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1. Introduction

There are many theorems in geometry, in which some natural construction closures with period 6;
e.g., see [1, p. 104–107]. For example, the famous Pappus and Brianchon theorems can be stated in
this way; we give these statements a bit later. It turns out that such closure theorems come from a
beautiful general theory called web geometry. It was founded by W. Blaschke and his collaborators
in 1920s; see a nice introduction and references in [7, §18]. Since then many interesting results have
been obtained in the area (see references in [16]) but many natural questions remained open. In
this paper we give several new examples of webs of circles, which is an advance in one of such open
questions.
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Figure 1. Top: Left: The Pappus theorem. Middle: The Brianchon theorem. Right: The Blaschke
theorem. Bottom: Left: The Pappus web formed by three pencils of lines. Middle: The Brianchon
web formed by the set of tangent lines to a circle counted twice and a pencil of lines. Right: The
Blaschke web formed by three elliptic pencils of circles with the vertices (R,G), (G,B), and (B,G)
(see the definition of pencils in §1).

Let us give the statements of the Pappus and Brianchon theorems as closure theorems.

The Pappus Theorem. A red (R), a green (G), and a blue (B) points are marked in the plane (see
Figure 7 to the left). Each line passing through exactly one of the marked points is painted the same
color as the point. Take an arbitrary point O inside the triangle RGB. Draw the red, the green, and
the blue line through the point. On the red line take an arbitrary point A1 inside the triangle RGB.
Draw the green line through the point A1. Suppose that the green line intersects the blue line through
the point O at a point A2. The green and the blue line through the point A2 have already been drawn;
draw the red line through A2. The intersection point of the obtained red line with the green line
through the point O is denoted by A3. Continuing this construction we get the points A4, A5, A6, A7.
Then A7 = A1.

The Brianchon Theorem. A circle with a point I inside and a point O outside are given; see
Figure 7 to the middle. The lines passing through I are painted red. The rays starting at the points
of this circle, tangent to it, and looking clockwise or counterclockwise are painted green or blue,
respectively. Construct the points A1 . . . A7 as in the Pappus Theorem. Then A7 = A1.

In this paper we consider a general construction generating theorems of this kind; e.g., see Figure 7
to the right. In what follows by a circular arc we mean either a circular arc or a line segment, or a
ray, or a line. We assume that all circular arcs do not contain their endpoints.
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Suppose that some circular arcs contained in a domain Ω ⊂ R2 with the endpoints contained in
the boundary of Ω are painted red, green, and blue. We say that they have hexagonal property, if
the following 2 conditions hold (see figures to the left):
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• Foliation condition: For each point A ∈ Ω there is exactly one
circular arc of each color passing through A. The arcs of distinct
colors either are disjoint or intersect once transversely.
• Closure condition: Consider an arbitrary point O ∈ Ω. Let α1,
β1, and γ1 be the red, green, and blue circular arcs passing through
O, respectively. Consider an arbitrary point A1 ∈ α1. Let β2 and
γ2 be the green and blue circular arcs, respectively, passing through
A1. Let A2 be the intersection point of β2 and γ1. Consider the red
circular arc α2 passing through A2. Let A3 be the intersection point
of α2 and β1. Analogously define the points A4, A5, A6, and A7. The
hexagonal closure condition asserts that if all the above points exist,
then A7 = A1.

A trivial example of lines having the hexagonal property is the lines parallel to the sides of a fixed
triangle painted red, green, and blue. Now if each of the lines intersects a domain Ω ⊂ R2 by at
most one line segment then these segments have the hexagonal closure property. If a real analytic
diffeomorphism f : Ω → Ω′ ⊂ R2 maps these segments to circular arcs (painted the same color)
then the circular arcs have the hexagonal property as well. This is a motivation for the following
definition.

f

Ω Ω′

Figure 2. A definition of a hexagonal 3-web.

Definition. Three sets of circular arcs in a domain Ω is a hexagonal 3-web of circular arcs (or simply
a web of circular arcs), if there is a real analytic diffeomorphism f : Ω → Ω′ ⊂ R2 which takes the
sets of arcs to the intersections of the sets of lines parallel to the sides of a fixed triangle with the
domain Ω′, and all the nonempty intersections of these lines with Ω′ are connected; see Figure 2.

W. Blaschke proved under some regularity assumptions that if some circular arcs have the hexag-
onal property then they is a hexagonal 3-web.

We say that three sets of circles in the plane contain a hexagonal 3-web, if their appropriate arcs
(possibly empty) is a hexagonal 3-web in an appropriate domain. We allow two of the three sets
of circles to coincide; this means that we take two disjoint arcs from each circle of such set. In the
latter case we say that the set is counted twice; see the example in the Figure 3 and the Brianchon
Theorem above.

Figure 3. The set of tangent lines to a circle is counted twice. We take two disjoint rays from each
tangent line to the circle.
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For instance, the following sets of circles contain a hexagonal 3-web; see [3, p. 19–20] and Figure 7
to the bottom:

(a) The Pappus web. Three sets of lines passing through three distinct points R, G, and B,
respectively;

(b) The Brianchon web. The set of tangent lines to a conic counted twice and a set of lines passing
through a fixed point;

(c) The Blaschke web. A set of circles passing through R and G, a set of circles passing through
G and B, and a set of circles passing through B and G.

Hexagonal 3-webs from circular arcs are rare; it is always a luck to find an example.
In 1938 W. Blaschke and G. Bol stated the following problem which is still open.

The Blaschke–Bol Problem. (See [3, p. 31].) Find all hexagonal 3-webs from circular arcs.

Let us outline the state of the art; we give precise statements of all known results on such webs in
Section 2. All hexagonal 3-webs of straight line segments were found by H. Graf and R. Sauer [3].
All hexagonal 3-webs of circles belonging to one bundle were found by O. Volk and K. Strubecker. A
class of webs of circles generated by a one-parameter group of Möbius transformations was considered
by W. Wunderlich [21]. We give an elementary restatement of his result; see Theorem 2.4 below. A
highly nontrivial example of webs of circles doubly tangent to a cyclic was found by W. Wunderlich
[21]. For many decades there were no new examples of hexagonal 3-webs of circular arcs except
several webs formed by pencils of circles by V.B. Lazareva, R.S. Balabanova, and H. Erdogan; see
[18]. Recently, A.M. Shelekhov discussed the classification of all hexagonal 3-webs formed by pencils
of circles [18].

Webs of circular arcs on all surfaces distinct from a plane or a sphere are classified in [16]: N.
Lubbes proved that any surface in 3-space containing ≥ 3 circles through each point is a so-called
Darboux cyclide, and the webs on the latter are classified in [16]; see Figure 4 to the left. There are
many examples of webs of conics; e.g., see Figure 4 to the right and references in [16].

