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Abstract

Initial–boundary value problem for the linearized equations of viscous
barotropic fluid motion in a bounded domain is considered. Existence,
uniqueness and estimates of weak solutions to this problem are derived.
Convergence of the solutions towards the incompressible limit when com-
pressibility tends to zero is studied.
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1 Introduction

In many cases mathematical treatment of liquids is done in the framework of
incompressible fluid. However, from the physical point of view, all the liquids
existing in nature are low compressible. Therefore it is reasonable to study
asymptotic properties of solutions to equations of low compressible fluid, in
particular, convergence to the corresponding incompressible limit.

To formalize the notion of the incompressible limit one should introduce a
parameter α, which represents a measure of compressibility of a fluid. Having
this done, one can study passage to the limit when α → 0. We will call such a
parameter α the compressibility of a fluid.

It appears that the first mathematical treatment of the incompressible limit
was carried out in [1] for the barotropic Euler equations. The equation of
state in [1] had the form p = k%γ , where k = const, and passage to the limit
when γ → ∞ was studied. In this case the compressibility can be defined as
α = (kγ)−1. Later, in [2] the barotropic Euler (and Navier–Stokes) equations
with equation of state p = λ2P (%) were considered and passage to the limit
when λ → ∞ was studied. In this case the compressibility can be defined as
α = λ−2.

Slightly different approach to the introduction of α was used in [3, 4, 5, 6].
That approach is based on putting the equations of fluid motion in a dimension-
less form which contains the Mach number ε, and on the argument that when
ε is small, the flow is nearly incompressible. In barotropic case the resulting
system is equivalent to the equations of motion of a fluid with equation of state
p = P (%)/ε2, and the compressibility can be defined as α = ε2.

Another approach was suggested in [7, 8]. That approach is based on the idea
that the incompressible model can be formally obtained from the compressible
model with the equation of state % = F (p) if we let F = F0, where F0(p) ≡
%0 > 0. Therefore one might expect that when F is close to F0 the flow is
nearly incompressible. For instance, in [7] the function F was given by F (p) =
%0 + αR(p) and the parameter α was called the compressibility factor. In this
case α is proportional to d%/dp, so it measures the response of the density to
variations of the pressure; when α = 0 there is no response.

In spite of the observed differences, all the approaches used in [1, 2, 3, 4, 5]
lead to the convergence of the velocity of the compressible fluid towards the
velocity of the incompressible fluid when α → 0. The topology of this conver-
gence, however, depends on the problem setting. In case of strong solutions
(which are local in time) and divergence-free initial data (see e.g. [1, 2]) such
convergence holds in C(0, T ;Hs)-norm, where Hs denotes the Sobolev space.
(In non-barotropic case convergence of local solutions with general initial data
was studied in [9] in the low Mach number framework.)

Convergence of weak solutions (which are global in time) with general initial
data was studied in [3, 4, 5, 6]. In particular, it was proved (see [3, 4]) that
there exists a sequence of weak solutions to the compressible Navier–Stokes(–
Fourier) equations such that the velocity converges weakly (in L2(0, T ;H1

0 )) to
the velocity of the incompressible fluid. However from the physical consideration
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one could desire strong convergence of the velocity (and pressure as well) to yield
better approximation of compressible fluid by incompressible one.

Strong convergence of the velocity was established in [10, III, §8] for the
solutions of “compressible” system arising in the method of artificial compress-
ibility. It was also proved that the gradient of the pressure converges weakly,
but convergence of the pressure itself was not examined.

In this paper we study the incompressible limit of weak solutions to the
linearized equations of compressible fluid motion. These equations describe the
first order correction to the equations of the incompressible fluid motion, which
arises due to compressibility. The linearized equations are considerably easier
than the original nonlinear equations, but have similar structure. This allows
us to carry out a more comprehensive study of the passage to the limit when
α→ 0. In particular, we study the convergence of the pressure. (Also note that
the linearized equations of compressible fluid are of interest on they own. For
instance, spectral properties of the operator corresponding to linearized steady
equations of compressible fluid were examined in [11].)

