Tau function and moduli of spin curves

Mikhail Basok *

Abstract

The goal of the paper is to give an analytic proof of the formula of G. Farkas for the divisor class of spinors with multiple zeros in the moduli space of odd spin curves. We make use of the technique developed by Korotkin and Zograf that is based on properties of the Bergman tau function.

1 The moduli space of odd spin curves.

Let \mathcal{M}_{g} be the moduli space of smooth genus g algebraic curves, assume that $g \geq 3$. Let $\overline{\mathcal{M}}_{g}$ be its Deligne-Mumford compactification. The boundary $\overline{\mathcal{M}}_{g} \backslash \mathcal{M}_{g}$ consists of $\left[\frac{g}{2}\right]+1$ irreducible divisors $\Delta_{0}, \ldots, \Delta_{\left[\frac{g}{2}\right]}$ where Δ_{0} is the closure of the locus of irreducible curves with one node and Δ_{j} for $j \geq 1$ is the closure of the locus of reducible one-nodal curves.

The moduli space \mathcal{S}_{g}^{-}of smooth odd spin curves is $2^{g-1}\left(2^{g}-1\right)$ cover of \mathcal{M}_{g}. The cover is extended to a branched cover of $\overline{\mathcal{M}}_{g}$ by the Cornalba compactification $\overline{\mathcal{S}}_{g}^{-}$of \mathcal{S}_{g}^{-}ramified over Δ_{0}.

Cornalba compactification. A nodal curve C is called quasi-stable if it satisfies two conditions:

1) A rational component E of C intersects $\overline{C \backslash E}$ at two or more points;
2) Any two rational components E_{1}, E_{2} of C such that $\# E_{i} \cap \overline{C \backslash E_{i}}=2$ are disjoint. Rational component E of C intersecting $\overline{C \backslash E}$ at exactly two points is called exceptional.

Following [2] we define a spin curve as a triple (C, η, β) consisting of a quasi-stable curve C, a line bundle η of degree $g-1$ on it and a homomorphism $\beta: \eta^{\otimes 2} \rightarrow \omega_{C}$ with the following properties:

1) η is of degree one on every exceptional component of C;
2) β is not a zero on every non-exceptional component of C.

The parity of the spin curve (C, η, β) is the parity of $\operatorname{dim} H^{0}(C, \eta)$. The parity is invariant under continuous deformations (see [11] or [1]).

An isomorphism between (C, η, β) and $\left(C^{\prime}, \eta^{\prime}, \beta^{\prime}\right)$ is an isomorphism $\sigma: C \rightarrow C^{\prime}$ such that $\sigma^{*} \eta^{\prime}$ and η are isomorphic and the following diagram

is commutative, where ϕ is an isomorphism between η and $\sigma^{*} \eta^{\prime}$. The moduli space $\overline{\mathcal{S}}_{g}^{-}$consists of all equivalence classes of odd spin curves under such isomorphisms. The projection

[^0]$\rho: \overline{\mathcal{S}}_{g}^{-} \rightarrow \overline{\mathcal{M}}_{g}$ maps (an equivalence class of) a triple (C, η, β) to (an equivalence class of) a curve \tilde{C} which is obtained from C by contracting all exceptional components to points.

Rational Picard group of $\overline{\mathcal{S}}_{g}^{-}$. We follow notations of [4] in the description of the Picard group here.

The boundary $\overline{\mathcal{S}}_{g}^{-} \backslash \mathcal{S}_{g}^{-}$is the union of irreducible divisors $A_{0}, \ldots, A_{[g / 2]}, B_{0}, \ldots, B_{[g / 2]}$ such that $\rho\left(A_{j}\right)=\rho\left(B_{j}\right)=\Delta_{j}$ for $j=0, \ldots,\left[\frac{g}{2}\right]$.

Description of A_{j} and B_{j} for $j \neq 0$. Note that there are no spin curves (C, η, β) with a reducible one-nodal base curve C, since the relative dualizing sheaf ω_{C} on a reducible curve with one node being restricted to each component must be of odd degree (see [2], [4, p.5] for more details).

Let (C, η, β) be a spin curve such that $C=C_{1} \cup E \cup C_{2}$ where C_{1} and C_{2} are smooth curves of genus j and $g-j$ respectively and E is an exceptional component. The divisor A_{j} parametrizes the closure of the locus of such curves with the property that η restricted to C_{1} is odd. The divisor B_{j} is the closure of the locus of the same type spin curves such that η restricted to C_{1} is even.

Description of A_{0} and B_{0}. Unlike the case $j \neq 0$ a spin curve (C, η, β) such that $\rho(C, \eta, \beta)$ is an irreducible one-nodal curve, does not necessary have exceptional components. Let A_{0} parametrize the closure of the locus of spin curves with one-nodal irreducible underlying curve and B_{0} parametrize the closure of the locus of spin curves mapping to Δ_{0} under ρ and having an exceptional component.

Recall that ρ has a two-order branching along B_{0} and is unramified on $\overline{\mathcal{S}}_{g}^{-} \backslash B_{0}$.
Denote by α_{j} and β_{j} the classes of A_{j} and B_{j} in the rational Picard group $\operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{-}\right) \otimes \mathbb{Q}$ respectively. Let λ be the pullback of the Hodge class on $\overline{\mathcal{M}}_{g}$ under ρ. The Picard group is generated by the classes

$$
\begin{equation*}
\operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{-}\right) \otimes \mathbb{Q}=\operatorname{span}_{\mathbb{Q}}\left(\lambda, \alpha_{0}, \ldots, \alpha_{\left[\frac{g}{2}\right]}, \beta_{0}, \ldots, \beta_{\left[\frac{g}{2}\right]}\right) . \tag{1.1}
\end{equation*}
$$

Consider the divisor \mathcal{Z}_{g} on $\overline{\mathcal{S}}_{g}^{-}$parametrizing the closure of the locus of smooth spin curves (C, η) such that sections of η has multiple zeros. The class of \mathcal{Z}_{g} in the rational Picard group $\operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{-}\right) \otimes \mathbb{Q}$ can be expressed as a linear combination of generators (1.1) (see (4.13)). G. Farkas determined the coefficients in this expansion and used it for the birational classification of moduli spaces of odd spin curves (see [4]). The goal of this paper is to show how this coefficients can be computed analytically from properties of the Bergman tau function on the moduli space of abelian differentials.

The paper is organized as follows: we introduce the Bergman tau function and list its basic properties in Section 2. In Section 3 we study the asymptotics of the theta function under a degeneration of a curve; this asymptotics is well-known (see [13]) but we write it down to fix notations. Then in Section 4 we construct an odd spinor using the theta function and analyze the behavior of the tau function on the space of squares of these odd spinors. This results in the Farkas formula for \mathcal{Z}_{g}. Finally in Section 5 we study the theta-null divisor on the moduli space of even spin curves. The goal is to show how to express the theta-null in terms of standard generators of the rational Picard group in the framework of the classical theory of theta functions. This expression was also obtained by G. Farkas in his work [5] by different methods. G. Farkas used this expression for the birational classification of the moduli space of even spin curves.

2 The Bergman tau function on moduli spaces of holomorphic differentials with double zeros.

Let \mathcal{H}_{g} denote the moduli space of holomorphic differentials on smooth genus g curves (see [8]). This space admits a natural stratification according to multiplicities of zeros of the differential. Denote by $\mathcal{H}_{g}\left(\left[2^{g-1}\right]\right)$ the stratum corresponding to differentials with $g-1$ distinct zeros of multiplicity two. Let C be a genus g curve and ω be a differential on C such that $(C, \omega) \in$ $\mathcal{H}_{g}\left(\left[2^{g-1}\right]\right)$. If $\operatorname{div} \omega=2 D$ then the linear system $|D|$ corresponds to a spin bundle on $L \rightarrow C$. Let $\mathcal{H}_{g}^{-}\left(\left[2^{g-1}\right]\right)$ be the connected component of $\mathcal{H}_{g}\left(\left[2^{g-1}\right]\right)$ corresponding to the case when L is an odd spin bundle (see [9]).

Homological coordinates. Consider the (non-holomorphic) vector bundle $H^{1}\left(\cdot,\left\{p_{1}, \ldots, p_{g-1}\right\}, \mathbb{C}\right)$ over $\mathcal{H}_{g}^{-}\left(\left[2^{g-1}\right]\right)$ whose fiber over a pont (C, ω) is the relative cohomology group $H^{1}\left(C,\left\{p_{1}, \ldots, p_{g-1}\right\}, \mathbb{C}\right)$, where p_{1}, \ldots, p_{g-1} are zeros of ω. We have a natural map $\mathcal{H}_{g}^{-}\left(\left[2^{g-1}\right]\right) \rightarrow H^{1}\left(\cdot,\left\{p_{1}, \ldots, p_{g-1}\right\}, \mathbb{C}\right)$ which sends (C, ω) to the cohomology class of ω. The bundle $H^{1}\left(\cdot,\left\{p_{1}, \ldots, p_{g-1}\right\}, \mathbb{C}\right)$ has a lattice $H^{1}\left(\cdot,\left\{p_{1}, \ldots, p_{g-1}\right\}, \mathbb{Z}\right)$ in it. Take an open coordinate (in the sense of orbifold) subset of $\mathcal{H}_{g}^{-}\left(\left[2^{g-1}\right]\right)$ and consider a trivialization $\left.H^{1}\left(\cdot,\left\{p_{1}, \ldots, p_{g-1}\right\}, \mathbb{C}\right)\right|_{\mathcal{U}} \rightarrow \mathcal{U} \times \mathbb{C}^{3 g-2}$ such that $H^{1}\left(\cdot,\left\{p_{1}, \ldots, p_{g-1}\right\}, \mathbb{Z}\right)$ maps to the lattice $\mathbb{Z}^{3 g-2} \subset \mathbb{C}^{3 g-2}$. The composition of the map $\mathcal{H}_{g}^{-}\left(\left[2^{g-1}\right]\right) \rightarrow H^{1}\left(\cdot,\left\{p_{1}, \ldots, p_{g-1}\right\}, \mathbb{C}\right)$ and such trivialization gives a set of holomorphic local coordinates called homological (see [8]). Let us study this construction in more datails.