Figure 4. Left: A hexagonal 3-web of circular arcs on the Darboux cyclide [16]. Right: The surface
z = xy(y − x) contains a web of conics, which are in fact isotropic circles; see Problem 5.4.

Main results of the paper are new examples of webs of circular arcs (see Theorem 1.1 below). They
involve pencils of lines, circles and double tangent circles of conics.

Figure 5. Left: An elliptic pencil of circles. Middle: A parabolic pencil of circles. Right: A
hyperbolic pencil of circles.

Let c1(x, y) = 0 and c2(x, y) = 0 be equations of degree 2 or 1 of two distinct circles c1 and
c2, respectively. A pencil of circles is the set of all the circles having the equation of the form
αc1(x, y) + βc2(x, y) = 0, where α and β are real numbers not vanishing simultaneously. So a pencil
of lines is a set of all the lines passing through a fixed point (the vertex of the pencil) or parallel to a
fixed line. If c1 and c2 are circles with two distinct common points (the vertices of the pencil), then
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all the circles in the pencil pass through these points and the pencil is called elliptic; see Figure 5
to the left. If the circles c1 and c2 are tangent (the tangency point then is called the vertex of the
pencil), then each circle in the pencil is tangent to c1 and c2 at the same point and the pencil is
called parabolic; see Figure 5 to the middle. If the circles c1 and c2 have no common points, then
the pencil is called hyperbolic; see Figure 5 to the right. Any hyperbolic pencil contains “circles”
degenerating to points (bold points in the figure). They are called limiting points of the pencil. A
pencil of intersecting (respectively, parallel) lines is considered as an elliptic (respectively, parabolic)
pencil of circles. If we take three circles c1(x, y) = 0, c2(x, y) = 0, and c3(x, y) = 0 not belonging
to one pencil then a bundle of circles is the set of all the circles having the equation of the form
αc1(x, y) + βc2(x, y) + γc3(x, y) = 0. By a general conic we mean either an ellipse distinct from a
circle or a hyperbola.

Theorem 1.1. [12] The following sets of circles contain a hexagonal 3-web of circular arcs:
(a) The tangent lines to a circle counted twice and a parabolic pencil of circles with the vertex at

the center of the circle;
(b) The tangent lines to a general conic counted twice and the hyperbolic pencil of circles with

limiting points at the foci of the conic;
(c) The tangent lines to a general conic (counted once), a pencil of lines with the vertex at a focus

of the conic, and circles doubly tangent to the conic such that their centers lie on the minor axis of
the conic;

(d) The tangent lines to a parabola counted twice and a hyperbolic pencil of circles with limiting
points at the focus and an arbitrary point on the directrix;

(e) The circles doubly tangent to an ellipse with the eccentricity 1√
2

counted twice such that their

centers lie on the major axis of the ellipse and the elliptic pencil of circles with vertices at the foci of
the ellipse.

Figure 6. New examples of webs of circular arcs in the plane.

We prove Theorem 1.1 in Section 3.
The second part of our paper is based on joint work with M.B. Skopenkov [13]. Surfaces generated

by simplest curves (lines and circles) are popular subject in pure mathematics and have applications
to design and architecture [15, 4]. If a surface contains two such curves through each point then
we get a mesh on the surface. Famous examples of such meshes are V. G. Shukhov’s hyperboloid
structures. A natural question is which other surfaces can be constructed from straight and circular
beams.
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It is well-known that a surface containing two lines through each point (doubly ruled surface) must
be a quadric. We show that a smooth surface containing both a line and a circle through each point
still must be a quadric; see Figure 7 to the left.

Theorem 1.2. [13] If through each point of a smooth surface in R3 one can draw both a straight
line segment and a circular arc transversal to each other and fully contained in the surface (and
continuously depending on the point) then the surface is a piece of either a one-sheeted hyperboloid,
or a quadratic cone, or an elliptic cylinder, or a plane.

Figure 7. A one-sheeted hyperboloid contains both a line and a circle through each point. To find
all surfaces with this property (Theorem 1.2), we prove that the planes of the generating circles are
parallel (Lemma 3.6) and intersect the surface only at the points of the circles (Lemma 3.11).

In what follows a line (circle) continuously depending on a real parameter is called a family of lines
(circles). Note that Theorem 1.2 is more tricky than the classical description of doubly ruled surfaces.
Let us illustrate the difference. First, the classical result does not really require 2 lines through each
point: a surface covered by 1 family of lines and containing just 3 more lines intersecting them all
must already be a quadric. Second, the classical result remains true in complex 3-space. However,
similar generalizations of Theorem 1.2 are far from being true; see Examples 4.1–4.4 below.

The next natural problem, which seems to be still open (and is going to be studied in detail in a
subsequent publication), is to describe all surfaces containing several circles through each point.

An example of such surface is a cyclide, i.e., the surface given by the equation of the form

(1) a(x2 + y2 + z2)2 + (x2 + y2 + z2)(bx+ cy + dz) +Q(x, y, z) = 0,

where a, b, c, d are constants and Q(x, y, z) is a polynomial of degree at most 2; see Figure 7 to the
right. Such a surface is also called a Darboux cyclide, not to be confused with a Dupin cyclide being
a particular case. An introduction to cyclides and circles on them can be found in the work of
Pottmann et al. [16]. Any cyclide (besides some degenerate cases) contains at least 2 circles through
each point [16]. Conversely, a surface containing 2 cospherical or 2 orthogonal circles through each
point must be a cyclide; see [9, Theorems 1 and 2]. However, this is not true without the assumption
of either cosphericity or orthogonality; see Example 4.5 below. Recently, N. Lubbes proved that any
surface containing ≥ 3 circles through each point is a cyclide [11].

A torus is an example of a cyclide with 4 circles through each point: a meridian, a parallel, and
2 Villarceau circles. There are cyclides with 6 circles through each point [16]. It is known that a
surface with 7 circles through each point must be a sphere; see [19].

Further generalizations concern conic bundles, in particular, surfaces containing a conic through
each point. Surfaces containing both a line and a conic through each point were classified by Brauner
[5]. Such a surface has degree at most 4. Notice that it is much more difficult to deduce Theorem 1.2
from this classification than to prove Theorem 1.2 itself. Surfaces containing several conics through
each point were classified by Schicho [17]. Such surfaces have degree at most 8 and admit a biquadratic
rational parametrization.

