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Abstract. In this paper we prove (under some technical assumptions)
that any differential-graded lie algebra which has adjoint module quasi-
isomorphic to the trivial module is homotopy abelian, i.e. itself quasi-
isomorphic to abelian lie superalgebra.
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1. Introduction

The adjoint module of a lie algebra contains all the information about it -
it’s almost meaningless that if adjoint module is trivial, then the lie algebra
is abelian. However, for the differential-graded lie algebras, the homotopy
analogue of this statement is not trivial at all. The theorem presented in
this paper suffers from some technical assumptions, but we hope that they
can be avoided (considering some finiteness conditions on the cohomology)
and this fact could be useful in deformation theory.

Theorem 1.1. Let L be a differential-graded lie algebra with finite-dimensional
grading components. Let adL be its adjoint module. Then if adL is quasi-
isomorphic to the module with trivial action, then L is quasiisomorphic to
the abelian algebra.

Our proof uses the heavy machinery of L∞-algebras, but, in our opinion,
is quite straightforward from the ∞−point of view.

2. Recall of L∞ things

We prefer to work with coalgebras rather than with algebras, but under
the technical assumptions we use these two categories are antiequivalent (by
the functor of graded dual). Every time we are talking about vector spaces
we mean graded finite dimensional in each grading component supervector
spaces.

Let us denote S(V ) the algebra of formal series on the vector space V
with the standard topology (the sequence converges iff it becomes stable in
each degree component).
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Definition 2.1. L∞-coalgebra structure on the vector space V is the con-
tinuous odd derivation Q on S(V [1]), such that Q2 = 0, preserving augmen-
tation.

V [1] topologically generates S(V [1]), so Q can be given in terms of its
action on the first component, i.e. infinite series of operations

Qk : V → Λk(V )[k − 1]

The fact that Q2 = 0 in this form is expressed in terms of some explicit
quadratic relations between these operations.

Definition 2.2. Homomorphisms in the category of L∞-coalgebras are the
augmentation-preserving homomorphisms of the underlying algebras, com-
muting with Q.

So, the category of L∞-coalgebras can be defined as the full subcategory
of the category of topological dg-algebras with augmentation consisting of
the completed free algebras.

Example 2.3. Let L be the differential-graded lie coalgebra with a differen-
tial ∂ and cocommutator ∆, and let us denote the sign shifting operator by σ.
Then setting Q1 = σ◦∂ and Q2 = (1⊗σ)◦∆ we get the so-called Chevalley-
Eilenberg complex, which is the simplest example of L∞-coalgebra.

Theorem 2.4 (Minimal model theorem). Any L∞-coalgebra is isomorphic
to the direct sum of it’s minimal model - coalgebra with Q1 = 0 and acyclic
coalgebra - coalgebra with Q1 acyclic and Qk = 0 for k > 0. Minimal model
is unique up to L∞ morphism.

This theorem is proved in [2], but because this book is unpublished, in
sake of completeness of the exposition we recall the proof of this theorem in
the appendix.

Theorem 2.5 (Functorial replacement theorem). Any L∞-coalgebra can be
functorially replaced with the quasiisomorphic differential-graded lie coalge-
bra.

This theorem is proved in [1], Corollary 1.6.

Corrolary 2.6. Two dg-lie coalgebras sharing the same minimal model are
quasiisomorphic.

Definition 2.7. Let us call a Z-graded completed symmetric algebra S(V )
contained in some degrees iff V is contained in these degrees.

It is independent of picking the generators of our algebra, because V can
be canonically identified with m/m2, where m is the unique maximal ideal

of S(V ).

Definition 2.8. Category of coalgebra-comodule pairs L∞[ε] is the category
of L∞-coalgebras with additional Z-grading, contained in the degrees 0 and
1.
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Having this structure on the space S(L⊕M) (where L is of additional
degree 0, M is of additional degree 1), we denote it as (L,M) and call M a
comodule over coalgebra L.

Now let (L,M) be an object of L∞[ε]. Then we can define operations
Qk : L[1] → Sk(L[1]) and Ak : M [1] → M [1] ⊗ Sk−1(L[1]), where the last
space is viewed as the component of additional degree 1 in Sk(L⊕M [1]).

Definition 2.9. The polarization morphism Polk : Sk(V )→ V ⊗ Sk−1

is defined as

Polk(P ) =
∑
i

ei ⊗ ∂

∂ei
P

where e1, ..., en is a basis in V .

Definition 2.10. Adjoint comodule (L, adL) is the pair (L,L) with the
operations Ak = Polk ◦Qk.

This notion also makes sense for any algebra over any operad.

3. Adjoint comodule as a tangent bundle

In this section we are going to prove that adjoint comodule is a functor
from L∞ to L∞[ε]. In order to do this we present a canonical construction
of it.