Denote by \mathcal{T}_{g} the moduli space of Torelli marked curves (i. e. curves with a fixed symplectic basis in $\left.H_{1}(C)\right)$, and let $\tilde{\mathcal{H}}_{g}^{-}\left(\left[2^{g-1}\right]\right)$ be the cover of $\mathcal{H}_{g}^{-}\left(\left[2^{g-1}\right]\right)$ induced by the forgetful map $\mathcal{T}_{g} \rightarrow \mathcal{M}_{g}$.

Fix an arbitrary point $(C, \nu, \omega) \in \tilde{\mathcal{H}}_{g}^{-}\left(\left[2^{g-1}\right]\right)$, where we denote the Torelli marking by ν. Let $p_{1}, \ldots, p_{g-1} \in C$ be the zeros of ω. Consider simple non-intersecting paths l_{j} connecting p_{g-1} with p_{j} for $j=1, \ldots, g-2$. Let $a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g}$ be simple loops on $C \backslash$ $\left\{p_{1}, \ldots, p_{g-1}\right\}$ representing that do not intersect $\left\{l_{j}\right\}_{j=1}^{g-2}$. Then homological coordinates coordinates at $\left(C,\left\{a_{j}, b_{j}\right\}_{j=1}^{g}, \omega\right)$ are given by:

$$
\begin{aligned}
& z_{j}=\int_{a_{j}^{\circ}} \omega, \quad j=1, \ldots, g, \\
& z_{j+g}=\int_{b_{j}^{\circ}} \omega, \quad j=1, \ldots, g, \\
& z_{j+2 g}=\int_{l_{j}} \omega, \quad j=1, \ldots, g-2 .
\end{aligned}
$$

Denote by $s_{1}, \ldots, s_{3 g-2}$ the basis in $H_{1}\left(C \backslash\left\{p_{1}, \ldots, p_{g-1}\right\}\right)$ dual to the basis represented by $a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g}, l_{1}, \ldots, l_{g-2}$ in the relative homology group $H_{1}\left(C,\left\{p_{1}, \ldots, p_{g-1}\right\}\right)$; we have $s_{j}=-b_{j}, s_{g+j}=a_{j}$ and $s_{2 g+j}$ is homologous to a small positive oriented circle around p_{j}. We will use this notations until the end of the paper.

Projective connections. Let $f: U \rightarrow V$ be a holomorphic map between two domains $U, V \subset \mathbb{C} P^{1}$. Recall that the Shcwarzian derivative of f with respect to a local parameter $z \in U$ is defined as

$$
S_{z}^{f}=\frac{\frac{d^{3} f}{d z^{3}}}{\frac{d f}{d z}}-\frac{3}{2}\left(\frac{\frac{d^{2} f}{d z^{2}}}{\frac{d f}{d z}}\right)^{2} .
$$

If $z=h(w)$ is a change of the parameter then

$$
S_{w}^{f \circ h} d w^{2}=S_{z}^{f} d z^{2}+S_{w}^{h} d w^{2} .
$$

We also have

$$
S_{z}^{f} d z^{2}=-S_{f}^{z} d f^{2} .
$$

Note that two relations above implies that S_{z}^{f} is invariant under mobius transformations of f and z.

Let C be a smooth curve of genus g and U_{j}, z_{j} be a coordinate covering of C. A meromorphic projective connection on C is a collection of meromorphic functions $f_{j}: U_{j} \rightarrow \mathbb{C} P^{1}$ such that

$$
f_{j} d z_{j}^{2}=f_{k} d z_{k}^{2}-S_{z_{j}}^{z_{k}} d z_{j}^{2} .
$$

It is clear from the definition and properties of the Schwarzian derivative that all meromorphic projective connections form an affine space over the space of meromorphic quadratic differentials on C.

Denote the diagonal of $C \times C$ by Δ. Let π_{1} and π_{2} be projections to the first and the second factors. We call a symmetric holomorphic section of the sheaf $\left(\pi_{1}^{*} K_{C} \otimes \pi_{2}^{*} K_{C}\right)(2 \Delta)$ symmetric bideffirential of the second kind. Consider such a section B and its expansion near Δ with respect to some local coordinate ζ on C :

$$
B(x, y)=\left(\frac{\alpha}{(\zeta(x)-\zeta(y))^{2}}+\frac{S(\zeta(x))}{6}+O(\zeta(x)-\zeta(y))^{2}\right), \quad \text { as } x \rightarrow y
$$

The number α is called biresidue of B. It does not depend on the choice of a local coordinate. One can directly compute that $S(\zeta(x))$ behaves as a projective connection.

Definition of the tau function and its basic properties. Let ζ be a local coordinate on a curve C. For any differential ω on C introduce the meromorphic projective connection $S_{\omega}=\frac{\omega^{\prime \prime}}{\omega}-\frac{3}{2}\left(\frac{\omega^{\prime}}{\omega}\right)^{2}$ (that is, the Schwarzian derivative of the abelian integral $\int^{x} \omega$ with respect to a local parameter ζ on C). The canonical bidifferential is a symmetric bideffirential of the second kind with biresidue 1 whose a-periods with respect to each coordinate are zero. Denote the canonical bidifferential on C by $\mathcal{B}(x, y)$. It has the following expansion in terms of a local parameter ζ :

$$
\mathcal{B}(x, y)=\left(\frac{1}{(\zeta(x)-\zeta(y))^{2}}+\frac{S_{B}(\zeta(x))}{6}+O(\zeta(x)-\zeta(y))^{2}\right) d \zeta(x) d \zeta(y) \quad \text { as } x \rightarrow y
$$

The projective connection S_{B} is called the Bergman projective connection. The difference of the two projective connections $S_{B}-S_{\omega}$ is a meromorphic quadratic differential on C. Introduce a connection on the trivial line bundle on $\tilde{\mathcal{H}}_{g}^{-}\left(\left[2^{g-1}\right]\right)$ by the formula

$$
d_{B}=d+\frac{6}{\pi i} \sum_{j=1}^{3 g-2}\left(\int_{s_{j}} \frac{S_{B}-S_{\omega}}{\omega}\right) d z_{j} .
$$

As it was shown in [6] this connection is flat. The tau function $\tau=\tau\left(C,\left\{a_{j}, b_{j}\right\}_{j=1}^{g}, \omega\right)$ is defined up to a constant factor ${ }^{1}$ as a horizontal (covariant constant) section of the trivial line bundle on $\tilde{\mathcal{H}}_{g}^{-}\left(\left[2^{g-1}\right]\right)$. In other words, $\tau: \tilde{\mathcal{H}}_{g}^{-}\left(\left[2^{g-1}\right]\right) \rightarrow \mathbb{C}$ is a holomorphic function such that

$$
\begin{equation*}
d_{B} \tau=0 \tag{2.1}
\end{equation*}
$$

A solution of (2.1) was explicitly constructed in [6].
The group $S p(2 g, \mathbb{Z}) \times \mathbb{C}^{*}$ acts naturally on $\tilde{\mathcal{H}}_{g}^{-}\left(\left[2^{g-1}\right]\right)$ by changing the Torelli marking and multiplying the differential by a nonzero complex number. Note that $\tilde{\mathcal{H}}_{g}^{-}\left(\left[2^{g-1}\right]\right) / S p(2 g, \mathbb{Z})$ coincides with $\mathcal{H}_{g}^{-}\left(\left[2^{g-1}\right]\right)$.

Consider a natural map $\pi: \mathcal{H}_{g}^{-}\left(\left[2^{g-1}\right]\right) / \mathbb{C}^{*} \rightarrow \mathcal{S}_{g}^{-}$which assigns to a differential the spin bundle associated with the square root of the differential. The map π is generally one-to-one, since an odd spin bundle generically has one-dimensional space of holomorphic sections. The image of π is $\mathcal{S}_{g}^{-} \backslash \mathcal{Z}_{g}$.

[^1]Consider the tautological line bundle $\mathcal{L} \rightarrow \mathcal{H}_{g}^{-}\left(\left[2^{g-1}\right]\right) / \mathbb{C}^{*}$ with respect to the action of \mathbb{C}^{*}. Let \mathbb{E}_{g} be the pullback of the Hodge vector bundle on \mathcal{M}_{g} to $\mathcal{H}_{g}^{-}\left(\left[2^{g-1}\right]\right) / \mathbb{C}^{*}$. Denote by Λ the corresponding determinant bundle $\bigwedge^{g} \mathbb{E}_{g}$.

