ,

where γ8 = 1.

The proposition follows directly from the transformation properties of theta functions (see [10]).

Corollary 4.1. ς8 can be considered as a section of the line bundle L8⊗Λ4 → H−g ([2g−1])/C∗.

8



We finalize with the following remark:

Remark 4.1. Let µ : C−g → S
−
g be the universal spinor curve and ωs be the line bundle on C−g

such that ωs is the corresponding spin bundle restricted to each fiber of µ. Then µ∗ω
s turns

out to be a locally-free sheaf of the dimension one. ς8 induces a section of the line bundle
(µ∗ω

s)16 ⊗ λ4 restricted to S−g . The asymptotics relations (4.3) – (4.2) imply that this section
can be extended to a section of (µ∗ω

s)16 ⊗ λ4 and the divisor of this section is A0. But ς8

considered as a section of Sym8 Esg ⊗ λ4 (where Esg is the Hodge bundle on S−g ) has a bigger
zero locus: it consists of A0 and of the closure of the locus of spin curves (C,L) ∈ S−g such that
dimH0(C,L) > 1. This is connected with the fact that the pushforward functor is not right
exact.

4.2 Asymptotics of the tau function.

We begin with the following technical observation. Let C be a Riemann surface of genus g and v
be a holomorphic differential or a meromorphic differential with double poles and zero residues.
Denote zeros of v by p1, . . . , pd ∈ C. Consider simple paths lj from pd to pj for all j = 1, . . . , d−1.
Let a1, . . . , ag, b1, . . . , bg be simple loops on C r {p1, . . . , pd} which do not intersect lj and such
that their homology classes in H1(C) form a symplectic basis. Denote by s1, . . . , s2g+d−1 a
basis in H1(C r {p1, . . . , pd}) dual to the basis represented by a1, . . . , ag, b1, . . . , bg, l1, . . . , ld−1
in the relative homology group H1(C; {p1, . . . , pd}); we have sj = −bj, sg+j = aj and s2g+j is
homologous to a small positive oriented circle around pj.

Put
zj =

∫
aj
v, j = 1, . . . , g,

zj+g =
∫
bj
v, j = 1, . . . , g,

zj+2g =
∫
lj
v, j = 1, . . . , d− 1.

In the case when v is a holomorphic differential with double zeros the set {z1, . . . , z2g+d−1} is
the set of homological coordinates introduced above.

Let SB be the Bergman projective connection with respect to the Torelli marking induced
by a1, b1, . . . , ag, bg. Denote by mk the multiplicity of the zero pk.

Lemma 4.1. The following relation holds:

2g+d−1∑
k=1

zk

∫
sk

SB − Sv
v

= −πi

(
d+

d∑
k=1

(mk −
1

1 +mk

)

)
(4.5)

Proof. From Riemann bilinear relations we get that

2g∑
k=1

zk

∫
sk

SB − Sv
v

= −2πi
∑
x∈C

Resx

(
SB − Sv

v

∫
pd

v

)
.

Computing residues we obtain

−2πi
∑
x∈C

Resx

(
SB − Sv

v

∫
pd

v

)
= −

2g+d−1∑
k=2g+1

zk

∫
sk

SB − Sv
v

− πi

(
d+

d∑
k=1

(mk −
1

1 +mk

)

)

which implies (4.5).

Remark 4.2. If v is holomorphic differential with double zeros then the right-hand side of (4.5)
is equal to 8

3
(1− g). This implies the homogeneity property of the tau function.
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In fact (4.5) implies that if a function F is defined on some open subset U ⊂ H̃−g ([2g−1])
and satisfies differential equations

∂zj logF (C, v) =
−α
πi

∫
sj

SB − Sv
v

, j = 1, . . . , 2g + d− 1,

for some α ∈ Q, then it must satisfy the homogeneity property

F (C, tv) = t
α

(
d+

d∑
k=1

(mk− 1
1+mk

)

)
F (C, v).