The paper is organized as follows. In Section 2 we give a survey on webs of circular arcs in the
plane. In Section 3 we prove Theorem 1.1, Theorem 1.2 and the equivalence of Theorem 2.4 and the
Wunderlich Theorem 2.3. In Section 4 we give several illustrative examples related to Theorem 1.2.
In Section 5 we state some open problems.
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2. Known examples of webs of circles

Let us give precise statements of all known examples of hexagonal 3-webs of circular arcs in the
plane. Three sets of circles are transversal, if for each point from some domain we can find three
circles from distinct sets intersecting transversely at the point. Although we always consider webs of
real circular arcs, in Theorems 2.4, 2.5, and 2.6 we use some auxiliary complex points or circles (we
skip their formal definition because it is not used in the proof of main results).

Let F (a, b, c) be a homogeneous polynomial of degree 3. The set of lines ax+ by+ c = 0 such that
F (a, b, c) = 0 is called a set of lines tangent to a curve of class 3.

The following theorem characterizes all hexagonal 3-webs of straight line segments.

The Graf–Sauer Theorem 2.1. [3, §3] If the lines tangent to a curve of class 3 counted triply are
transversal then they contain a hexagonal 3-web; see Figure 8 to the left. Conversely, any hexagonal
3-web of line segments is contained in such set of lines.

In the particular case when the polynomial F (a, b, c) above is reducible we get either the Pappus
or the Brianchon web.

The following theorem characterizes all hexagonal 3-webs of circular arcs belonging to one bundle.
The Darboux transformation is the composition of a central projection from a plane in space to a
sphere and another central projection from the sphere to the plane such that the center of the second
projection belongs to the sphere. A.G. Khovanskii proved that Darboux transformations are the only
maps of planar domains that take all line segments to circular arcs (see [20, p. 562]).

The Volk–Strubecker Theorem 2.2. The image of any hexagonal 3-web of straight line segments
under a Darboux transformation is a hexagonal 3-web of circular arcs. Conversely, any hexagonal
3-web of circular arcs belonging to one bundle can be obtained by this construction.

Figure 8. Left: A hexagonal 3-web of lines tangent to a deltoid which is a particular case of a
curve of class 3. Middle: Generation of a hexagonal 3-web of circles using a one-parametric group of
rotations. Right: A hexagonal 3-web of circles doubly tangent to a cyclic.

W. Wunderlich considered the following example of a hexagonal 3-web of circular arcs.

The Wunderlich Theorem 2.3. Let two circles ω1 and ω2 in the plane have a common point O of
transversal intersection. Let a one-parametric group Mt of Möbius transformations of the plane be
such that each orbit is either a circle or a point. Suppose that the orbit of O intersects transversely
ω1 and ω2. Then the circles {Mt(ω1)}, {Mt(ω2)}, and the orbits of Mt contain a hexagonal 3-web;
see Figure 8 to the middle.

In Section 3 we show that this construction is equivalent to the following elementary one.
An Apollonian set of a pencil of circles is either a set of circles tangent to two distinct (possibly

complex or null) circles from the pencil, or a parabolic pencil with the vertex at a vertex of the
pencil, or a hyperbolic pencil with limiting points at the vertices of the pencil.

Theorem 2.4. If a pencil of circles and two Apollonian sets of this pencil are transversal then they
contain a hexagonal 3-web.

Let us give the most wonderful example of webs of circular arcs.
A cyclic is the curve given by an equation of the form

(2) a(x2 + y2)2 + (x2 + y2)(bx+ cy) +Q(x, y) = 0,
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where a, b, c are constants and Q(x, y) is a polynomial of degree at most 2 not vanishing simultane-
ously. Note that conics, limaçons of Pascal, and Cartesian ovals are particular cases of cyclics.

We say that a circle is tangent to a cyclic, if the circle either has a real tangency point with the
cyclic, or a complex one, or passes through a singular point of the cyclic. The circles doubly tangent
to a cyclic naturally split into ≤ 4 families : the centers of circles from one family lie on one conic or
line; see [16, Remark 16].

The Wunderlich Theorem 2.5. [21] If three distinct families of circles doubly tangent to a cyclic
are transversal then they contain a hexagonal 3-web; see Figure 8 to the right.

A particular case (stated by Blaschke in 1953) of the Blashke-Bol problem was to find all triples
of pencils of circles containing webs.

Theorem 2.6. [18] The following pencils of circles contain a hexagonal 3-web:
(a) (Volk-Strubecker) Three pencils of circles belonging to the same bundle.
(b) (Lazareva) Three hyperbolic pencils with a common complex circle such that in each of the

pencils there is a circle orthogonal to all the circles of the other two pencils.
(c) (Lazareva) Two elliptic pencils and one hyperbolic pencil with a common real circle such that

in each of the pencils there is a circle orthogonal to all the circles of the other two pencils.
(d) (Balabanova) Two orthogonal pencils and the third pencil having a common circle with each of

the two orthogonal pencils.
(e) (Balabanova) Two orthogonal parabolic pencils and one hyperbolic pencil; one of the limiting

points of the hyperbolic pencil coincides with the common vertex of the parabolic pencils.
(f) (Blaschke) Three elliptic pencils of circles with the vertices (A,B), (B,C), and (C,A).
(g) (Erdogan) Two elliptic pencils with the vertices (A,B) and (B,C) and the hyperbolic pencil

with the limiting points C and A.
(h) (Lazareva) Two parabolic pencils and an elliptic pencil with the vertices at the vertices of the

parabolic pencils.
(j) (Erdogan) An elliptic pencil with the vertices A and B, the hyperbolic pencil with the limiting

points B and C, and a parabolic pencil with the vertex at A such that the common circle of the elliptic
and hyperbolic pencils is orthogonal to the circle passing through the points A, B, and C.

According to A.M. Shelekhov [18] these are all the possible triples of pencils of circles containing
a hexagonal 3-web. (He divides some of examples (a)–(j) into several subclasses.)

We see that our examples of hexagonal 3-webs of circular arcs in Theorem 1.1(a)-(e) are indeed
new; see Table 1.

Table 1.

Known examples Difference from the new examples
Theorem 2.1, 2.2 the circles in each example of Theorem 1.1(a)-(e) do not belong to one bundle
Theorem 2.4 Theorem 1.1(a): the lines tangent to the circle do not belong to the given

parabolic pencil;
Theorem 1.1(b)-(e): there is a family of circles enveloping a conic distinct from
a circle

Theorem 2.5 the envelope of all the circles in examples Theorem 1.1(a)-(e) is not one cyclic
Theorem 2.6 the circles in each example Theorem 1.1(a)-(e) do not belong to 3 pencils

3. Proofs

In the proofs below we construct a real analytic diffeomorphism f : Ω→ Ω′ ⊂ R2 which maps the
intersections of circles from the given sets with an appropriate domain Ω to the segments of the lines
x = const, y = const and x+ y = const.