Lemma 2.1 (see [6] for the proof). The tau function has the following properties:

1) τ is a nowhere vanishing holomorphic function on $\tilde{\mathcal{H}}_{g}^{-}\left(\left[2^{g-1}\right]\right)$.
2) For any $t \in \mathbb{C}^{*}$

$$
\tau\left(C,\left\{a_{j}, b_{j}\right\}_{j=1}^{g}, t \omega\right)=t^{16(g-1)} \tau\left(C,\left\{a_{j}, b_{j}\right\}_{j=1}^{g}, \omega\right) .
$$

3) For any symplectic transformation σ in $H_{1}(C)$

$$
\tau\left(C,\left\{\sigma\left(a_{j}\right), \sigma\left(b_{j}\right)\right\}_{j=1}^{g}, \omega\right)=\operatorname{det}(b \Omega+a)^{72} \tau\left(C,\left\{a_{j}, b_{j}\right\}_{j=1}^{g}, \omega\right),
$$

where $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ in the basis $\left\{a_{j}, b_{j}\right\}_{j=1}^{g}$.
Equivalently, τ is a section of a bundle $\operatorname{Hom}\left(\mathcal{L}^{16(g-1)}, \Lambda^{72}\right)$ on $\mathcal{H}_{g}^{-}\left(\left[2^{g-1}\right]\right) / \mathbb{C}^{*}$.

3 Asymptotic behavior of the theta function under a curve degeneration.

All facts written down in this section are well-known and can be found in classical literature.
Theta characteristics. Let F be a vector space over $\mathbb{Z} / 2 \mathbb{Z}$ of dimension $2 g$ with nondegenerate skew-symmetric pairing. Fix a symplectic basis $e_{1}, \ldots, e_{g}, f_{1}, \ldots, f_{g} \in F$. The set of all quadratic forms on F is in natural bijection with points from $(\mathbb{Z} / 2 \mathbb{Z})^{2 g}$: given $\left(\eta_{1}, \ldots, \eta_{2 g}\right) \in$ $(\mathbb{Z} / 2 \mathbb{Z})^{2 g}$ we construct a quadratic form by the rule

$$
\sum_{j=1}^{g}\left(a_{j} e_{j}+b_{j} f_{j}\right) \mapsto \sum_{j=1}^{g}\left(\eta_{2 j-1} a_{j}+\eta_{2 j} b_{j}\right)+\sum_{j=1}^{g} a_{j} b_{j} .
$$

It is convenient for us to define theta characteristic to be a vector $\eta \in(\mathbb{Z} / 2 \mathbb{Z})^{2 g}$. The parity of a theta characteristic η is given by the Arf invariant of the corresponding quadratic form (recall that the Arf invariant is equal to $\left.\sum_{j=1}^{g} \eta_{2 j} \eta_{2 j-1}\right)$. We call $0 \in(\mathbb{Z} / 2 \mathbb{Z})^{2 g}$ zero characteristic. The action of $S p(g, \mathbb{Z})$ on F pulls back to the action on the set of all theta characteristics.

Consider a smooth curve C of genus g. Any spin bundle L over C defines a quadratic form q_{L} on the $\mathbb{Z} / 2 \mathbb{Z}$-vector space $J_{2}(C):=\{X \in \operatorname{Jac}(C) \mid 2 X=0\}$ (the symplectic pairing on $J_{2}(C)$ is induced from the Jacobian) by the following rule (see [11]):

$$
q_{L}(X)=h^{0}(C, L \otimes X)+h^{0}(C, L) \quad \bmod 2 .
$$

The correspondence $L \mapsto q_{L}$ is a bijection between the set of isomorphism classes of spin bundles over C and the set of quadratic forms on $J_{2}(C)$. The parity of L coincides with the Arf invariant of q_{L}. It we fix a Torelli marking of C, then we obtain a basis in $J_{2}(C)$. Therefore a choice of a Torelli marking induces a natural correspondence between spin bundles and theta characteristics. This correspondence respects the parity and commutes with the action of the symplectic group.

Plumbing families. We introduce families in $\overline{\mathcal{S}}_{g}^{-}$whom intersect the boundary of $\overline{\mathcal{S}}_{g}^{-}$ transversally at generic points.

For $0 \leq j \leq\left[\frac{g}{2}\right]$ consider a one-nodal curve C^{j} representing a generic point in Δ_{j}. Let p_{1}, p_{2} be points in the normalization of C^{j} which are identified to form a node of and ζ_{1}, ζ_{2} be local coordinates in neighborhoods U_{1}, U_{2} of p_{1} and p_{2} respectively such that C^{j} is give locally by the equation $\zeta_{1} \zeta_{2}=0$. For small $t \in \mathbb{C}$ consider a family of curves

$$
\begin{equation*}
C_{t}^{j}=\left(C^{j} \backslash\left(U_{1} \cup U_{2}\right)\right) \cup\left\{\left(x_{1}, x_{2}\right) \in U_{1} \times U_{2} \mid \zeta_{1}\left(x_{1}\right) \zeta_{2}\left(x_{2}\right)=t\right\} . \tag{3.1}
\end{equation*}
$$

We call C_{t}^{j} a plumbing family. It is well-known that C_{t}^{j} defines a smooth family in $\overline{\mathcal{M}}_{g}$ and this family intersects the boundary transversally.

Consider $j>0$. Given Torelli markings ν_{1} and ν_{2} of irreducible components of C^{j} we can form a Torelli marking $\nu_{1} \cup \nu_{2}$ of C_{t}^{j} in natural way: take a collection of loops $a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g}$ such that $a_{1}, \ldots, a_{j}, b_{1}, \ldots, b_{j}$ represents ν_{1} and $a_{j+1}, \ldots, a_{g}, b_{j+1}, \ldots, b_{g}$ represents ν_{2}; then classes of $a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g}$ in the first homology group give a Torelli marking of C_{t}^{j} for all small t. We will consider Torelli markings of C_{t}^{j} formed only in such way.

Fix now a Torelli marking of C_{t}^{j}. Let $\eta=\eta_{1} \oplus \eta_{2}$ be some odd theta characteristic such that $\eta_{1} \in(\mathbb{Z} / 2 \mathbb{Z})^{2 j}$ and $\eta_{2} \in(\mathbb{Z} / 2 \mathbb{Z})^{2(g-j)}$. The family C_{t}^{j} equipped with η defines a family of in $\overline{\mathcal{S}}_{g}^{-}$(recall the correspondence between theta characteristics and spin bundles). By the definition of A_{j}, B_{j} this family intersects A_{j} if η_{1} is odd and B_{j} is η_{1} is even. The intersection is transversal because the map $\overline{\mathcal{S}}_{g}^{-} \rightarrow \overline{\mathcal{M}}_{g}$ is unbranched over a generic point of Δ_{j} for $j>0$. We call this family plumbing family for A_{j} (resp. B_{j}) if η_{1} is odd (resp. even).

Consider now the case $j=0$. The cover $\mathcal{T}_{g} \rightarrow \mathcal{M}_{g}$ has an infinite branching when we turn around the bundary divisor Δ_{0}, thus we cannot trivialize the bundle $H_{1}\left(C_{t}^{0}, \mathbb{Z}\right), t \neq 0$ as we did in the reducible case. Let us restrict C_{t}^{0} to the family $C_{t}^{0}, t \in \mathbb{C} \backslash \mathbb{R}_{\geq 0}$. Consider loops $a_{1}, \ldots, a_{g-1}, b_{1}, \ldots, b_{g-1}$ representing a Torelli marking of the normalization of C_{0}^{0}. Let a_{g} be a small positive oriented loop around p_{1} and b_{g} be a path from p_{2} to p_{1} which does not intersect $a_{1}, \ldots, a_{g-1}, b_{1}, \ldots, b_{g-1}$. Then $a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g}$ induces a Torelli marking of $C_{t}^{0}, t \notin \mathbb{R}_{\geq 0}$. We will consider only such Torelli markings of C_{t}^{0}.

Consider an odd theta characteristic $\eta=\eta_{1} \oplus\binom{\varepsilon}{\delta}$ such that $\eta_{1} \in(\mathbb{Z} / 2 \mathbb{Z})^{2(g-1)}$ and $\varepsilon, \delta \in$ $\mathbb{Z} / 2 \mathbb{Z}$. The family $C_{t}^{0}, t \in \mathbb{C} \backslash \mathbb{R}_{\geq 0}$ equipped with η and a Torelli marking gives us a family in $\overline{\mathcal{S}}_{g}^{-}$.

If $\delta=1$ then this family extends to a family over all small $t \in \mathbb{C}$. The extended family intersects the boundary at A_{0} and the intersection is transversal (since the cover $\overline{\mathcal{S}}_{g}^{-} \rightarrow \overline{\mathcal{M}}_{g}$ is unbranched at a generic point of A_{0}). We call the extended family plumbing family for A_{0}.

If $\delta=0$ then we have to take the double cover $r=\sqrt{t}$ of the parameter space and then the family $C_{r^{2}}^{0}, r \in \mathbb{C} \backslash \mathbb{R}_{\geq 0}$ equipped with η pulls back to the family in $\overline{\mathcal{S}}_{g}^{-}$which intersects B_{0} transversally. We call this family plumbing family for B_{0} and denote it simply by C_{r}^{0}.
Let us now describe the asymptotic behavior of the theta function with respect to degenerations described above. We refer to [13] for more information.