Linearization of the compressible Navier–Stokes equations near a state with
zero reference velocity was studied in [12, 13]. Estimate of strong solution
to an initial–boundary value problem for these equations in a bounded three-
dimensional domain was derived in [13], and existence of strong solution to
Cauchy problem in the whole space for them was established in [12]. Estimates
of strong solutions to linearization of the compressible Navier–Stokes equations
near a state with non-zero smooth reference velocity was studied in [9]. It ap-
pears that existence of weak solutions to these equations has not been addressed,
especially when the reference velocity is non-smooth.

In this paper we derive existence, uniqueness and estimates of weak solu-
tions to the initial–boundary value problem for the linearized Navier–Stokes
equations. We examine convergence of these solutions to the incompressible
limit when the compressibility tends to zero. Briefly, we prove that

• in general case the velocity field converges weakly ;

• if the initial condition for the velocity is divergence-free then the velocity
converges strongly and the pressure converges ∗-weakly ;

• if, in addition, the initial condition for the pressure is compatible with
the initial value of the pressure in the incompressible system then the
convergence of the pressure is strong.

1.1 Overview of the main results

Let D ⊂ Rd (d ∈ N) be a bounded domain with a piecewise-smooth boundary
∂D. In Section 3 we show that the homogeneous linearization of the Navier–
Stokes equations in D near a state with velocity u and constant density can be
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written in the form

ρt + div(u + ρu) = 0, (1.1)

ut + (u,∇)u + div(u⊗ u) +∇p = ν∆u + κ∇ div u + ρf , (1.2)

ρ = αp, (1.3)

where α > 0 is the compressibility ; the unknowns ρ, p and u are proportional to
the variations of density, pressure and velocity respectively; ν > 0, κ ≥ 0; f is
a fixed vector field. We assume that u|∂D = 0 and consider the following initial
and boundary conditions for the system (1.1)–(1.3):

u|t=0 = u◦, u|∂D = 0, p|t=0 = p◦. (1.4)

When α = 0, the system (1.1)–(1.3) formally takes the form

div v = 0, (1.5)

vt + (v,∇)u + div(u⊗ v) +∇q = ν∆v, (1.6)

and for this system we consider the following initial and boundary conditions:

v|t=0 = v◦, v|∂D = 0. (1.7)

Our goal is to study the behavior of the solutions to (1.1)–(1.4) when α→ 0.
Let T > 0. To present our results in the shortest form let us suppose that u

is smooth (i.e. u ∈ C∞(D × (0, T ))d), u|∂D = 0 and

{v, q} ∈ C∞(D × (0, T ))d × C∞(D × (0, T ))

is a smooth solution to (1.5)–(1.7). (When ∂D ∈ C∞ and u ≡ 0, such solution
exists if, for instance, v◦ is an eigenfunction of the Stokes problem, see e.g. [10],
I.2.6.)

Theorem 1.1. For all α ∈ (0, 1), p◦ ∈ L2(D) and u◦ ∈ L2(D)d the problem
(1.1)–(1.4) has a unique weak solution

{u, p} ≡ {uα, pα} ∈ L2(0, T ;H1
0 (D)d)× L∞(0, T ;L2(D)).

(Theorem 1.1 follows from Corollary 4.5. Similar existence results for the
Navier–Stokes equations were obtained in [3, 4, 5].)

Let H(D) denote the divergence-free subspace of L2(D)d and PH denote the
orthogonal projector of L2(D)d onto H(D) (see Section 2).

Theorem 1.2. If PHu◦ = v◦ then

uα ⇁ v in L2(0, T ;H1
0 (D)d),

∇pα
∗
⇁ ∇q in H−1(D × (0, T ))d

as α→ 0.
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(Theorem 1.2 follows from Theorem 5.3. Similar results for the Navier–Stokes
equations were obtained in [3, 4, 5].)