We need the notions of left and right tangent lines from a point to a conic. Let a point and a conic
be given. Consider a line passing through the point not intersecting the conic. Let us start to rotate
this line around the given point counterclockwise. Suppose that there are two moments when this
line is either tangent to the conic or is an asymptotic line. We say that the lines at the first and the
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second moments (if such moments exist) are called the left and the right tangent lines, respectively.
If the point lies on the conic then by definition the left and the right tangent lines coincide with the
ordinary tangent line.

Let d(X,λ) be the distance from a point X to a line λ. By ∠(α, β) ∈ [0, π) we denote the oriented
angle between lines α and β.

Proof of Theorem 1.1(a). This assertion is a limiting case of Theorem 1.1(b) in which the foci of
the conic converge to each other. The given conic converges to a circle. The hyperbolic pencil of
circles with limiting points at the foci converges to a parabolic pencil of circles with the vertex at
the center of the circle. Thus point (a) follows from (b) because the foliation condition is clearly
satisfied and passing to the limit respects the hexagonal closure condition. Theorem 1.1(a) is proved
modulo Theorem 1.1(b).

Proof of Theorem 1.1(b). Denote by γ the given general conic. Denote by F1 and F2 the foci of
γ. Let U be an appropriate domain such that for each point A ∈ U the left and the right tangent
lines α(A) and β(A) to the conic γ passing through A, and the circle ω(A) from the pencil passing
through A exist and intersect transversely.

ω(A)
F1

P

F2

Q

A
α(A) β(A)

γ

Figure 9. To the proof of Lemma 3.1.

Lemma 3.1. For a fixed circle ω from the pencil the ratio d(F1,α(A))
d(F2,β(A))

does not depend on the point

A ∈ ω ∩ U .

Proof. Let P be the orthogonal projection of F1 onto the line α(A). Let Q be the orthogonal
projection of F2 onto the line β(A); see Figure 9. By the isogonal property of conics (see [2, §1.4]),
we have ∠PAF1 = ∠F2AQ. Thus the right triangles F1AP and F2AQ are similar. By the well-known

geometric characterization of a hyperbolic pencil of circles (see [2, Theorem 2.12]) the ratio |F1A|
|F2A| does

not depend on the point A lying on a circle ω from the pencil with limiting points F1 and F2. Hence

d(F1, α(A))

d(F2, β(A))
=
|F1P |
|F2Q|

=
|F1A|
|F2A|

= const.

�

Consider the map f : U → R2 such that for each point A ∈ U

f(A) := (ln d(F1, α(A)),− ln d(F2, β(A))).

Choose a subdomain (still denoted by U) in which the differential of f is nonzero. From Lemma 3.1
it follows that f maps the intersections of the left tangent lines to γ, the right tangent lines to γ,
and the circles from the pencil with U to the segments of the lines x = const, y = const, and
x + y = const. In particular, three transversal curves α(A), β(A), and ω(A) have transversal f -
images. So the differential of f in U is nondegenerate because it is nonzero. Thus the restriction of
the map f to an appropriate subdomain Ω ⊂ U is a diffeomorphism. Theorem 1.1(b) is proved.

Proof of Theorem 1.1(c). Denote by γ the given conic. Denote by F1 the given focus of γ. For
each point A denote by α(A) the line belonging to the pencil and passing through A. Denote by
β(A) the left tangent line to γ passing through A.
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Let (φ1, φ2) ⊂ [0, π/2) be an interval such that for each φ ∈ (φ1, φ2) there is a point T on the conic
γ satisfying ∠(α(T ), β(T )) = φ. Let U be an appropriate domain such that for each point A ∈ U
there exist α(A), β(A) and ∠(α(A), β(A)) ∈ (φ1, φ2).

Lemma 3.2. The locus of all the points A ∈ U such that ∠(α(A), β(A)) = φ, where φ ∈ (φ1, φ2) is
fixed, is an arc of the circle doubly tangent to the conic γ such that the center of this circle lies on
the minor axis of the conic.

Proof. Denote by P the projection of the focus F1 onto the line containing β(A); see Figure 10 to
the left. By pedal circle property of conics (see [1, §11.8]) the projections of the focus F1 of the conic
γ onto the tangent lines of γ lie on one circle ω0. The center of the circle ω0 coincides with the center
of the conic.

ω

ω0

F1

A

P
α(A)

β(A)
γ

F1 F2

Oω

Oγ

T

β(T )
γ
ω

Figure 10. To the proof of Lemma 3.2.

Note that |F1A|/|F1P | = 1/| sin∠(α(A), β(A))| = 1/| sinφ| and ∠(F1P, F1A) = π
2
−∠(α(A), β(A)) =

π
2
− φ. The image of the circle ω0 under the composition of the counterclockwise rotation about F1

through the angle π
2
−φ and the homothety with the center F1 and the coefficient of dilation 1/| sinφ|

is a circle ω. Evidently, the given locus is ω ∩ U .
Let us prove that ω is doubly tangent to γ and the center of ω lies on the minor axis of γ. Denote by

Oγ the center of γ and by Oω the center of ω; see Figure 10 to the right. Since φ ∈ (φ1, φ2), it follows
that there is T ∈ γ such that ∠(α(T ), β(T )) = φ. Let F2 be the other focus of γ. Since ω is the image
of ω0 under the above composition, we have ∠F1OγOω = ∠F1PA = π

2
and φ = ∠F1AP = ∠F1OωOγ.

So the point Oω lies on the bisector of the segment F1F2, ∠(F1F2, F1Oω) = ∠(F2Oω, F2F1), and
∠F1OωF2 = 2φ. By the construction of the point T and the optical property of conics (See [2, §1.3])
we have φ = ∠(TF1, β(T )) = ∠(β(T ), TF2). Thus ∠(OωF1, OωF2) = ∠(TF1, TF2). So the points F1,
Oω, F2, and T are cocyclic. Since ∠(F1F2, F1Oω) = ∠(F2Oω, F2F1) and the points F1, Oω, F2, and T
are cocyclic we have ∠(TOω, TF1) = ∠(TF2, TOω). So OωT is perpendicular to β(T ). Hence, β(T )
is the tangent line to ω at T . Thus T is a tangency point of ω and γ. By reflection symmetry, the
point T ′ symmetric to T with respect to the minor axis of γ is another tangency point of ω and γ.
Thus ω and γ are doubly tangent. �

Denote by ω(A) the locus of all the points X ∈ U such that ∠(α(X), β(X)) = ∠(α(A), β(A)). Let
λ be the major axis of the conic γ.