Proposition 4.2. Consider a family of Torelli marked curves (Ct, νt) in Tg and an odd theta
characteristic η ∈ (Z/2Z)2g such that C0 with the spin bundle L0 → C0 represents a point in
Zg and t ∈ C is transversal to Zg. Put ςCt = ςt for simplicity. Assume that ς0 6= 0 (i. e.
dimH0(C0, L0) = 1). Then the tau function τ has the following asymptotics near Zg:

τ(Ct, ςt) = c0 t
8(1 + o(1)) as t→ 0. (4.6)

Proof. Let µ : C−g → S
−
g be the universal spinor curve and ωs be the line bundle on C−g such

that ωs is the corresponding spin bundle restricted to each fiber of µ. Let D ⊂ C−g be the zero

locus of ζ8 considered as a section of (ωs)16 ⊗ λ4 and Z̃g be the irreducible component of the
singular subvarity of D such that Zg ⊂ µ(Z̃g). We claim that D intersects itself transversally
at a generic point of Z̃g. It is enough to give an example of such a point to prove our claim.
Consider the closure of the locus Hyp ⊂ C−g consisting of hyperelliptic curves. Then D ∩Hyp
parametrize Weirstrass points of curves and Z̃g ∩ Hyp is given by singular points of curves.
Since all singular points are simple by the definition we have the desired transversality.

Let us now prove Proposition. We may assume that Ct defines a family of complex structures
on a fixed topological surface. Let pg−2(t), pg−1(t) ∈ C be the zeros of ςt that coalesce when
t→ 0. Introduce a local coordinate zt : U → C on Ct near p2g−2(0) such that zt(pg−2(t)) =

√
t

and such that zt(pg−1(t)) = −
√
t (it is possible because D intersects itself transversally at a

generic point of Z̃g). Note that the point (Ct, ςt) in H−g ([2g−1]) does not depend on a labeling

of zeros, so in our case we have a double cover on which
√
t make sense. Then one has

ςt ◦ z−1t (x) = (x2 − t)2(c+O(t)) dx for some c 6= 0 and therefore∫ pg−1(t)

pg−2(t)

ςt = t5/2(c1 +O(t)),

where the path of integration is chosen such that
∫ pg−1(t)

pg−2(t)
ςt → 0.

Let z1(t), . . . , z3g−2(t) be the homological coordinates associated with the triple (Ct, νt, ςt)
for t 6= 0. We may assume that z3g−2(t) = t5/2(c1 +O(t)). Consider a small open neighborhood
U ⊂ S−g of (C0, L0). Then calculations above imply that the map

U
[z1:···:z3g−3:z

2/5
3g−2] // CP 3g−3

is an embedding and the image of Zg ∩ U is given by the intersection with the hyperplane
{z3g−2 = 0}.

Denote the image of U in CP 3g−3 by V and the pullback of V to C3g−2 by Ṽ . The function
τ written in local coordinates z1, . . . , z3g−2 can be considered as a function on the two-sheeted
cover of Ṽ r {z3g−2 = 0} which is defined by the square root

√
z3g−2. The relation (2.1) implies

that
τ(z1, . . . , z3g−2) = c(z

2/5
3g−2)τ̃(z1, . . . , z3g−3) (1 + o(1)) (4.7)
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as z3g−2 → 0 where c is a meromorphic function having a singularity at the origin and
τ̃(z1, . . . , z3g−3) is a holomorphic function (τ̃ is nothing but 72th power of the Bergman tau
function considered on the stratum of holomorphic differentials on genus g surfaces having
g− 3 double zero and one zero of order 4. This stratum projects to a dense open subset of Zg).
A simple estimate shows that z d

dz
log c(z) is bounded and therefore c must be meromoprhic

near the origin.
Lemma 4.1 applied to the function τ̃ implies that τ̃ is homogenous with the degree of

homogeneity equal to 16(g − 1) − 16
5

. Therefore comparing the degree of homogeneity of the
left-hand side and the right-hand side of (4.7) one concludes that c(z) = z8 (c0 + o(1)).

Fix j > 0 and consider a plumbing family Cj
t , η for Aj. Denote Cj

t and ςCj
t

by Ct and ςt for
simplicity.