The case of reducible curves. Fix $j>0$, consider the plumbing family C_{t}^{j} equipped with a Torelli marking and a theta characteristic η. Denote the matrix of b-periods for C_{t}^{j} by Ω_{t}. Let

$$
\theta[\eta]\left(\cdot, \Omega_{t}\right): \mathbb{C}^{g} \rightarrow \mathbb{C}
$$

be the theta function corresponding to Ω_{t} with the characteristic η. Let C_{1}, C_{2} be irreducible components of C_{0}^{j}. Denote matrices of b-periods on C_{1} and C_{2} by Ω_{1} and Ω_{2} respectively.
Proposition 3.1. Let $W_{1}=\left(w_{1}, \ldots, w_{j}\right) \in \mathbb{C}^{j}$ and $W_{2}=\left(w_{j+1}, \ldots, w_{g}\right) \in \mathbb{C}^{g-j}$. Put $R_{i}=$ $\left.\frac{v_{i}}{d \zeta_{1}}\right|_{p_{1}}$ if $i \leq j$ and $R_{i}=\left.\frac{v_{i}}{d \zeta_{2}}\right|_{p_{2}}$ if $i>j$. Then one has

$$
\begin{aligned}
\theta[\eta]\left(W, \Omega_{t}\right)= & \theta\left[\eta_{1}\right]\left(W_{1}, \Omega_{1}\right) \theta\left[\eta_{2}\right]\left(W_{2}, \Omega_{2}\right) \\
& -\frac{t}{2 \pi i}\left[\sum_{i=1}^{j} \frac{\partial}{\partial w_{i}} \theta\left[\eta_{1}\right]\left(W_{1}, \Omega_{1}\right) R_{i}\right]\left[\sum_{k=1}^{g-j} \frac{\partial}{\partial w_{k}} \theta\left[\eta_{2}\right]\left(W_{2}, \Omega_{2}\right) R_{k}\right]+O\left(t^{2}\right)
\end{aligned}
$$

as $t \rightarrow 0$ uniformly on compact subsets of \mathbb{C}^{g}, where $W=W_{1} \oplus W_{2} \in \mathbb{C}^{g}$.
Proof. Proposition immediately follows from the expansion (see [13])

$$
\Omega_{t}=\left(\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right)-t\left(\begin{array}{cc}
0 & R_{1}^{T} R_{2} \\
R_{2}^{T} R_{1} & 0
\end{array}\right)+O\left(t^{2}\right)
$$

The case of irreducible curves. Consider a plumbing family C_{t}^{0} equipped with a Torelli marking and a theta characteristic $\eta=\eta_{1} \oplus\binom{\varepsilon}{\delta}$ such that $\eta_{1} \in(\mathbb{Z} / 2 \mathbb{Z})^{2(g-1)}$ and $\varepsilon, \delta \in \mathbb{Z} / 2 \mathbb{Z}$.

Denote by Ω_{t} the matrix of b-periods of C_{t}^{0}, and consider the corresponding theta function with the characteristic η :

$$
\theta[\eta]\left(\cdot, \Omega_{t}\right): \mathbb{C}^{g} \rightarrow \mathbb{C} .
$$

Denote by Ω the matrix of b-periods on C_{0}^{0}.
Proposition 3.2. Assume that $\delta=1$. Then $\theta[\eta]\left(\cdot, \Omega_{t}\right)$ has the following asymptotics on every compact subset of \mathbb{C}^{g}
$\theta[\eta]\left(w_{1}, \ldots, w_{g}, \Omega_{t}\right)=t^{1 / 8}\left(e^{-c w_{g}+r} \theta\left[\eta_{1}\right]\left(w_{1}, \ldots, w_{g-1}, \Omega\right)+e^{c w_{g}} \theta\left[\eta_{1}\right]\left(w_{1}+c_{1}, \ldots, w_{g-1}+c_{g-1}, \Omega\right)+O(t)\right)$, where c, r, c_{j} are independent on $\left\{w_{j}\right\}$ but depend on moduli of curve and $c \neq 0$ and $\theta\left[\eta_{1}\right]\left(c_{1}, \ldots, c_{g-1}, \Omega\right) \neq$ 0 outside of some divisor in the moduli space $\overline{\mathcal{M}}_{g-1,2}$.

Proposition 3.3. Assume that $\delta=0$. Then $\theta[\eta]\left(\cdot, \Omega_{t}\right)$ depends on the choice of a branch of \sqrt{t} and has the following asymptotics uniformly on compact subsets of \mathbb{C}^{g} :

$$
\begin{aligned}
\theta[\eta]\left(w_{1}, \ldots, w_{g}, \Omega_{t}\right)= & \theta\left[\eta_{1}\right]\left(w_{1}, \ldots, w_{g-1}, \Omega\right) \\
& +\sqrt{t} e^{c w_{g}+r} \theta\left[\eta_{1}\right]\left(w_{1}+c_{1}, \ldots, w_{g-1}+c_{g-1}, \Omega\right) \\
& +\sqrt{t} e^{-c w_{g}-r} \theta\left[\eta_{1}\right]\left(w_{1}-c_{1}, \ldots, w_{g-1}-c_{g-1}, \Omega\right)+O(t),
\end{aligned}
$$

where c, r, c_{j} are moduli-dependent constants and $c \cdot \theta\left[\eta_{1}\right]\left(c_{1}, \ldots, c_{g-1}, \Omega\right) \neq 0$ outside of some divisor in the moduli space.

The two propositions above follow directly from the asymptotics of Ω_{t} (see [13]):

$$
\Omega_{t}=\left(\begin{array}{cc}
\Omega & R^{T} \tag{3.2}\\
R & \frac{1}{2 \pi i} \log t+c
\end{array}\right)+O(t)
$$

where $R \in \mathbb{C}^{g-1}$ and $c \in \mathbb{C}$ are moduli-dependent constants. The eight root of the parametr t in Proposition 3.2 is determined by the branch of the logarithm in the asymptotics above.

4 Farkas' formula for \mathcal{Z}_{g}.

4.1 Odd spinors.

Consider a point in $\tilde{\mathcal{H}}_{g}^{-}\left(\left[2^{g-1}\right]\right)$ represented by a triple (C, ν, ω) as above. Then $\sqrt{\omega}$ is a section of an odd spin bundle L. Denote by Ω the matrix of b-periods for C with respect to ν. Let $\theta[\eta](\cdot, \Omega): \mathbb{C}^{g} \rightarrow \mathbb{C}$ be the theta function with the odd characteristic η given by L and ν. Introduce the differential

$$
\varsigma_{C}(p)=\left.d_{x} \theta[\eta](\mathcal{A}(x-p), \Omega)\right|_{x=p},
$$

where \mathcal{A} is the Abel map (note that $\varsigma_{C}(p)$ does not depend on a lift of $\mathcal{A}(x-p)$ to \mathbb{C}^{g} since $\theta[\eta](0, \Omega)=0)$. This differential is non-zero if and only if $\operatorname{dim} H^{0}(C, L)=1$ and is the square of a section of L. Therefore,

$$
\varsigma_{C}=c \omega
$$

for some (moduli-dependent) constant c.
Let us describe the asymptotics of ς under a degeneration of a curve.
The case of reducible curve. Fix $j>0$ and consider the plumbing family C_{t}^{j}, η for A_{j}. Denote by C_{1} and C_{2} irreducible components of C_{0}^{j}.

Let $K_{i} \subset C_{i} \backslash\left\{p_{i}\right\}$ be a compact subset. We may assume that $K_{i} \subset C_{t}$ for all sufficiently small t. Then Proposition 3.1 implies that

$$
\begin{equation*}
\varsigma_{C_{t}^{j}}(p)=v_{1}(p)+t v_{2}(p), \tag{4.1}
\end{equation*}
$$

where v_{1} is a non-zero holomorphic differential on C_{1} and v_{2} is a holomorphic differential on K_{1};

$$
\begin{equation*}
\varsigma_{C_{t}^{j}}(p)=t w_{1}(p)+t^{2} w_{2}(p), \tag{4.2}
\end{equation*}
$$

where w_{1} is a non-zero meromorphic differential on C_{2} having double pole at p_{2} and no other poles, and w_{2} is a holomorphic differential on K_{2}.

The case of B_{j} is completely analogous.
The case of irreducible curves. Consider first the plumbing family C_{t}^{0}, η for A_{0}. Let K be a compact subset of C_{0}^{0} disjoint from the node. Proposition 3.2 implies that $\varsigma_{C_{t}}$ is determined up to an 8th root of unity and has the following asymptotics:

$$
\begin{equation*}
\varsigma_{C_{t}^{0}}(p)=t^{1 / 8}\left(v_{1}(p)+t v_{2}(p)\right), \tag{4.3}
\end{equation*}
$$

where v_{1} is a non-zero meromorphic differential on C having simple poles at p_{1} and p_{2} and no other poles, and v_{2} is a holomorphic differential on K.