Consider the map f : U → R2 such that for each point A ∈ U

f(A) := (∠(α(A), λ),∠(λ, β(A))).

Choose a subdomain (still denoted by U) in which f is continuous, the differential of f is nonzero,
and for each point A ∈ U the curves α(A), β(A), and ω(A) are transversal. By Lemma 3.2 it follows
that f maps the intersections of lines from the pencil, the left tangent lines to γ, and considered circles
doubly tangent to γ with U to the segments of the lines x = const, y = const and x + y = const.
In particular, three transversal curves α(A), β(A), and ω(A) have transversal f -images. So the
differential of f in U is nondegenerate because it is nonzero. Thus the restriction of the map f to an
appropriate domain Ω ⊂ U is a diffeomorphism. Theorem 1.1(c) is proved.
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Proof of Theorem 1.1(d). Denote by γ the given parabola. Denote by F and δ the focus and the
directrix of the parabola. Consider the hyperbolic pencil with the limiting points F and L ∈ δ. Let
U be an appropriate domain such that for each point A ∈ U the left and the right tangent lines α(A)
and β(A) to the parabola γ passing through A, and the circle ω(A) from the pencil passing through
A exist and intersect transversely.

ω(A)

F

A

P Q
δ L

α(A) β(A)
γ

Figure 11. To the proof of Lemma 3.3.

Consider the line passing through F and perpendicular to α(A); see Figure 11. Denote by P
the intersection of this line and δ. Consider the line passing through F and perpendicular to β(A).
Denote by Q the intersection of this line and δ.

Set

s(A) :=
|PL| · | cos∠(α(A), δ)|

|FP |
and t(A) :=

|QL| · | cos∠(δ, β(A))|
|FQ|

.

Lemma 3.3. For a fixed circle ω from the pencil the product s(A) · t(A) does not depend on the point
A ∈ ω ∩ U .

Proof. By a well-known property of a parabola, the point A is the center of the circle circumscribed
about 4FPQ (see [2, Lemma 1.2]). So |AF | = |AP | = |AQ| = R, where R is a radius of the circle
circumscribed about 4FPQ. By the sine theorem we have

2R =
|FP |

| sin∠(QF,QP )|
=

|FP |
| cos∠(δ, β(A))|

and 2R =
|FQ|

| sin∠(PQ,PF )|
=

|FQ|
| cos∠(α(A), δ)|

.

By the well-known property of a power of a point with respect to a circle we have |AL|2 = R2 −
|PL| · |QL|. Then

s(A) · t(A) =

(
|PL| · | cos∠(α(A), δ)|

|FP |

)
·
(
|QL| · | cos∠(δ, β(A))|

|FQ|

)
=

=
|PL| · |QL|

4R2
=

1

4

(
1−

(
|AL|
|AF |

)2
)

= const,

where the fourth equality follows from the geometric characterization of a hyperbolic pencil of circles

(see the proof of Theorem 1.1(b)).
�

Consider the map f : U → R2 such that for each point A ∈ U

f(A) := (ln s(A), ln t(A)).

Choose a subdomain (still denoted by U) in which the differential of f is nonzero. From Lemma 3.3
it follows that f maps the intersections of the left tangent lines to γ, the right tangent lines to γ,
and the circles from the pencil with U to the segments of the lines x = const, y = const, and
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x + y = const. In particular, three transversal curves α(A), β(A), and ω(A) have transversal f -
images. So the differential of f in U is nondegenerate. Thus the restriction of the map f to an
appropriate subdomain Ω ⊂ U is a diffeomorphism. Theorem 1.1(d) is proved.

Proof of Theorem 1.1(e). Denote by γ the given ellipse. Denote by F1, F2, and Oγ the foci and the
center of γ. Consider the elliptic pencil of circles with the vertices F1 and F2. Consider the Cartesian
coordinate system such that Oγ is the origin and the line containing the major axis λ is the Ox-axis.
Without loss of generality assume that the minor axis of γ has length 2. Let a circle with the center
on the major axis λ be doubly tangent to γ. The line passing through the tangency points separates
the circle into two circular arcs: the “left” tangent circular arc and the “right” tangent circular arc.
Let U be an appropriate domain such that for each point A ∈ U the left and the right tangent
circular arcs α(A) and β(A) to γ passing through A, and the circle ω(A) from the pencil passing
through A intersect transversely, the center Oα of the circle containing α(A) “lies to the left” of Oγ,
the center Oβ of the circle containing β(A) “lies to the right” of Oγ, and also s(A) > t(A), where
s(A) := |OαOγ| and t(A) := |OβOγ|; see Figure 12.

Lemma 3.4. For a fixed circle ω the product 1−s2(A)
s2(A)

· 1−t
2(A)

t2(A)
does not depend on the point A ∈ ω∩U .

Proof. Let P and Q be points on the circles containing α(A) and β(A), respectively, such that OαP
and OβQ are perpendicular to λ. Consider the circle ω0 such that the minor axis of the ellipse γ is
a diameter of ω0. Since the eccentricity of γ is equal to 1√

2
we get that the foci F1 and F2 lie on ω0.

F1 F2

A
P Q

λ

α(A)β(A)

Oα Oβ

Oγ

R

γω0

Figure 12. To the proof of Lemma 3.4.

Lemma 3.5. The points P and Q lie on the circle ω0.

Proof. We are going to prove that for each point Y ∈ ω0 the circle ω with the center at the projection
X of Y onto λ and the radius |XY | is doubly tangent to γ. Let (a, 0) be coordinates of X. Then
|XY | =

√
1− a2. So the circle ω has the equation of the form (x−a)2 + y2 = 1−a2. We can rewrite

this equation in the form g(x, y, a) = 0, where g(x, y, a) = (x− a)2 + y2 + a2− 1. Let us compute the
envelope of this family of circles. It is well-known that the equation of such envelope can be obtained
from the following system

(1) g(x, y, a) = 0 and (2)
∂

∂a
g(x, y, a) = 0

by eliminating a. We have ∂
∂a
g(x, y, a) = −2x + 4a. By (2) we have a = x/2. Substituting a = x/2

in (1), we have the envelope equation x2

2
+ y2 = 1. This is the equation of γ. Thus ω is tangent to

γ. Since the center of ω lies on the major axis, ω is doubly tangent to γ. �

Let us continue the proof of Lemma 3.4. Further we denote s(A) and t(A) simply by s and t.
From Lemma 3.5 it follows that |AOα| = |POα| =