Proposition 4.3. The tau function τ has the following asymptotics near Aj, j > 0:

τ(Ct, ςt) = c t16(g−j)(1 + o(1)) as t→ 0. (4.8)

Proof. Recall that on any compact subset of C2 r {x2} one has

t−1 ςt → v2

as t → 0, where v2 is a meromorphic differential on C2 with a double pole at x2 and no other
poles (see (4.2)). Fix some enumeration p1(t), . . . , pg−1(t) of zeros of ςt such that p1(t), . . . , pg−j−1(t), pg−1(t) ∈
C2. Let z1, . . . , z3g−2 be homological coordinates constructed with respect to ν1 ∪ ν2 and the
chosen numeration of zeros. Then direct computations using the differential equation (2.1) and
asymptotics relations (4.1) and (4.2) give

d

dt
log τ(Ct, ςt) = −t−1 · 6

πi

d∑
k=1

zk

∫
sk

SB − Sv2
v2

+O(1) as t→ 0,

where SB is the Bergman projective connection, d = 3g − j − 1 and s1, . . . , sd is the basis
in H1(C2 r {p1(0), . . . , pg−j−1(0), pg−1(0)}) dual to the basis in the relatives homology group
defining homological coordinates. By Lemma 4.1 one sees that

d

dt
log τ(Ct, ςt) =

16(g − j)
t

+O(1),

which implies (4.9).

Proposition 4.4. The tau function τ has the following asymptotics near Bj, j > 0:

τ(Cj
t , ςCj

t
) = c t16j(1 + o(1)) as t→ 0. (4.9)

The proof is completely analogously to the previous one.

Consider the plumbing family C0
t , η for A0 and the corresponding differential ςC0

t
. Fix some

branch of t1/8. Recall that 1
t1/8

ςCt → v as t→ 0 for some (generically not identically vanishing)
meromorphic differential v on the normalization of C0

0 having simple poles at p1, p2 (where p1
and p2 projects to the node) and no other poles (see (4.3)). We denote 1

t1/8
ςCt by ς̃t and C0

t by
Ct.

Proposition 4.5. The tau function τ has the following asymptotics near A0:

τ(Ct, ς̃t) = c t6(1 + o(1)) as t→ 0. (4.10)
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Proof. Let z1(t) =
∫
a
ς̃t and z2(t) =

∫
b
ς̃t. Consider the parameter

t̃ = exp

(
2πi

z2(t)

z1(t)

)
.

Recall that when t goes around zero then b changes to b + a and ς̃t to γς̃t where γ8 = 1. This
implies that t̃ can be naturally extended as a function of t for all t ∈ D. The asymptotics∫
b
ς̃t = z1(0)

2πi
log t + O(1) (see (3.2)) implies that t̃(0) = 0 and t̃(t) is one-to-one map near the

origin.
We fix some labeling of zeros of ς̃t and introduce the corresponding homological coordinates.

Note that τ(Ct, ς̃t) is correctly defined for all sufficiently small t ∈ C. Using the equation (2.1)
defining the tau function we compute by the chain rule that

−πi
6
· d
dt̃

log τ(Ct̃, ς̃t̃) =
z1(0)

2πi t̃

∫
a

SB − Sς̃t̃
ς̃t̃

· (1 + o(1))

as t→ 0. Computing the residue Resp1
SB−Sς̃0

ς̃0
we obtain

d

dt̃
log τ(Ct̃, ς̃t̃) =

6

t̃
(1 + o(1)),

which implies (4.10).

Consider now the plumbing family C0
r , η for B0. Recall that by (4.4) there exists a holomor-

phic differential v on the normalization C of C0
0 and a meromorphic differential w on C having

simple poles at p1 and p2 (where p1 and p2 projects to the node) and no other poles such that
ςCj

r
= v + rw +O(r2). Put ςr = ςC0

r
and Cr = C0

r to simplify notations.

Proposition 4.6. The tau function τ has the following asymptotics near B0:

τ(Cr, ςr) = c r16(1 + o(1)) as r → 0.