Case 2. Consider now the plumbing family C_{r}^{0}, η for B_{0}. Let K be a compact subset of C_{0}^{0} disjoint from the node. Proposition 3.3 implies that $\varsigma_{C_{r}}$ is well-defined for all $r \neq 0$ and has the asymptotics

$$
\begin{equation*}
\varsigma_{C_{r}^{0}}(p)=v_{1}(p)+r v_{2}(p)+r^{2} v_{3}(p) \tag{4.4}
\end{equation*}
$$

where v_{1} is a non-zero holomorphic differential, v_{2} is a meromorphic differential on C having simple poles at p_{1}, p_{2} and no other poles, and v_{3} is a holomorphic differential on K.

Let us analyze the global behavior of ς. Let $f: \tilde{\mathcal{H}}_{g}^{-}\left(\left[2^{g-1}\right]\right) \rightarrow \mathcal{H}_{g}^{-}\left(\left[2^{g-1}\right]\right)$ be the forgetful projection. We first consider ς as a section of the tautological line bubdle $f^{*} \mathcal{L} \rightarrow \tilde{\mathcal{H}}_{g}^{-}\left(\left[2^{g-1}\right]\right) / \mathbb{C}^{*}$.

Recall that the group $S p(g, \mathbb{Z})$ acts on $\tilde{\mathcal{H}}_{g}^{-}\left(\left[2^{g-1}\right]\right)$ by changing a Torelli marking, and we have $\tilde{\mathcal{H}}_{g}^{-}\left(\left[2^{g-1}\right]\right) / S p(g, \mathbb{Z})=\mathcal{H}_{g}^{-}\left(\left[2^{g-1}\right]\right)$. The fact that the theta function is a modular form of the weight $1 / 2$ can be restated in the following way:

Proposition 4.1. Let (C, ν, L) be a Torelli marked curve, and σ be a $S p(g, \mathbb{Z})$-transformation acting on $H_{1}(C)$. Denote by $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ the matrix of σ with respect to the basis ν. Then

$$
\varsigma_{\sigma_{*} C}=\gamma \sqrt{\operatorname{det}(b \Omega+a)} \cdot \varsigma_{C},
$$

where $\gamma^{8}=1$.
The proposition follows directly from the transformation properties of theta functions (see [10]).
Corollary 4.1. ς^{8} can be considered as a section of the line bundle $\mathcal{L}^{8} \otimes \Lambda^{4} \rightarrow \mathcal{H}_{g}^{-}\left(\left[2^{g-1}\right]\right) / \mathbb{C}^{*}$.

We finalize with the following remark:
Remark 4.1. Let $\mu: \mathcal{C}_{g}^{-} \rightarrow \overline{\mathcal{S}}_{g}^{-}$be the universal spinor curve and ω^{s} be the line bundle on \mathcal{C}_{g}^{-} such that ω^{s} is the corresponding spin bundle restricted to each fiber of μ. Then $\mu_{*} \omega^{s}$ turns out to be a locally-free sheaf of the dimension one. ς^{8} induces a section of the line bundle $\left(\mu_{*} \omega^{s}\right)^{16} \otimes \lambda^{4}$ restricted to \mathcal{S}_{g}^{-}. The asymptotics relations (4.3) - (4.2) imply that this section can be extended to a section of $\left(\mu_{*} \omega^{s}\right)^{16} \otimes \lambda^{4}$ and the divisor of this section is A_{0}. But ς^{8} considered as a section of Sym $^{8} \mathbb{E}_{g}^{s} \otimes \lambda^{4}$ (where \mathbb{E}_{g}^{s} is the Hodge bundle on $\overline{\mathcal{S}}_{g}^{-}$) has a bigger zero locus: it consists of A_{0} and of the closure of the locus of spin curves $(C, L) \in \mathcal{S}_{g}^{-}$such that $\operatorname{dim} H^{0}(C, L)>1$. This is connected with the fact that the pushforward functor is not right exact.

4.2 Asymptotics of the tau function.

We begin with the following technical observation. Let C be a Riemann surface of genus g and v be a holomorphic differential or a meromorphic differential with double poles and zero residues. Denote zeros of v by $p_{1}, \ldots, p_{d} \in C$. Consider simple paths l_{j} from p_{d} to p_{j} for all $j=1, \ldots, d-1$. Let $a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g}$ be simple loops on $C \backslash\left\{p_{1}, \ldots, p_{d}\right\}$ which do not intersect l_{j} and such that their homology classes in $H_{1}(C)$ form a symplectic basis. Denote by $s_{1}, \ldots, s_{2 g+d-1}$ a basis in $H_{1}\left(C \backslash\left\{p_{1}, \ldots, p_{d}\right\}\right)$ dual to the basis represented by $a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g}, l_{1}, \ldots, l_{d-1}$ in the relative homology group $H_{1}\left(C ;\left\{p_{1}, \ldots, p_{d}\right\}\right)$; we have $s_{j}=-b_{j}, s_{g+j}=a_{j}$ and $s_{2 g+j}$ is homologous to a small positive oriented circle around p_{j}.

Put

$$
\begin{aligned}
& z_{j}=\int_{a_{j}} v, \quad j=1, \ldots, g, \\
& z_{j+g}=\int_{b_{j}} v, \quad j=1, \ldots, g, \\
& z_{j+2 g}=\int_{l_{j}} v, \quad j=1, \ldots, d-1 .
\end{aligned}
$$

In the case when v is a holomorphic differential with double zeros the set $\left\{z_{1}, \ldots, z_{2 g+d-1}\right\}$ is the set of homological coordinates introduced above.

Let S_{B} be the Bergman projective connection with respect to the Torelli marking induced by $a_{1}, b_{1}, \ldots, a_{g}, b_{g}$. Denote by m_{k} the multiplicity of the zero p_{k}.

Lemma 4.1. The following relation holds:

$$
\begin{equation*}
\sum_{k=1}^{2 g+d-1} z_{k} \int_{s_{k}} \frac{S_{B}-S_{v}}{v}=-\pi i\left(d+\sum_{k=1}^{d}\left(m_{k}-\frac{1}{1+m_{k}}\right)\right) \tag{4.5}
\end{equation*}
$$

Proof. From Riemann bilinear relations we get that

$$
\sum_{k=1}^{2 g} z_{k} \int_{s_{k}} \frac{S_{B}-S_{v}}{v}=-2 \pi i \sum_{x \in C} \operatorname{Res}_{x}\left(\frac{S_{B}-S_{v}}{v} \int_{p_{d}} v\right) .
$$

Computing residues we obtain

$$
-2 \pi i \sum_{x \in C} \operatorname{Res}_{x}\left(\frac{S_{B}-S_{v}}{v} \int_{p_{d}} v\right)=-\sum_{k=2 g+1}^{2 g+d-1} z_{k} \int_{s_{k}} \frac{S_{B}-S_{v}}{v}-\pi i\left(d+\sum_{k=1}^{d}\left(m_{k}-\frac{1}{1+m_{k}}\right)\right)
$$

which implies (4.5).
Remark 4.2. If v is holomorphic differential with double zeros then the right-hand side of (4.5) is equal to $\frac{8}{3}(1-g)$. This implies the homogeneity property of the tau function.

In fact (4.5) implies that if a function F is defined on some open subset $\mathcal{U} \subset \tilde{\mathcal{H}}_{g}^{-}\left(\left[2^{g-1}\right]\right)$ and satisfies differential equations

$$
\partial_{z_{j}} \log F(C, v)=\frac{-\alpha}{\pi i} \int_{s_{j}} \frac{S_{B}-S_{v}}{v}, \quad j=1, \ldots, 2 g+d-1,
$$

for some $\alpha \in \mathbb{Q}$, then it must satisfy the homogeneity property

$$
\left.F(C, t v)=t^{\alpha\left(d+\sum_{k=1}^{d}\left(m_{k}-\frac{1}{1+m_{k}}\right)\right.}\right) F(C, v) .
$$

Proposition 4.2. Consider a family of Torelli marked curves $\left(C_{t}, \nu_{t}\right)$ in \mathcal{T}_{g} and an odd theta characteristic $\eta \in(\mathbb{Z} / 2 \mathbb{Z})^{2 g}$ such that C_{0} with the spin bundle $L_{0} \rightarrow C_{0}$ represents a point in \mathcal{Z}_{g} and $t \in \mathbb{C}$ is transversal to \mathcal{Z}_{g}. Put $\varsigma_{C_{t}}=\varsigma_{t}$ for simplicity. Assume that $\varsigma_{0} \neq 0$ (i. e. $\left.\operatorname{dim} H^{0}\left(C_{0}, L_{0}\right)=1\right)$. Then the tau function τ has the following asymptotics near \mathcal{Z}_{g} :

$$
\begin{equation*}
\tau\left(C_{t}, s_{t}\right)=c_{0} t^{8}(1+o(1)) \quad \text { as } t \rightarrow 0 \tag{4.6}
\end{equation*}
$$

Proof. Let $\mu: \mathcal{C}_{g}^{-} \rightarrow \overline{\mathcal{S}}_{g}^{-}$be the universal spinor curve and ω^{s} be the line bundle on \mathcal{C}_{g}^{-}such that ω^{s} is the corresponding spin bundle restricted to each fiber of μ. Let $\mathcal{D} \subset \mathcal{C}_{g}^{-}$be the zero locus of ζ^{8} considered as a section of $\left(\omega^{s}\right)^{16} \otimes \lambda^{4}$ and $\tilde{\mathcal{Z}}_{g}$ be the irreducible component of the singular subvarity of \mathcal{D} such that $\mathcal{Z}_{g} \subset \mu\left(\tilde{\mathcal{Z}}_{g}\right)$. We claim that \mathcal{D} intersects itself transversally at a generic point of $\tilde{\mathcal{Z}}_{g}$. It is enough to give an example of such a point to prove our claim. Consider the closure of the locus $H y p \subset \mathcal{C}_{g}^{-}$consisting of hyperelliptic curves. Then $\mathcal{D} \cap H y p$ parametrize Weirstrass points of curves and $\tilde{\mathcal{Z}}_{g} \cap H y p$ is given by singular points of curves. Since all singular points are simple by the definition we have the desired transversality.