√
1− s2 and |AOβ| = |QOβ| =

√
1− t2. Let R

be the projection of A onto λ. Then |ROα|2 − |ROβ|2 = |AOα|2 − |AOβ|2 = t2 − s2. Since |OαOβ| =
s + t we have |ROα| = t and |ROβ| = s. Hence |AR| =

√
OαA2 −OαR2 =

√
OαP 2 −OαR2 =√

1− s2 − t2, |F1R| = 1 − s + t, and |F2R| = 1 + s − t. Thus |F1A|2 = 1 − s2 − t2 + (1− s + t)2 =
2(1 + (t− s)− st) and |F2A|2 = 1− s2 − t2 + (1 + s− t)2 = 2(1 + (s− t)− st).
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For each point A ∈ ω ∩ U we have ∠F1AF2 = const. By the cosine theorem we have

cos∠F1AF2 =
|F1F2|2 − |F1A|2 − |F2A|2

2|F1A| · |F2A|
=

4− 2(1 + (t− s)− st)− 2(1 + (s− t)− st)√
4(1 + (t− s)− st) · (1 + (s− t)− st)

=

=
2st√

(1− s2)(1− t2)
.

Thus 1−s2(A)
s2(A)

· 1−t2(A)
t2(A)

= 4
cos2 ∠F1AF2

= const. Lemma 3.4 is proved.

Consider the map f : U → R2 such that for each point A ∈ U

f(A) :=

(
ln

1− s2(A)

s2(A)
, ln

1− t2(A)

t2(A)

)
.

Choose a subdomain (still denoted by U) in which the differential of f is nonzero. From Lemma 3.4
it follows that f maps the intersections of the left tangent circular arcs to γ, the right tangent circular
arcs to γ, and the circles from the pencil with U to the segments of the lines x = const, y = const,
and x + y = const. In particular, three transversal curves α(A), β(A), and ω(A) have transversal
f -images. So the differential of f in U is nondegenerate. Thus the restriction of the map f to an
appropriate subdomain Ω ⊂ U is a diffeomorphism. Theorem 1.1(e) is proved. �

Now let us prove Theorem 1.2. We work over the field of complex numbers except otherwise is
explicitly indicated. Denote by P3 the 3-dimensional complex projective space with homogeneous
coordinates x : y : z : w. The infinitely distant plane is the plane w = 0. The absolute conic is given
by the equations x2 + y2 + z2 = 0, w = 0. A (nondegenerate) complex circle is an irreducible conic
in P3 having two distinct common points with the absolute conic. Clearly, a circle in R3 is a subset
of a complex circle.

The set of projective lines in P3 can be naturally identified with the Plücker quadric Gr(2, 4) in
P5: the line passing through points x1 : y1 : z1 : w1 and x2 : y2 : z2 : w2 is identified with the point
x1y2 − x2y1 : x1z2 − x2z1 : x1w2 − x2w1 : y1z2 − y2z1 : y1w2 − y2w1 : z1w2 − z2w1.

Proof of Theorem 1.2. Let Φ ⊂ R3 be a surface covered by a family of real line segments and
a family of real circular arcs simultaneously. The complex lines and complex circles containing the
members of these families are called generating lines and generating circles, respectively. Hereafter
assume that Φ ⊂ R3 is not a plane.

Lemma 3.6. The planes of the generating circles are parallel to each other.

To prove the lemma, we need several auxiliary propositions. The first one is essentially known.

Proposition 3.7. Let γ1, γ2, γ3 ⊂ P3 be pairwise distinct irreducible algebraic curves.
(1) The set J(γ1) ⊂ Gr(2, 4) of all the lines passing through the curve γ1 is an algebraic subset of
Gr(2, 4).
(2) The set J(γ1, γ2) ⊂ Gr(2, 4) of all the lines passing through each of the curves γ1, γ2 but not
passing through their intersection γ1 ∩ γ2 is a piece of a 2-dimensional algebraic surface in Gr(2, 4).
(3) The union J(γ1, γ2, γ3) ⊂ P3 of all the lines passing through each of the curves γ1, γ2, γ3 but not
passing through their pairwise intersections is a piece of an algebraic surface in P3.

Remark. Moreover, one can check that J(γ1, γ2) and J(γ1, γ2, γ3) are quasi-projective varieties.

Proof. (1) The set S of pairs (P, λ) ∈ P3 × Gr(2, 4) such that the point P belongs to the line λ is
algebraic. The set J(γ1) is the image of the projection S ∩ (γ1 × Gr(2, 4)) → Gr(2, 4) and by [8,
Theorem 3.12] is also algebraic.

(2) Consider the polynomial map (γ1− γ1 ∩ γ2)× (γ2− γ1 ∩ γ2)→ Gr(2, 4) taking a pair of points
(P,Q) to the line passing through P and Q. Then J(γ1, γ2) is the image of this map. The map
(γ1−γ1∩γ2)× (γ2−γ1∩γ2)→ J(γ1, γ2) is a finite covering by a piece of a 2-dimensional irreducible
surface. Thus J(γ1, γ2) is a piece of a 2-dimensional irreducible algebraic surface J̄(γ1, γ2) ⊂ Gr(2, 4).

(3) By (2) the set
⋂
i 6=j J(γi, γj) is a (possibly empty) piece of the algebraic set

⋂
i 6=j J̄(γi, γj). Since

for each i 6= j the surface J̄(γi, γj) is 2-dimensional and irreducible it follows that dim
⋂
i 6=j J̄(γi, γj) ≤
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2. If dim
⋂
i 6=j J̄(γi, γj) = 2 then J̄(γ1, γ2) = J̄(γ2, γ3) = J̄(γ3, γ1) and by [10, Theorem 1, n = 3] it

follows that J(γ1, γ2, γ3) is a piece of a plane. If dim
⋂
i 6=j J̄(γi, γj) ≤ 1 then J(γ1, γ2, γ3) is a piece of

an algebraic surface as the image of the projection S ∩ (P3 ×
⋂
i 6=j J(γi, γj))→ P3. �

Φ̄

Φ

P

γ1

γ2

γ3

Figure 13. To the proof of Proposition 3.8.

Proposition 3.8. (Cf. [17, Theorems 1 and 2]) The surface Φ ⊂ R3 is contained in an irreducible
ruled algebraic surface Φ̄ ⊂ P3. The family of generating lines is a piece of an irreducible algebraic
curve in Gr(2, 4).