Let Ai = S(Vi) be the algebra of formal power series over Vi. Then

we will denote by A1 ⊗ A2 = S(V1 ⊕ V2). It is clearly a bifunctor (i.e. any
augmentation preserving continuous morphisms f1 : A1 → B1, f2 : A2 → B2

gives rise to the morphism f1 ⊗ f2 : A1 ⊗A2 → B1 ⊗B2).

Obviously, taking S(V ) ⊗ S(W ) = S(V ⊕W ) corresponds to the direct
sum of L∞ structures.

Definition 3.1. The diagonal ideal I∆ ⊂ A ⊗ A is the ideal generated by
vectors v⊗1−1⊗v, v ∈ V (equivalently, it’s the kernel of the multiplication
morphism m : A⊗A→ A).

Let us assume that A is endowed with a differential Q, providing the L∞-
structure on V [−1]. Then A⊗A also has a structure Qk = Qk⊗ 1 + 1⊗Qk.
It is easy to see that I∆ is invariant under the action of this derivation.

Definition 3.2. The tangent bundle to the L∞ structure on A is the induced
differential on the completed associated graded algebra for the filtration
given by Fk = Ik∆ (which turns out to be the same as an algebra, but with
completely different Q).

Theorem 3.3. The pair (L, adL) is isomorphic to the tangent bundle of L.

Proof. Let us pick a basis t1, t2, ... in a space L. Then for algebra S(L⊕ L)
let us pick the basis in L⊕ L as xi = 1⊗ ti, yi = ti ⊗ 1− 1⊗ ti. The ideal
I∆ is generated by yi’s, and so the completed associated graded algebra can
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be naturally identified with algebra S(x1, ..., y1, ...) with xi’s having degree
0 and yi’s having degree 1 (and shifted parity).

Also we will make use of another basis x̃i = xi, ỹi = xi + yi

Now let us calculate the differential on the tangent bundle:

Q =
∑
k

[Qk]ji1...ik x̃
i1 ...x̃ik

∂

∂x̃j
+ [Qk]ji1...ik ỹ

i1 ...ỹik
∂

∂ỹj
=

=
∑
k

[Qk]ji1...ikx
i1 ...xik(

∂

∂xj
− ∂

∂yj
)+

∑
k

[Qk]ji1...ik(xi1+yi1)...(xik+yik)
∂

∂yj
=

=
∑
k

[Qk]ji1...ikx
i1 ...xik

∂

∂xj
+
∑
k

∑
l

[Qk]ji1...ikx
i1 ...yil ...xik

∂

∂yj
+ o(y)

and the answer tautologically correspond to the
∑

kQk+Ak for the adjoint
comodule.

�

Corrolary 3.4. Adjoint comodule is canonical (i.e. for any L∞-morphism
f : L1 → L2) there is Df : (L1, adL1)→ (L2, adL2) with obvious functoriality
properties.

Note 3.5. Adjoint module can be made into a functor explicitly. If we
start with picking a basis x1, ..., xn in an L∞ coalgebra L1, y1, ..., yn in its
adjoint module, analogous x̃1, ..., x̃n, ỹ1, ..., ỹn for L2 and assume a morphism

F : L2 → L1 such that F (x̃i) = fi(x
1, ..., xn), then adF (ỹi) = ∂f i

∂xj y
j .

4. Main theorem

In this section we are going to prove the following theorem:

Theorem 4.1. Let the pair (L, adL) be quasiisomorphic to the pair (L,M),
where the action of L on M is trivial. Then L is quasiisomorphic to the
abelian lie dg-algebra.

Proof. Let us assume that the statement (L, adL) 'qsi (L,M) holds.
Step 1: By the minimal model theorem L ' HL⊕A, where A is acyclic.

So, by functoriality (Corollary 3.4) the pair (L, adL) ' (HL ⊕ A, adHL
⊕

adA) = (HL, adHL
) ⊕ (A, adA), and, hence, (HL, adHL

) is a minimal model
for (L, adL). On the other hand, the pair (L,M) is just (L, 0) ⊕ (0,M)
and, hence, its minimal model for (L,M) is just (HL, HM ), where HM is a
cohomology of Q1 on M .

Note 4.2. This step can be done explicitly using the sum-over-trees for-
mula, avoiding the subtle argument based on the canonicity of the adjoint
comodule. This point of view is exposed in the Appendix 2.
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Step 2: So, (HL, adHL
) ' (HL, HM ). Let us pick the first nontrivial

higher operation Qk.
Step 3: L∞-morphisms act on a first nontrivial operation by linear trans-

formations.
Step 4: But the first nontrivial operation has the component Ak which

is the polarization of Qk (hence nonzero if Qk is nonzero) and it can’t be
killed by linear transformations. �

Corrolary 4.3. Theorem 1.1 holds.