Let us now prove Proposition. We may assume that C_{t} defines a family of complex structures on a fixed topological surface. Let $p_{g-2}(t), p_{g-1}(t) \in C$ be the zeros of ς_{t} that coalesce when $t \rightarrow 0$. Introduce a local coordinate $z_{t}: U \rightarrow \mathbb{C}$ on C_{t} near $p_{2 g-2}(0)$ such that $z_{t}\left(p_{g-2}(t)\right)=\sqrt{t}$ and such that $z_{t}\left(p_{g-1}(t)\right)=-\sqrt{t}$ (it is possible because \mathcal{D} intersects itself transversally at a generic point of $\left.\tilde{\mathcal{Z}}_{g}\right)$. Note that the point $\left(C_{t}, \varsigma_{t}\right)$ in $\mathcal{H}_{g}^{-}\left(\left[2^{g-1}\right]\right)$ does not depend on a labeling of zeros, so in our case we have a double cover on which \sqrt{t} make sense. Then one has $\varsigma_{t} \circ z_{t}^{-1}(x)=\left(x^{2}-t\right)^{2}(c+O(t)) d x$ for some $c \neq 0$ and therefore

$$
\int_{p_{g-2}(t)}^{p_{g-1}(t)} \varsigma_{t}=t^{5 / 2}\left(c_{1}+O(t)\right),
$$

where the path of integration is chosen such that $\int_{p_{g-2}(t)}^{p_{g-1}(t)} \varsigma_{t} \rightarrow 0$.
Let $z_{1}(t), \ldots, z_{3 g-2}(t)$ be the homological coordinates associated with the triple $\left(C_{t}, \nu_{t}, \varsigma_{t}\right)$ for $t \neq 0$. We may assume that $z_{3 g-2}(t)=t^{5 / 2}\left(c_{1}+O(t)\right)$. Consider a small open neighborhood $\mathcal{U} \subset \mathcal{S}_{g}^{-}$of $\left(C_{0}, L_{0}\right)$. Then calculations above imply that the map

$$
\mathcal{U} \xrightarrow{\left[z_{1}: \cdots: z_{3 g-3}: z_{3 g-2}^{2 / 5}\right]} \mathbb{C} P^{3 g-3}
$$

is an embedding and the image of $\mathcal{Z}_{g} \cap \mathcal{U}$ is given by the intersection with the hyperplane $\left\{z_{3 g-2}=0\right\}$.

Denote the image of \mathcal{U} in $\mathbb{C} P^{3 g-3}$ by \mathcal{V} and the pullback of \mathcal{V} to $\mathbb{C}^{3 g-2}$ by $\tilde{\mathcal{V}}$. The function τ written in local coordinates $z_{1}, \ldots, z_{3 g-2}$ can be considered as a function on the two-sheeted cover of $\tilde{\mathcal{V}} \backslash\left\{z_{3 g-2}=0\right\}$ which is defined by the square root $\sqrt{z_{3 g-2}}$. The relation (2.1) implies that

$$
\begin{equation*}
\tau\left(z_{1}, \ldots, z_{3 g-2}\right)=c\left(z_{3 g-2}^{2 / 5}\right) \tilde{\tau}\left(z_{1}, \ldots, z_{3 g-3}\right)(1+o(1)) \tag{4.7}
\end{equation*}
$$

as $z_{3 g-2} \rightarrow 0$ where c is a meromorphic function having a singularity at the origin and $\tilde{\tau}\left(z_{1}, \ldots, z_{3 g-3}\right)$ is a holomorphic function ($\tilde{\tau}$ is nothing but 72 th power of the Bergman tau function considered on the stratum of holomorphic differentials on genus g surfaces having $g-3$ double zero and one zero of order 4 . This stratum projects to a dense open subset of \mathcal{Z}_{g}). A simple estimate shows that $z \frac{d}{d z} \log c(z)$ is bounded and therefore c must be meromoprhic near the origin.

Lemma 4.1 applied to the function $\tilde{\tau}$ implies that $\tilde{\tau}$ is homogenous with the degree of homogeneity equal to $16(g-1)-\frac{16}{5}$. Therefore comparing the degree of homogeneity of the left-hand side and the right-hand side of (4.7) one concludes that $c(z)=z^{8}\left(c_{0}+o(1)\right)$.

Fix $j>0$ and consider a plumbing family C_{t}^{j}, η for A_{j}. Denote C_{t}^{j} and $\varsigma_{C_{t}^{j}}$ by C_{t} and ς_{t} for simplicity.

Proposition 4.3. The tau function τ has the following asymptotics near $A_{j}, j>0$:

$$
\begin{equation*}
\tau\left(C_{t}, \varsigma_{t}\right)=c t^{16(g-j)}(1+o(1)) \quad \text { as } t \rightarrow 0 \tag{4.8}
\end{equation*}
$$

Proof. Recall that on any compact subset of $C_{2} \backslash\left\{x_{2}\right\}$ one has

$$
t^{-1} \varsigma_{t} \rightarrow v_{2}
$$

as $t \rightarrow 0$, where v_{2} is a meromorphic differential on C_{2} with a double pole at x_{2} and no other poles (see (4.2)). Fix some enumeration $p_{1}(t), \ldots, p_{g-1}(t)$ of zeros of ς_{t} such that $p_{1}(t), \ldots, p_{g-j-1}(t), p_{g-1}(t)$ C_{2}. Let $z_{1}, \ldots, z_{3 g-2}$ be homological coordinates constructed with respect to $\nu_{1} \cup \nu_{2}$ and the chosen numeration of zeros. Then direct computations using the differential equation (2.1) and asymptotics relations (4.1) and (4.2) give

$$
\frac{d}{d t} \log \tau\left(C_{t}, s_{t}\right)=-t^{-1} \cdot \frac{6}{\pi i} \sum_{k=1}^{d} z_{k} \int_{s_{k}} \frac{S_{B}-S_{v_{2}}}{v_{2}}+O(1) \quad \text { as } t \rightarrow 0
$$

where S_{B} is the Bergman projective connection, $d=3 g-j-1$ and s_{1}, \ldots, s_{d} is the basis in $H_{1}\left(C_{2} \backslash\left\{p_{1}(0), \ldots, p_{g-j-1}(0), p_{g-1}(0)\right\}\right)$ dual to the basis in the relatives homology group defining homological coordinates. By Lemma 4.1 one sees that

$$
\frac{d}{d t} \log \tau\left(C_{t}, \varsigma_{t}\right)=\frac{16(g-j)}{t}+O(1)
$$

which implies (4.9).

Proposition 4.4. The tau function τ has the following asymptotics near $B_{j}, j>0$:

$$
\begin{equation*}
\tau\left(C_{t}^{j}, \varsigma_{C_{t}^{j}}\right)=c t^{16 j}(1+o(1)) \quad \text { as } t \rightarrow 0 \tag{4.9}
\end{equation*}
$$

The proof is completely analogously to the previous one.
Consider the plumbing family C_{t}^{0}, η for A_{0} and the corresponding differential $\varsigma_{C_{t}^{0}}$. Fix some branch of $t^{1 / 8}$. Recall that $\frac{1}{t^{1 / 8}} \varsigma_{C_{t}} \rightarrow v$ as $t \rightarrow 0$ for some (generically not identically vanishing) meromorphic differential v on the normalization of C_{0}^{0} having simple poles at p_{1}, p_{2} (where p_{1} and p_{2} projects to the node) and no other poles (see (4.3)). We denote $\frac{1}{t^{1 / 8}} \varsigma_{C_{t}}$ by $\tilde{\varsigma}_{t}$ and C_{t}^{0} by C_{t}.

Proposition 4.5. The tau function τ has the following asymptotics near A_{0} :

$$
\begin{equation*}
\tau\left(C_{t}, \tilde{\varsigma}_{t}\right)=c t^{6}(1+o(1)) \quad \text { as } t \rightarrow 0 \tag{4.10}
\end{equation*}
$$

Proof. Let $z_{1}(t)=\int_{a} \tilde{\varsigma}_{t}$ and $z_{2}(t)=\int_{b} \tilde{\varsigma}_{t}$. Consider the parameter

$$
\tilde{t}=\exp \left(2 \pi i \frac{z_{2}(t)}{z_{1}(t)}\right)
$$

Recall that when t goes around zero then b changes to $b+a$ and $\tilde{\varsigma}_{t}$ to $\gamma \tilde{\varsigma}_{t}$ where $\gamma^{8}=1$. This implies that \tilde{t} can be naturally extended as a function of t for all $t \in \mathbb{D}$. The asymptotics $\int_{b} \tilde{\varsigma}_{t}=\frac{z_{1}(0)}{2 \pi i} \log t+O(1)$ (see (3.2)) implies that $\tilde{t}(0)=0$ and $\tilde{t}(t)$ is one-to-one map near the origin.