Proof. Take a point P ∈ Φ; see Figure 13. Draw a circular arc γ1 ⊂ Φ through the point P . Draw the
line segments in Φ from our continuous family through each point of γ1. Since the drawn segments
are transversal to γ1, the circular arcs contained in Φ form a continuous family, and Φ is smooth
it follows that there are arcs γ2, γ3 ⊂ Φ (sufficiently close to γ1) which intersect each of the drawn
segments. Let γ̄1, γ̄2, γ̄3 be the complex circles in P3 containing the arcs γ1, γ2, γ3. Let Φ′ ⊂ Φ be the
union of those drawn segments, whose lines do not pass through the intersections γ̄1 ∩ γ̄2, γ̄2 ∩ γ̄3,
γ̄3 ∩ γ̄1. By construction Φ′ ⊂ J(γ̄1, γ̄2, γ̄3). Thus by Proposition 3.7(3) the collar Φ′ is a piece
of an algebraic surface. Take Φ̄ to be an irreducible component of the surface containing a closed
2-dimensional subset of the initial surface Φ including the point P . (If there are no such components,
e.g., Φ′ = ∅, then the drawn segments sufficiently close to the point P form a quadratic cone with
vertex at one of the intersection points of the circles γ̄1, γ̄2, γ̄3; in this case set Φ̄ to be this cone.)
The algebraic surface Φ̄ ⊂ P3 does not depend on the point P because the smooth surface Φ ⊂ R3

cannot jump from one irreducible algebraic surface to another.
By Proposition 3.7(2) the lines containing the drawn segments form a piece of the algebraic set⋂
i 6=j J̄(γi, γj). Since Φ is not a plane it follows that the latter set is an algebraic curve [10, Theorem

1, n = 3]. Take α ⊂ Gr(2, 4) to be an irreducible component of this curve containing the lines
sufficiently close to the point P . Clearly, the union of the lines of the whole curve α covers Φ̄,
i.e., Φ̄ is ruled. It remains to show that the curve α does not depend on the choice of the point
P . Indeed, assume that the generating lines through a neighborhood of another point P ′ form a
curve α′ ⊂ Gr(2, 4) distinct from α. Then Φ̄ is doubly ruled and hence it is a quadric. Thus
α∩α′ = ∅ and hence the generating lines cannot form a continuous family. This contradiction proves
the proposition. �

Hereafter any line belonging to the irreducible algebraic curve in Gr(2, 4) containing the generating
lines is also called a generating line. No confusion will arise from this.

Proposition 3.9. (Cf. [14, Lemma 1.3]) If γ ⊂ Φ̄ is an irreducible algebraic curve distinct from a
generating line then each generating line intersects γ.

Proof. Since Φ̄ ⊂ P3 is ruled it follows that there is a generating line through each point of γ. Thus
infinitely many generating lines belong to J(γ). By Proposition 3.7(1) the set J(γ) is algebraic, hence
the whole irreducible algebraic curve in Gr(2, 4) formed by generating lines is contained in J(γ). �

Proposition 3.10. The surface Φ̄ ⊂ P3 does not contain the absolute conic.
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Proof. Assume that Φ̄ contains the absolute conic γ. Then by Proposition 3.9 all the generating
lines intersect γ. Since γ has no real points it follows that there are no real generating lines (except
infinitely distant). This contradiction proves the proposition. �

Proof of Lemma 3.6. By Propositions 3.8 and 3.10 the intersection of the surface Φ̄ ⊂ P3 with the
absolute conic is a finite set I. The plane of each generating circle intersects the infinitely distant
plane by a line joining two points of the set I. Since the set I is finite and the family of generating
circles is continuous it follows that all these lines coincide, that is, all the planes of the circles are
parallel. �

Lemma 3.11. There are infinitely many generating circles γ such that the projective plane Π ⊂ P3

of γ intersects the surface Φ̄ ⊂ P3 only at the points of γ.

To prove the lemma, we need the following auxiliary proposition.

Proposition 3.12. The projective planes Π ⊂ P3 of infinitely many generating circles γ do not
contain generating lines.

Proof. Assume that the projective planes of only finitely many generating circles do not contain
generating lines. Thus the projective planes Π ⊂ P3 of infinitely many generating circles γ contain
generating lines λγ. By Lemma 3.6 all the projective planes Π intersect the absolute conic by the
same 2-point set I = {P,Q}. It suffices to consider the following 3 cases.

Case 1: For some γ we have λγ ∩ I = ∅. Take a generating circle γ′ 6⊂ Π. Then Π ∩ γ′ = I by
Lemma 3.6. Then by Proposition 3.9 we have ∅ 6= λγ ∩ γ′ ⊂ Π ∩ γ′ − I = ∅, a contradiction.

Case 2: For infinitely many γ the intersection λγ∩I consists of a single point. All the lines λγ with
this property are pairwise distinct because by Lemma 3.6 they are contained in the planes through
I. We get infinitely many generating lines intersecting I. Thus by Proposition 3.8 each generating
line must intersect I. Then the generating lines through each point of a generating circle γ must
intersect I, a contradiction.

P

Q

P 2
t

P 1
t

Ωλt

γ3

γ2
γ1

w = 0
λγ

Figure 14. To the proof of Proposition 3.12 case (3).

Case 3: For some γ we have λγ ∩ I = I; see Figure 14. Then λγ is the infinitely distant line
of the projective plane Π. Since the generating lines form an algebraic curve in Gr(2, 4) it follows
that there is a sequence of generating lines λt 6= λγ converging to λγ. Since there are only finitely
many generating lines crossing I, we may assume that λt ∩ I = ∅. Take 3 pairwise noncoplanar
generating circles γ1, γ2, and γ3. By Proposition 3.9 for each i = 1, 2, 3 the line λt intersects the
circle γi at some point P i

t . Each of the 3 points P i
t converges to one of the 2 points of the set I. By

the pigeonhole principle we may assume that, say, P 1
t , P

2
t converge to P . Then the plane PP 1

t P
2
t

converges to the projective plane Ω containing projective tangent lines to γ1 and γ2 at the point P
(the tangent lines are distinct because γ1 and γ2 are not coplanar). The projective plane Ω has a
unique common point with γ1 while λγ ⊂ Ω intersects γ1 by the 2-point set I. This contradiction
proves the proposition. �

Proof of Lemma 3.11. By Proposition 3.12 there are infinitely many generating circles γ such that
Φ̄∩Π does not contain generating lines. Then Φ̄∩Π = γ because by Proposition 3.9 the generating
line through each point of Φ̄ ∩ Π crosses γ. �



15

Proof of Theorem 1.2. By Lemma 3.11 we have Φ̄ ∩ Π = γ for infinitely many generating circles γ.
So there is a generating circle γ with this property which is not a singular curve of the surface Φ̄,
because Φ̄ contains only finitely many singular curves. By Proposition 3.12 the plane Π does not
touch the surface Φ̄ along the curve γ. Thus the circle γ has multiplicity 1 in the curve Φ̄∩Π. By the
Bezout theorem [8, Theorem 18.3] the degree of the surface Φ̄ ⊂ P3 equals to the degree of its planar
section (with multiplicity), and thus equals to 2. Since Φ̄ contains both real lines and real circles,
it is either a one-sheeted hyperboloid, or a quadratic cone, or an elliptic cylinder. Theorem 1.2 is
proved. �

Proof that Theorem 2.4 is equivalent to the Wunderlich Theorem 2.3. It is well-known that any one-
parameter group of Möbius transformations is conjugate to a one-parameter group of either dilations,
or rotations, or translations, or loxodromic transformations

The orbits of a one-parameter group of loxodromic transformations are not circular arcs. Thus it
suffices to consider the following three cases.