Theorem 1.3. If u◦ = v◦ then

uα → v in L2(0, T ;H1
0 (D)d),

pα
∗
⇁ q̂ in L∞(0, T ;L2(D))

as α→ 0, where {v, q̂} is the solution to (1.5)–(1.7) such that∫
D

q̂(t) dx =

∫
D

p◦ dx (1.8)

for a.e. t ∈ [0, T ].

(This Theorem follows from Theorems 5.5 and 5.10. Similar result concerning
convergence of the velocity was obtained in [10] for the system coming from the
artificial compressibility method.)

Integrating (1.1) over D we observe that for any α ∈ (0, 1) the pressure
pα satisfies (1.8), i.e.

∫
D
pα(t) dx =

∫
D
p◦ dx for a.e. t ∈ [0, T ]. However the

pressure q in the incompressible system may not satisfy (1.8), since q is defined
up to an additive function of time. Nevertheless Theorem 1.3 shows that (1.8)
is conserved during the passage to the limit when α→ 0.

Theorem 1.3 also shows that the compatibility condition u◦ = v◦ is sufficient
for the strong convergence of the velocity. The following result shows that there
is a similar compatibility condition for p◦ and q|t=0 which is sufficient for the
strong convergence of the pressure:

Theorem 1.4. If u◦ = v◦ and ∇p◦ = ∇q|t=0 then

uα → v in L2(0, T ;H1
0 (D)d),

pα → q̂ in L∞(0, T ;L2(D))

as α→ 0, where q̂ is defined in Theorem 1.3.

(This Theorem follows from Theorem 5.11.)
In Section 5.3 we give an explicit solution to the problem (1.1)–(1.4) in

simplified one-dimensional setting. Using this solution we demonstrate that
the sufficient conditions (for the convergence of velocity and pressure) given in
Theorems 1.2–1.4 are also necessary. Therefore the results of these theorems
can be summarized in the following table:

Condition ↓ Result → uα ⇁ v uα → v pα
∗
⇁ q̂ pα → q̂

PHu◦ = v◦, u◦ 6= v◦ + − − −

u◦ = v◦, ∇p◦ 6= ∇q|t=0 + + + −

u◦ = v◦, ∇p◦ = ∇q|t=0 + + + +
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1.2 Methods of proofs

The proof of the existence part of Theorem 1.1 relies on the Galerkin method,
energy estimates for the approximate solutions and Banach–Alaoglu theorem.
In the proof of the uniqueness part we first use the DiPerna–Lions theory to
establish the energy equality (4.13). From it we derive energy estimates (see
Theorem 4.3) which imply uniqueness since (1.1)–(1.3) is linear.

The energy estimates and Banach–Alaoglu theorem also allow us to select a
sequence {αn}n∈N: αn → 0, n→∞, such that uαn

converges weakly as n→∞.
We show that the limit of uαn

is v. Since v is unique, uα ⇁ v as α→ 0, which
completes the proof of Theorem 1.2.

The general strategy of proving Theorems 1.3 and 1.4 is very simple and can
be roughly formulated as follows. We rewrite the problem (1.1)–(1.4) in the form
(A+αB)uα = 0 and rewrite the problem (1.5)–(1.7) in the form Av = 0, where
A and B are some differential operators. The assumptions on the regularity of
the solution to (1.5)–(1.7) allow us to conclude that the difference uα−v satisfies
(A + αB)(uα − v) = −αBv. Then we generalize the energy estimates for the
problem (1.1)–(1.4) with additional terms on the right-hand side and apply
these estimates to the system for the difference uα − v. We get an estimate of
the following sort: ‖uα − v‖ ≤ Cαα‖Bv‖, which implies the strong convergence
if Cα = o(1/α) when α→ 0.

Under the assumptions of Theorem 1.3 we can show only that the pressure
is bounded (the corresponding constant Cα ∼ 1/α is not o(1/α)), but then we
use Banach–Alaoglu theorem to show weak* convergence of the pressure and
pass to the limit in (1.8).