5. Appendix: Minimal model theorem

The proofs in this section mostly follow the book [2].

At first, let us assume that F : S(X) → S(Y ) is a continuous morphism
of algebras. Then the formal inverse function theorem holds:

Theorem (Inverse function theorem). The map F is invertible iff F1 : X →
Y is invertible.

Proof. Taking F−1
1 ◦F we get an endomorphism of S(X), which, as a linear

operator, has the form Id+N , where N increases the degree. Then 1−N +
N2 − ... converges and gives the inverse endomorphism. �

Now, let us consider the L∞-algebra with acyclic Q1. Then the simple
case of MMT, the acyclicity theorem states that

Theorem (Acyclicity theorem). (S(V ), Q) ' (S(V ), Q1)

Proof. Let us pick the basis x1, ..., xn, y1, ..., yn such that Q1(xi) = yi (which
can be done because Q1 is acyclic). Then the change of coordinates x̃i →
xi, ỹi → Q(xi) gives us the invertible morphism from (S(V ), Q1) to the

(S(V ), Q). �

Now we are going to consider the general case.

Theorem (Minimal model theorem). Any L∞-coalgebra is isomorphic to
the direct sum of acyclic coalgebra and minimal model - coalgebra with Q1 =
0.

Proof. Analogously, we consider the basis x1, ..., xn, y1, ..., yn, z1, ..., zm such
that Q(xi) = yi, Q(yi) = Q(zi) = 0. Now we change the variables to the
xi → xi, yi → Q(xi), zi → zi. In these variables we have

Q =
∑
k

[Pk]i(x, y, z)
∂

∂zi
+ yi

∂

∂xi

where [Pk]i are homogeneous polynomials of degree k in supercommuting
variables xi, yi, zi.

We proceed by induction. Let us consider the minimal l such that [Pl]
depends not only of z. From Q2 = 0 we instantly get ∀j
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yi
∂[Pl]

j

∂xi
= 0

[Pl]
j = [Zl]

j + [Sl]
j , where [Zl] depends only on z, [Sl] ∈ I = 〈x, y〉.

Then [Sl]
j ∈ S>0(x, y)⊗ S(z), which is acyclic under the action of yi ∂

∂xi .

Now let us consider M j such that

yi
∂M j

∂xi
= [Sl]

j

Now we perform the transformation xi → xi, yi → yi, zi → zi−M i. Then,
Q(zi −M i) = Q(zi) − [Pl]

i + [Zl]
i which depends only of z in the degrees

≤ l and, as M i = o(z), depends only of zi −M i in the degrees ≤ l.
Hence, doing this transformations step by step, we converge to the trans-

formation which turns Q into a form

Q =
∑
k

[Pk]i(z)
∂

∂zi
+ yi

∂

∂xi

�

6. Appendix 2: The sum-over-trees formula

The goal of this appendix is to give the direct proof of the fact that
minimal model for the adjoint module (L, adL) is the adjoint module of the
minimal model of L: (HL, adHL

), using the explicit formula for the higher
operations on the minimal model.

Theorem (The sum-over-trees formula). Let us use the notation from the

previous theorem. S(z) is canonically identified with S(x,y,z)
〈x,Q(x)〉 . Let us denote

by P the differential Q induced on S(z) and by the h an operator on V ,
given by h(yi) = xi, h(xi) = h(zi) = 0.

Then, the sum-over-trees formula states that

[Pk]ji1,..,ik =
∑
T

T (Q)

where the sum is taken over all planar trees T with k outgoing leaves, and
by T (Q) we denote the following convolution: on each vertex with l outgoing
edges we put a tensor [Ql], and on each internal edge we put an operator
−h.

The resulting tensor is automatically symmetric.

Proof. Direct application of implicit function theorem. �

Theorem (Step 1 of the main theorem explicitly). (HL, adHL
) is a minimal

model for (L, adL)
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Proof. The chain homotopy operator h is assumed to be h ⊕ h, acting on
the (L, adL)

We are going to use trees with colored edges: each edge can be ”red”
or ”black”. If it is ”black” it corresponds to the convolution in the coalge-
bra, and if it is ”red” it corresponds to the convolution in the comodule.
Obviously, contraction of ”red” and ”black” indices equals zero.

Then, full [Q̃k] in (L, adL) can be represented as a sum of k + 1 copies
of the vertex, corresponding to [Qk] itself and [Qk]-s with one red incoming
and red outcoming edges.

Each tree T in the sum-over-trees formula for (L, adL), then, expands
in the sum of colored trees. Only nonzero summands are black T and its
recolored copies with the red ”paths”, going from one of the incoming edges
to the outcoming. This sum is, obviously, the polarization of its ”black”
part, i.e. original T (Q), because there is only one path for each incoming
edge of a tree.

Figure 1. One of the correct summands in the expansion

�
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