Case 1. Mt is conjugate to a one-parameter group of dilations. The orbits of the group are
arcs of circles belonging to one elliptic pencil. It’s easy to verify that there are the following three
possibilities: 1) there are two distinct (possibly complex) circles from the pencil tangent to ωi; 2) ωi
passes through a vertex of the pencil; 3) ωi belongs to a hyperbolic pencil with limiting points at the
vertices of the pencil. If a circle ωi passes through a vertex of the pencil then the images of ωi are
circles belonging to the parabolic pencil with the same vertex. If ωi belongs to a hyperbolic pencil
with limiting points at the vertices of the pencil then the images of ωi are circles belonging to the
hyperbolic pencil. Overwise the images of ωi are circles tangent to two distinct (possibly complex)
fixed circles from the pencil.

Case 2. Mt is conjugate to a one-parameter group of rotations. The orbits of the group are arcs
of circles belonging to one hyperbolic pencil. The images of ωi are circles tangent to two distinct
(possibly null) fixed circles from the pencil.

Case 3. Mt is conjugate to a one-parameter group of translations. The orbits of the group are
arcs of circles belonging to one parabolic pencil. If a circle ωi passes through the vertex of the pencil
then the images of ωi are circles belonging to the parabolic pencil with the same vertex. If ωi does
not pass through a vertex of the pencil then the images of ωi are circles tangent to two distinct fixed
circles from the pencil.

�

4. Examples

Let us give several illustrative examples to Theorem 1.2. We begin with examples over the field
of complex numbers.

Example 4.1. The irreducible complex cyclide (x2 + y2 + z2)
2

+ (x + iy)2 − z2 = 0, which can be
parametrized in P3 as t2 − 1 : i(t2 − 1 − 2st) : s(t2 + 1) : s(t2 − 1) + 4t, is covered by a family of
complex lines t = const and a family of complex circles s = const simultaneously.

Example 4.2. A general position degree 3 complex cyclide is covered by a family of complex circles
and contains 27 complex lines; however, the surface contains no families of complex lines.

Proof. Any cyclide is covered by at least one family of complex circles [6, Chapter VII]. A general
position degree 3 cyclide is nonsingular and hence contains exactly 27 complex lines. �

Example 4.3. A general position ruled complex cubic surface is covered by a family of complex
lines and contains 15 complex circles; however, the surface contains no families of complex circles.

Proof of Example 4.2. Consider the intersection I of the ruled cubic surface with the absolute conic.
In general position it consists of six distinct points. Let P , Q be two of the intersection points. Let
λ1 be the line passing through P , Q, and let R be the third common point of λ1 and the surface. In
general position R 6= P,Q. Consider the ruling λ2 passing through R. Take the plane Π containing
the lines λ1 and λ2. The intersection of Π and the surface consists of the ruling λ2 and a curve γ
of degree 2. The curve γ is irreducible once the plane Π contains neither the singular line nor the
isolated line of the surface, i.e., the points P , Q, R do not belong to these lines (this follows from the
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classification of ruled cubic surfaces [14, Section 2]). Thus in general position γ is a conic through P
and Q, i.e., a complex circle. There are 15 ways to choose two distinct points P,Q ∈ I leading to 15
complex circles on the surface. �

Finally, let us proceed to examples over the field of real numbers. Their obvious proofs are omitted.

Example 4.4. (See Figure 15 to the left.) The surface (x2−z2)(3z−2)+(y−z)(3yz−2y−4z+2) = 0
is covered by a family of circles in the planes z = const and contains 4 lines: l1(t) = (t, t, t),
l2(t) = (−t, t, t), l3(t) = (t, 1− t, 2t), l4(t) = (−t, 1− t, 2t); however, the surface contains no families
of lines.

Example 4.5. (See [16, Section 1] and Figure 15 in the middle.) The surface (x2 + y2 + z2 + 3)2 −
4y2z2− 16x2− 12y2 = 0 obtained by translation of a circle along another one is covered by 2 families
of circles in the planes y = const and z = const but it is not a cyclide.

Figure 15. Left: a surface covered by 1 family of circles and containing 4 lines (Example 4.4).
Right: a surface covered by 2 families of circles (Example 4.5).

5. Open problems

The following open problems may be a good warm-up before attacking the Blaschke–Bol Problem.

Problem 5.1. Web Transformation Problem. Prove that in Theorem 1.1(b) the hyperbolic pencil
can be replaced by the elliptic one with the vertices at the limiting points of the initial pencil.
Analogous replacement is not possible for Theorem 1.1(d).

Figure 16. To Problem 5.1.

A cubic series is a family of circles a(t)(x2 + y2) + b(t)x + c(t)y + d(t) = 0, where a(t), b(t), c(t),
and d(t) are polynomials of degree ≤ 3.

Problem 5.2. Cubic Series. Prove that the set of circles (1− t3)(x2 + y2) + 2(1 + t)x+ 2(t2 + t3)y−
1− t3 = 0, where t ∈ R, counted triply, contains a web. Find all cubic series that contain a web.

It is easy to see that examples of webs in Problem 5.1 and Problem 5.2 are not particular cases of
the examples considered in §1, 2.
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Problem 5.3. Complement Problem. (A.A. Zaslavsky and I.I. Bogdanov, private communication)
Given two sets of lines x = const and y = const, find all sets of circles which together with them
contain a web.

Our last problem concerns 3-dimensional isotropic geometry; see references in [16]. An isotropic
circle is either a parabola with the axis parallel to Oz or an ellipse whose projection onto the plane
Oxy is a circle. An isotropic plane is a plane parallel to Oz. An isotropic sphere is a paraboloid of
revolution with the axis parallel to Oz.

Problem 5.4. Webs of isotropic circles. Find all webs of isotropic circles in the isotropic plane and
on all surfaces except planes and isotropic spheres; see Figure 4 to the right.
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