We fix some labeling of zeros of $\tilde{\varsigma}_{t}$ and introduce the corresponding homological coordinates. Note that $\tau\left(C_{t}, \tilde{\epsilon}_{t}\right)$ is correctly defined for all sufficiently small $t \in \mathbb{C}$. Using the equation (2.1) defining the tau function we compute by the chain rule that

$$
-\frac{\pi i}{6} \cdot \frac{d}{d \tilde{t}} \log \tau\left(C_{\tilde{t}}, \tilde{\varsigma_{\tilde{t}}}\right)=\frac{z_{1}(0)}{2 \pi i \tilde{t}} \int_{a} \frac{S_{B}-S_{\tilde{\zeta}_{\tilde{F}}}}{\tilde{\varsigma}_{\tilde{t}}} \cdot(1+o(1))
$$

as $t \rightarrow 0$. Computing the residue $\operatorname{Res}_{p_{1}} \frac{S_{B}-S_{\tilde{\sigma}_{0}}}{\tilde{\tilde{\sigma}_{0}}}$ we obtain

$$
\frac{d}{d \tilde{t}} \log \tau\left(C_{\tilde{t}}, \tilde{\varsigma}_{\tilde{t}}\right)=\frac{6}{\tilde{t}}(1+o(1))
$$

which implies (4.10).
Consider now the plumbing family C_{r}^{0}, η for B_{0}. Recall that by (4.4) there exists a holomorphic differential v on the normalization C of C_{0}^{0} and a meromorphic differential w on C having simple poles at p_{1} and p_{2} (where p_{1} and p_{2} projects to the node) and no other poles such that $\varsigma_{C_{r}^{j}}=v+r w+O\left(r^{2}\right)$. Put $\varsigma_{r}=\varsigma_{C_{r}^{0}}$ and $C_{r}=C_{r}^{0}$ to simplify notations.

Proposition 4.6. The tau function τ has the following asymptotics near B_{0} :

$$
\tau\left(C_{r}, \varsigma_{r}\right)=c r^{16}(1+o(1)) \quad \text { as } r \rightarrow 0 .
$$

Proof. Let \mathcal{U} be a small open polydisc in $\overline{\mathcal{S}}_{g}^{-}$centered at $\left(C_{0}, L_{0}\right)$ and let \mathcal{V} be a connected component of the pullback of \mathcal{U} to $\tilde{\mathcal{H}}_{g}^{-}\left(\left[2^{g-1}\right]\right)$. Introduce homological coordinates $z_{1}, \ldots, z_{3 g-2}$ on \mathcal{V} that are numbered as follows:

$$
z_{g}\left(C_{r},\{a, b\} \cup \nu, \varsigma_{C_{r}}\right)=\int_{a} \varsigma_{r}, \quad z_{2 g}\left(C_{r},\{a, b\} \cup \nu, \varsigma_{r}\right)=\int_{b} \varsigma_{r}
$$

and the $(g-1)$ th zero of the differential ς_{r} tends to the node under a degeneration of the underlying curve. Note that by the asymptotics (4.4)

$$
z_{g}\left(C_{r},\{a, b\} \cup \nu, \varsigma_{r}\right)=\operatorname{cr}(1+o(1))
$$

for some generically non-zero constant c. The asymptotics (4.4) implies that

$$
\begin{equation*}
r \int_{b} \frac{S_{B}-S_{\varsigma_{r}}}{\varsigma_{r}}=O(1) \tag{4.11}
\end{equation*}
$$

as $r \rightarrow 0$.
Computing the derivatives of τ with respect to z_{j} for all $j \neq g, 2 g$ by (2.1), we obtain the asymptotics

$$
\begin{equation*}
\tau\left(z_{1}, \ldots, z_{3 g-2}\right)=c\left(z_{g}, z_{2 g}\right) \tilde{\tau}\left(z_{1}, \ldots, \hat{z}_{g}, \ldots, \hat{z}_{2 g}, \ldots, z_{3 g-3}\right)(1+o(1)) \quad \text { as } z_{g} \rightarrow 0 \tag{4.12}
\end{equation*}
$$

where $\tilde{\tau}$ is the tau function on $\tilde{\mathcal{H}}_{g-1}^{-}\left(\left[2^{g-2}\right]\right)$.
The factor $c\left(z_{g}, z_{2 g}\right)$ is a holomorphic function in some punctured neighborhood of the line $\{(0, z), z \in \mathbb{C}\}$ in \mathbb{C}^{2}. The estimate (4.11) shows that $\frac{\partial}{\partial z_{g}} \log \tau$ has at most simple pole at $z_{g}=0$, hence the function $c\left(z_{g}, z_{2 g}\right)$ is meromorphic at $z_{g}=0$. Consider the Laurent series

$$
c\left(z_{g}, z_{2 g}\right)=\sum_{j=N}^{+\infty} c_{j}\left(z_{2 g}\right) z_{g}^{j}
$$

It follows from the differential equation defining τ that $\frac{\partial}{\partial z_{2 g}} \log \tau=O\left(z_{g}\right)$; therefore c_{N} does not depend on $z_{2 g}$. According to Lemma 2.1 the degree of homogeneity of τ under the \mathbb{C}^{*} action on differentials is equal to $16(g-1)$, whereas the degree of homogeneity of $\tilde{\tau}$ is equal to $16(g-2)$. Thus, comparing the orders of homogeneity of the right-hand side and the left-hand side of (4.12) one sees that $N=16$.

4.3 The formula.

Now we can prove the following statement originally obtained by G. Farkas [4]:
Theorem. The class $\left[\mathcal{Z}_{g}\right]$ has the following expression via the standard basis of the rational Picard group of $\overline{\mathcal{S}}_{g}^{-}$:

$$
\begin{equation*}
\left[\mathcal{Z}_{g}\right]=(g+8) \lambda-\frac{g+2}{4} \alpha_{0}-2 \beta_{0}-\sum_{j=1}^{[g / 2]} 2(g-j) \alpha_{j}-\sum_{j=1}^{[g / 2]} 2 j \beta_{j} . \tag{4.13}
\end{equation*}
$$

Proof. Note that $\varsigma^{16(g-1)}$ is a section of the line bundle

as it was shown in Corollary 4.1 (see Subsection 4.1 for the definition of ς). By Lemma 2.1 the tau function defines a homomorphism from $\mathcal{L}^{16(g-1)}$ to Λ^{72}. Applying this homomorphism to the section $\varsigma^{16(g-1)}$ we obtain a section of $\Lambda^{8 g+64}$ which we denote by $\tilde{\psi}$.

Consider the locus $\mathcal{X}=\left\{(C, \omega) \in \mathcal{H}_{g}^{-}\left(\left[2^{g-1}\right]\right): \operatorname{dim}|\operatorname{div} \sqrt{\omega}|>0\right\}$ (that is, the locus of abelian differentials with double zeros such that the dimension of the space of holomorphic sections of the corresponding spin bundle is larger than one). Note that $\left.\pi\right|_{\mathcal{H}_{g}^{-}\left(\left[2^{g-1}\right]\right) \backslash \mathcal{X}}$ is one-to-one and $\pi\left(\mathcal{H}_{g}^{-}\left(\left[2^{g-1}\right]\right) \backslash \mathcal{X}\right)=\mathcal{S}_{g}^{-} \backslash \mathcal{Z}_{g}$, where π is the map from $\mathcal{H}_{g}^{-}\left(\left[2^{g-1}\right]\right)$ to \mathcal{S}_{g}^{-}which maps a differential to the corresponding spin bundle. We also have $\pi(\mathcal{X}) \subset \mathcal{Z}_{g}$.

Put $\psi=\pi_{*}\left(\left.\tilde{\psi}\right|_{\mathcal{H}_{g}^{-}\left(\left[2^{g-1}\right]\right) \backslash \mathcal{X}}\right)$. We have $\pi_{*} \Lambda^{8 g+64} \simeq \lambda^{8 g+64}$, therefore ψ is a holomorphic section of $\left.\lambda^{8 g+64}\right|_{\mathcal{S}_{g}^{-} \backslash \mathcal{Z}_{g}}$. Let $\mathcal{U} \subset \overline{\mathcal{S}}_{g}^{-}$be an open contractible subset. Choosing a trivialization $\phi:\left.\lambda\right|_{\mathcal{U}} \rightarrow$ $\mathcal{U} \times \mathbb{C}$ we obtain a holomorphic function $\phi^{\otimes 8 g+64} \circ \psi: \mathcal{U} \cap\left(\mathcal{S}_{g}^{-} \backslash \mathcal{Z}_{g}\right) \rightarrow \mathbb{C}$. Propositions 4.2 4.6 and asymptotics (4.3) - (4.2) imply that this function can be holomorphicaly extended to \mathcal{U}. Therefore we can extend the section ψ to $\overline{\mathcal{S}}_{g}^{-}$. Propositions $4.2-4.6$ and asymptotics (4.3) - (4.2) also imply that

$$
[\operatorname{div} \psi]=16 \beta_{0}+(4+2 g) \alpha_{0}+16 \sum_{j=2}^{[g / 2]}(g-j) \alpha_{j}+16 \sum_{j=2}^{[g / 2]} j \beta_{j}+8\left[\mathcal{Z}_{g}\right]
$$

On the other hand,

$$
[\operatorname{div} \psi]=(8 g+64) \lambda
$$

in the rational Picard group of $\overline{\mathcal{S}}_{g}^{-}$by definition of ψ. Hence

$$
(8 g+64) \lambda=16 \beta_{0}+(4+2 g) \alpha_{0}+16 \sum_{j=2}^{[g / 2]}(g-j) \alpha_{j}+16 \sum_{j=2}^{[g / 2]} j \beta_{j}+8\left[\mathcal{Z}_{g}\right] .
$$

which implies Formula (4.13).