Under the assumptions of Theorem 1.4 we can use an operator similar to
the Bogovskii operator (which is right-inverse to div : H1

0 → L2) to improve our
estimates (see Theorem 4.8) and show that the corresponding constant Cα is
o(1/α).

2 Notation and preliminaries

2.1 Common functional spaces

Let E ⊂ Rn be a bounded domain, n ∈ N. We will use the following standard
spaces:

• Lp(E) is the Lebesgue space of real-valued functions on E summable with
p-th power, 1 ≤ p <∞, or essentially bounded when p =∞;

• L̂p(E) =
{
u
∣∣ u ∈ Lp(E),

∫
E
u dx = 0

}
;

• Hs(E) = W s,2(E), where W s,p(E) is the Sobolev space of real-valued
functions whose weak derivatives up to order s ∈ N belong to Lp(E);

• C∞0 (E) is the space of smooth real-valued functions on E with compact
support;
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• D(Rn) is the space of test functions on Rn, i.e. D(Rn) is C∞0 (Rn) where
the following definition of convergence is introduced:
D(Rn) ⊃ {ϕm}m∈N → ϕ ∈ D(Rn), m→∞, if and only if

1. ∃R > 0: suppϕm ⊂ {x ∈ E | |x| < R}, m ∈ N;

2. ∀(k1, k2, ..., kn) ∈ (N ∪ 0)n

∂k1x1
∂k2x2

...∂knxn
ϕm → ∂k1x1

∂k2x2
...∂knxn

ϕ in C(UR), m→∞.

D ′(Rn) is the space of distributions on E, i.e. the space dual to D(Rn);
D(E) = {ϕ ∈ D(Rn) | suppϕ ∩ E is compact in E};

• H1
0 (E) and W s,p

0 (E) denote the closures of C∞0 (E) in H1(E)-norm and
W s,p(E)-norm respectively;

• H−1(E) denotes the dual space of H1
0 (E);

(For E = (a, b) ⊂ R we will omit undue brackets, i.e. L2(a, b) = L2((a, b)).)
Let D ⊂ Rd be a bounded domain with a piecewise-smooth boundary ∂D,

d ∈ N. Let T > 0.
For Rk-valued functions (k ∈ N) we will use Cartesian products of these

spaces, e.g. L2(D)k. Since H−1(D)k is linearly and continuously isomorphic to
the dual space of H1

0 (D)k, let H−1(D)k denote the latter.
Vector-valued functions will be denoted by bold letters. We will use the

following spaces for such functions:

• V(D) =
{

u
∣∣ u ∈ C∞0 (D)d, div u = 0

}
;

• H(D) is the closure in L2(D)d-norm of V(D);

• V (D) is the closure in H1
0 (D)d-norm of V(D).

2.2 Scalar products and duality

Let ‖ · ‖X denote the norm of a Banach space X (with dual space X∗) and
let 〈·, ·〉X denote the duality brackets for the pair (X∗, X). We will use the
following notation:

• xn ⇁ x means that the sequence {xn}n∈N ⊂ X converges to x weakly;

• fn
∗
⇁ f means that the sequence {fn}n∈N ⊂ X∗ converges to f ∗-weakly.

Let (·, ·) denote the standard dot product in Rk, and let (·, ·)D denote the

dot product in L2(D)k, i.e. (u,v)D =
∑k
i=1

∫
D
uivi dx.
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2.3 Spaces of Banach space valued functions

Consider an arbitrary closed interval [0, T ] where T > 0. Let X be a Ba-
nach space and s ∈ N. Let Lp(0, T ;X) and W s,p(0, T ;X) denote accordingly
Lebesgue–Bochner and Sobolev–Bochner spaces of X-valued functions of real
variable t ∈ [0, T ] (see, e.g., [14]), 1 ≤ p ≤ ∞. (These spaces are separable
provided that X is separable [14].) Let ft denote the weak derivative of a func-
tion f ∈ W 1,p(0, T ;X) with respect to t. Let C(0, T ;X) denote the space of
continuous functions f : [0, T ]→ X. Finally, let H be a Hilbert space with the
dot product (·, ·)H .