Proof. Let U be a small open polydisc in S−g centered at (C0, L0) and let V be a connected

component of the pullback of U to H̃−g ([2g−1]). Introduce homological coordinates z1, . . . , z3g−2
on V that are numbered as follows:

zg (Cr, {a, b} ∪ ν, ςCr) =

∫
a

ςr, z2g (Cr, {a, b} ∪ ν, ςr) =

∫
b

ςr

and the (g − 1)th zero of the differential ςr tends to the node under a degeneration of the
underlying curve. Note that by the asymptotics (4.4)

zg (Cr, {a, b} ∪ ν, ςr) = c r(1 + o(1))

for some generically non-zero constant c. The asymptotics (4.4) implies that

r

∫
b

SB − Sςr
ςr

= O(1) (4.11)

as r → 0.
Computing the derivatives of τ with respect to zj for all j 6= g, 2g by (2.1), we obtain the

asymptotics

τ(z1, . . . , z3g−2) = c(zg, z2g) τ̃(z1, . . . , ẑg, . . . , ẑ2g, . . . , z3g−3)(1 + o(1)) as zg → 0, (4.12)
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where τ̃ is the tau function on H̃−g−1([2g−2]).
The factor c(zg, z2g) is a holomorphic function in some punctured neighborhood of the line

{(0, z), z ∈ C} in C2. The estimate (4.11) shows that ∂
∂zg

log τ has at most simple pole at

zg = 0, hence the function c(zg, z2g) is meromorphic at zg = 0. Consider the Laurent series

c(zg, z2g) =
+∞∑
j=N

cj(z2g)z
j
g,

It follows from the differential equation defining τ that ∂
∂z2g

log τ = O(zg); therefore cN does

not depend on z2g. According to Lemma 2.1 the degree of homogeneity of τ under the C∗-
action on differentials is equal to 16(g− 1), whereas the degree of homogeneity of τ̃ is equal to
16(g− 2). Thus, comparing the orders of homogeneity of the right-hand side and the left-hand
side of (4.12) one sees that N = 16.

4.3 The formula.

Now we can prove the following statement originally obtained by G. Farkas [4]:

Theorem. The class [Zg] has the following expression via the standard basis of the rational

Picard group of S−g :

[Zg] = (g + 8)λ− g + 2

4
α0 − 2β0 −

[g/2]∑
j=1

2(g − j)αj −
[g/2]∑
j=1

2jβj. (4.13)

Proof. Note that ς16(g−1) is a section of the line bundle

L16(g−1) ⊗ Λ8(g−1)

��
H−g ([2g−1])/C∗

as it was shown in Corollary 4.1 (see Subsection 4.1 for the definition of ς). By Lemma 2.1 the
tau function defines a homomorphism from L16(g−1) to Λ72. Applying this homomorphism to
the section ς16(g−1) we obtain a section of Λ8g+64 which we denote by ψ̃.

Consider the locus X = {(C, ω) ∈ H−g ([2g−1]) : dim |div
√
ω| > 0} (that is, the locus of

abelian differentials with double zeros such that the dimension of the space of holomorphic
sections of the corresponding spin bundle is larger than one). Note that π|H−g ([2g−1])rX is one-

to-one and π(H−g ([2g−1]) r X ) = S−g r Zg, where π is the map from H−g ([2g−1]) to S−g which
maps a differential to the corresponding spin bundle. We also have π(X ) ⊂ Zg.

Put ψ = π∗(ψ̃|H−g ([2g−1])rX ). We have π∗Λ
8g+64 ' λ8g+64, therefore ψ is a holomorphic section

of λ8g+64|S−g rZg
. Let U ⊂ S−g be an open contractible subset. Choosing a trivialization φ : λ|U →

U × C we obtain a holomorphic function φ⊗8g+64 ◦ ψ : U ∩ (S−g r Zg)→ C. Propositions 4.2 –
4.6 and asymptotics (4.3) – (4.2) imply that this function can be holomorphicaly extended to

U . Therefore we can extend the section ψ to S−g . Propositions 4.2 – 4.6 and asymptotics (4.3)
– (4.2) also imply that

[divψ] = 16β0 + (4 + 2g)α0 + 16

[g/2]∑
j=2

(g − j)αj + 16

[g/2]∑
j=2

jβj + 8[Zg].
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On the other hand,
[divψ] = (8g + 64)λ

in the rational Picard group of S−g by definition of ψ. Hence

(8g + 64)λ = 16β0 + (4 + 2g)α0 + 16

[g/2]∑
j=2

(g − j)αj + 16

[g/2]∑
j=2

jβj + 8[Zg].

which implies Formula (4.13).