5 A formula for the theta-null divisor.

The purpose of this Section is to show that the Farkas' formula for the class of the theta-null divisor (see [5]) in the rational Picard group of the moduli space of even spin curves can be obtained by using the modular properties of the theta function.

Let $\overline{\mathcal{S}}_{g}^{+}$be the moduli space of even spin curves of genus g and let $\mathcal{S}_{g}^{+} \subset \overline{\mathcal{S}}_{g}^{+}$be the subspace consisting of smooth spin curves. Consider the theta-null divisor:

$$
\Theta_{\mathrm{null}}=C l\left\{(C, L) \in \mathcal{S}_{g}^{+}: \operatorname{dim} H^{0}(C, L)>0\right\}
$$

where the closure is taken in $\overline{\mathcal{S}}_{g}^{+}$.
The rational Picard group of $\overline{\mathcal{S}}_{g}^{+}$. We follow notations of [5] in the description of the Picard group here. Let $\rho: \overline{\mathcal{S}}_{g}^{+} \rightarrow \overline{\mathcal{M}}_{g}$ be the natural projection. The boundary $\overline{\mathcal{S}}_{g}^{+} \backslash \mathcal{S}_{g}^{+}$is a union of irreducible divisors $A_{0}, B_{0}, \ldots, A_{[g / 2]}, B_{[g / 2]}$ such that $\rho\left(A_{j}\right)=\rho\left(B_{j}\right)=\Delta_{j}$ for all $j=0, \ldots,\left[\frac{g}{2}\right]$.

If $j \neq 0$ then a generic point in A_{j} is represented by an even spin bundle on each of the two irreducible components of a reducible genus g curve with one node. Generic points in B_{j} are similarly represented by odd spin bundles. In these cases we also replace the node by an exceptional component.

Pulling back a one-nodal curve from Δ_{0} to $\overline{\mathcal{S}}_{g}^{-}$we may have two possibilities, either the the obtained spin curve has an exceptional component or not. Let the divisor B_{0} parametrizes such spin curves with exceptional component and A_{0} parametrizes one-nodal irreducible spin curves.

Let \mathbb{E}_{g} be the pullback of the Hodge vector bundle from $\overline{\mathcal{M}}_{g}$ to $\overline{\mathcal{S}}_{g}^{+}$and let λ be the class in $\operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right) \otimes \mathbb{Q}$ of the determinant bundle $\bigwedge^{g} \mathbb{E}_{g}$. Denote by α_{j} and β_{j} the classes of A_{j} and B_{j} in the rational Picard group respectively. The group $\operatorname{Pic}\left(\overline{\mathcal{S}}_{g}^{+}\right) \otimes \mathbb{Q}$ is generated by $\lambda, \alpha_{0}, \ldots, \alpha_{[g / 2]}, \beta_{0}, \ldots, \beta_{[g / 2]}$.

Theta function as a modular form. Consider a smooth spin curve (C, L) representing some point in \mathcal{S}_{g}^{+}and let ν be a Torelli marking of C. Denote by η the theta characteristic of L and by Ω the matrix of b-periods induced by ν. It is well-known that $(\theta[\eta](0, \Omega))^{8}$ is a modular form of weight 4 on the level 2 cover of \mathcal{M}_{g} (note that the action of $\operatorname{Sp}(g, \mathbb{Z})$ on theta characteristics projects to the action of $S p(g, \mathbb{Z} / 2 \mathbb{Z}))$. Therefore $(\theta[\eta](0, \Omega))^{8}$ pulls back to \mathcal{S}_{g}^{+}as a section of $\left.\left(\bigwedge^{g} \mathbb{E}_{g}\right)^{\otimes 4}\right|_{\mathcal{S}_{g}^{+}}$. We denote this section by ϑ. From the classical Riemann theorem we get that the divisor of ϑ on \mathcal{S}_{g}^{+}is equal to $n \cdot\left(\Theta_{\text {null }} \cap \mathcal{S}_{g}^{+}\right)$for some $n \in \mathbb{Z}_{>0}$. It is well-known that the order of vanishing of theta constants along $\Theta_{\text {null }}$ is equal to 2 , thus we have $n=16$ (see [12]).

The section ϑ can be extended to the compactified space $\overline{\mathcal{S}}_{g}^{+}$. To show this consider a trivialization $\phi:\left.\bigwedge^{g} \mathbb{E}_{g}\right|_{\mathcal{U}} \rightarrow \mathcal{U} \times \mathbb{C}$ over some open subset $\mathcal{U} \subset \overline{\mathcal{S}}_{g}^{+}$. Then well-known boundary asymptotics of theta constants near the boundary (see [3]) implies that the holomorphic function $\phi \circ \vartheta: \mathcal{U} \cap \mathcal{S}_{g}^{+} \rightarrow \mathbb{C}$ can be extended to the holomorphic function on \mathcal{U} (see also computations in the Section 3). Therefore the section ϑ can be extended to $\overline{\mathcal{S}}_{g}^{+}$and we have the following relation in the rational Picard group of $\overline{\mathcal{S}}_{g}^{+}$:

$$
\begin{equation*}
\left[\operatorname{div}_{\overline{\mathcal{S}}_{g}^{+}} \vartheta\right]=16\left[\Theta_{\text {null }}\right]+\alpha_{0}+8 \sum_{j=1}^{[g / 2]} \beta_{j}, \tag{5.1}
\end{equation*}
$$

where [] denotes the class of a divisor in the rational Picard group.
Theorem. We have

$$
\begin{equation*}
\left[\Theta_{\text {null }}\right]=\frac{1}{4} \lambda-\frac{1}{16} \alpha_{0}-\frac{1}{2} \sum_{j=1}^{[g / 2]} \beta_{j} . \tag{5.2}
\end{equation*}
$$

Proof. Since ϑ is a section of $\left(\bigwedge^{g} \mathbb{E}^{g}\right)^{\otimes 4}$,

$$
\left[\operatorname{div}_{\overline{\mathcal{S}}_{g}^{+}}\right] \vartheta=4 \lambda
$$

from where (5.2) immediately follows.
Acknowledgements. The author is grateful to D. Korotkin for proposing the problem and general guidance. The author also thanks A. Kuznetsov for a helpful review in algebraic geometry, P. Zograf for many useful suggestions and referees for many useful remarks. The author is grateful to the referee for carefully reading the manuscript and proposing numerous improvements.

References

[1] M. Atiyah, Riemann surfaces and spin structures, Ann. Scient. Ec. Norm. Sup. 4 (1971) 4762.
[2] M. Cornalba, Moduli of curves and theta-characterstics, Lectures on Riemann surfaces (Trieste, 1987), 560-589.
[3] R. Donagi, The Schottky problem, Theory of Moduli Lecture Notes in Mathematics Volume 1337, 1988, pp 84-137
[4] G. Farkas, A. Verre, The geometry of the moduli space of odd spin curves, arXiv:1004.0278.
[5] G. Farkas, The birational type of the moduli space of even spin curves, Advances in Mathematics 223 (2010), 433-443.
[6] A. Kokotov, D. Korotkin, Tau-functions on spaces of Abelian differentials and higher genus generalization of Ray-Singer formula, J. Diff. Geom. 82 (2009), 35-100.
[7] D. Korotkin, P. Zograf, Tau function and moduli of differentials, Math. Res. Lett. 18, no.3, 447-458 (2011).
[8] M. Kontsevich, A. Zorich, Lyapunov exponents and Hodge theory, The mathematical beauty of physics (Saclay, 1996), 318332, Adv. Ser. Math. Phys. 24, World Sci. Publ. (1997); Extended version: arXiv:hep-th/9701164 (1997).
[9] M. Kontsevich, A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Inventiones Mathematicae, 153, (2003), 631-678.
[10] D. Mumford, Tata lectures on theta I, Birkhauser (2007).
[11] D. Mumford, Theta-characteristics of an algebraic curve, Ann. Scient. Ec. Norm. Sup. 2 (1971) 181191.
[12] Teixidor i Bigas, Montserrat, The divisor of curves with a vanishing theta-null, Compositio Mathematica 66.1 (1988): 15-22.
[13] Yamada, A.: Precise variational formulas for abelian differentials. Kodai Math. J. 3(1), 114143 (1980)

[^0]: *This work was supported by the Chebyshev Laboratory (Department of Mathematics and Mechanics, St. Petersburg State University) under RF Government grant 11.G34.31.0026, by JSC "Gazprom Neft" and by RFBR grant 12-01-31492.

[^1]: ${ }^{1}$ In fact this is the 72 -th power of the Bergman tau function studied in [6]. The name "tau function" is due to the relation of τ to isomonodromic Jimbo-Miwa tau function in the case of Hurwitz spaces.