Now we recall the following well-known properties of Sobolev space of Banach
space valued functions (see, e.g., [14]):

Proposition 2.1. For any u ∈W 1,1(0, T ;X) there exists unique ū ∈ C(0, T ;X)
such that ū = u a.e. on [0, T ] and

‖ū‖C(0,T ;X) ≤ C‖u‖W 1,1(0,T ;X).

Moreover, ū is absolutely continuous and for a.e. t ∈ [0, T ] it has strong deriva-
tive ∂tū(t) (in Fréchet sense) which is for a.e. t ∈ [0, T ] equal to the distribu-
tional derivative ut(t).

Remark 2.2. We will call ū the continuous version of u and denote

u|t=τ := ū(τ)

for ∀τ ∈ [0, T ].

Remark 2.3. Conversely, if u ∈ C(0, T ;X) is absolutely continuous and X is
reflexive then u ∈ W 1,1(0, T ;X). Hence the strong derivative and the distribu-
tional derivative of u are equal a.e. on [0, T ].

Remark 2.4. For ∀ϕ ∈ C∞([0, T ]) and ∀a, b ∈ [0, T ] we also have∫ b

a

utϕdt = ūϕ|ba −
∫ b

a

uϕt dt

Remark 2.5. If X = H and u ∈ W 1,2(0, T ;H) then the mapping t 7→ ‖ū(t)‖2H
is absolutely continuous with

∂t‖ū‖2H = 2(ut, u)H

a.e. on [0, T ] (hence also in D ′(0, T ) by Remark 2.3).

Let X be a reflexive Banach space (with dual space X∗) and let H be a
Hilbert space for which there exists a linear bounded dense embedding κ : X →
H. Let π : H → X∗ be the embedding given by π : h 7→ (h, κ(·))H , where (·, ·)H
is the dot product in H. Then embeddings π and ı = π ◦ κ are linear, bounded
and dense. Triple (X,H,X∗) (with embeddings κ, π, ı) is said to be a Gelfand
triple, or evolution triple [14]. For given evolution triple let

W̃ 1,2(0, T ;X) =
{
f
∣∣ f ∈ L2(0, T ;X), ı(f) ∈W 1,2(0, T ;X∗)

}
.
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This space is sometimes referred to as Sobolev–Lions space [15]. It is a reflexive
Banach space with norm given by

‖f‖
W̃ 1,2(0,T ;X)

= ‖f‖L2(0,T ;X) + ‖ı(f)t‖L2(0,T ;X∗).

Embedding ı is often omitted and the space W̃ 1,2(0, T ;X) is then introduced as
the space of functions belonging to L2(0, T ;X) whose weak derivative belongs
to L2(0, T ;X∗). In this paper ı, κ and π will be omitted when they are not the
subject matter.

The introduced space has the following property (see, e.g., [14]):

Proposition 2.6. For any u ∈ W̃ 1,2(0, T ;X) there exists unique u ∈ C(0, T ;H)
such that u = u a.e. on [0, T ] and

‖u‖C(0,T ;X) ≤ C‖u‖W̃ 1,2(0,T ;X)
.

Remark 2.7. We will call u the continuous version of u and denote

u|t=τ := u(τ)

for ∀τ ∈ [0, T ].

Remark 2.8. For ∀a, b ∈ [0, T ], ∀v ∈ X and ∀ϕ ∈ C∞([0, T ])∫ b

a

〈ut, v〉ϕdt = (u(t)ϕ(t), v)H

∣∣∣b
a
−
∫ b

a

(u, v)Hϕt dt.

Consequently, if ∀v ∈ X and ∀ϕ ∈ C∞0 ([0, T ))∫ T

0

〈ut, v〉ϕdt = −(u0ϕ(0), v)H −
∫ T

0

(u, v)Hϕt dt,

where u0 ∈ H, then u(0) = u0. (Similar procedure can be used to identify the
initial value of a function from W 1,2(0, T ;H).)