5 A formula for the theta-null divisor.

The purpose of this Section is to show that the Farkas’ formula for the class of the theta-null
divisor (see [5]) in the rational Picard group of the moduli space of even spin curves can be
obtained by using the modular properties of the theta function.

Let S+

g be the moduli space of even spin curves of genus g and let S+
g ⊂ S

+

g be the subspace
consisting of smooth spin curves. Consider the theta-null divisor:

Θnull = Cl{(C,L) ∈ S+
g : dim H0(C,L) > 0},

where the closure is taken in S+

g .

The rational Picard group of S+

g . We follow notations of [5] in the description of the

Picard group here. Let ρ : S+

g → Mg be the natural projection. The boundary S+

g r S+
g is

a union of irreducible divisors A0, B0, . . . , A[g/2], B[g/2] such that ρ(Aj) = ρ(Bj) = ∆j for all
j = 0, . . . ,

[
g
2

]
.

If j 6= 0 then a generic point in Aj is represented by an even spin bundle on each of the
two irreducible components of a reducible genus g curve with one node. Generic points in Bj

are similarly represented by odd spin bundles. In these cases we also replace the node by an
exceptional component.

Pulling back a one-nodal curve from ∆0 to S−g we may have two possibilities, either the
the obtained spin curve has an exceptional component or not. Let the divisor B0 parametrizes
such spin curves with exceptional component and A0 parametrizes one-nodal irreducible spin
curves.

Let Eg be the pullback of the Hodge vector bundle from Mg to S+

g and let λ be the class

in Pic(S+

g ) ⊗ Q of the determinant bundle
∧g Eg. Denote by αj and βj the classes of Aj

and Bj in the rational Picard group respectively. The group Pic(S+

g ) ⊗ Q is generated by
λ, α0, . . . , α[g/2], β0, . . . , β[g/2].

Theta function as a modular form. Consider a smooth spin curve (C,L) representing
some point in S+

g and let ν be a Torelli marking of C. Denote by η the theta characteristic

of L and by Ω the matrix of b-periods induced by ν. It is well-known that
(
θ[η](0,Ω)

)8
is

a modular form of weight 4 on the level 2 cover of Mg (note that the action of Sp(g,Z) on

theta characteristics projects to the action of Sp(g,Z/2Z)). Therefore
(
θ[η](0,Ω)

)8
pulls back

to S+
g as a section of (

∧g Eg)⊗4 |S+g . We denote this section by ϑ. From the classical Riemann

theorem we get that the divisor of ϑ on S+
g is equal to n · (Θnull ∩ S+

g ) for some n ∈ Z>0. It
is well-known that the order of vanishing of theta constants along Θnull is equal to 2, thus we
have n = 16 (see [12]).
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The section ϑ can be extended to the compactified space S+

g . To show this consider a

trivialization φ :
∧g Eg|U → U ×C over some open subset U ⊂ S+

g . Then well-known boundary
asymptotics of theta constants near the boundary (see [3]) implies that the holomorphic function
φ ◦ ϑ : U ∩ S+

g → C can be extended to the holomorphic function on U (see also computations

in the Section 3). Therefore the section ϑ can be extended to S+

g and we have the following

relation in the rational Picard group of S+

g :

[divS+g
ϑ] = 16[Θnull] + α0 + 8

[g/2]∑
j=1

βj, (5.1)

where [ ] denotes the class of a divisor in the rational Picard group.

Theorem. We have

[Θnull] =
1

4
λ− 1

16
α0 −

1

2

[g/2]∑
j=1

βj. (5.2)

Proof. Since ϑ is a section of (
∧g Eg)⊗4,

[divS+g
]ϑ = 4λ,

from where (5.2) immediately follows.
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