Remark 2.9. The mapping t 7→ ‖u(t)‖2H is absolutely continuous with

∂t‖u(t)‖2H = 2 〈ut(t), u(t)〉

for a.e. t ∈ [0, T ] (hence also in D ′(0, T ) by Remark 2.3).

In this paper we consider evolution triples (H1
0 (D)k, L2(D)k, H−1(D)k) (k ∈

N) and (V (D), H(D), V (D)∗). In both cases the embeddings κ, π and ı are given
by κ : u 7→ u (natural embedding), π : u 7→

∫
D

(u, ·) dx and ı = π◦κ. For brevity

let us also denote W(0, T ) := W̃ 1,2(0, T ;H1
0 (D)d).

The following theorem describes the space which is dual to a Lebesgue–
Bochner space [14]:

Proposition 2.10. If X is a reflexive Banach space, then

Lp(0, T ;X)∗ = Lp
′
(0, T ;X∗),

where 1 ≤ p < ∞, 1/p + 1/p′ = 1 and duality is given by 〈f, g〉 =
∫ T
0
fg dt,

f ∈ Lp′(0, T ;X∗), g ∈ Lp(0, T ;X).
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Different constants which are not dependent on the principal parameters
(such as initial conditions) will be denoted by the same letter C. The dependence
of such constant on some parameter will be indicated in the subscript.

2.4 Compactness

We will use the following well-known sequential version of Banach–Alaoglu the-
orem:

Proposition 2.11. Let X be a separable Banach space. Then for any bounded
sequence {fn}n∈N ⊂ X∗ there exist a subsequence {fnk

}k∈N and f ∈ X∗ such

that fnk

∗
⇁ f in X∗ as k →∞. In addition, ‖f‖X∗ ≤ lim infk→∞ ‖fnk

‖X∗ .

Remark 2.12. If the sequence {fn} from Proposition 2.11 has no more than one

cluster point in weak* topology, then fn
∗
⇁ f in X∗ as n→∞.

In other words, if a bounded sequence cannot have two different cluster
points in weak* topology then the whole sequence converges weakly* to some
element of X∗.

2.5 Auxiliary inequalities

Let us recall two well-known statements:

Proposition 2.13. Let a ≥ 0, b ≥ 0 and J be real numbers. If J2 ≤ a + bJ
then J ≤ b+

√
a.

Proposition 2.14 (Gronwall’s inequality). Let I be an absolutely continuous
nonnegative function of a variable t ∈ [0, T ] and let ϕ,ψ ∈ L1(0, T ) be nonneg-
ative functions. If the derivative I ′(t) satisfies

I ′(t) ≤ ϕ(t)I(t) + ψ(t) a.e. on [0, T ],

then for a.e. t ∈ [0, T ]

I(t) ≤ e
∫ t
0
ϕ(τ) dτ

(
I(0) +

∫ t

0

ψ(τ) dτ

)
.

The proof of Proposition 2.13 is elementary and the proof of Proposition
2.14 can be found e.g. in [16].

We will use the following mix of Propositions 2.13 and 2.14:

Lemma 2.15. Let I and J be absolutely continuous nonnegative functions of
a variable t ∈ [0, T ], J ∈ L2(0, T ). Let a, c ∈ L1(0, T ) and b ∈ L2(0, T ) be
nonnegative functions. If for a.e. t ∈ [0, T ]

I ′(t) + J2(t) ≤ a(t)I(t) + b(t)J(t) + c(t) (2.1)

10



then

‖J‖L2(0,T ) ≤ Ca
(√

I(0) +
√
‖c‖L1(0,T ) + ‖b‖L2(0,T )

)
,

‖I‖L∞(0,T ) ≤ Ca
(
I(0) + ‖c‖L1(0,T ) + ‖b‖2L2(0,T )

)
,

where constant Ca depends only on A = ‖a‖L1(0,T )

Proof. From (2.1) for a.e. t ∈ [0, T ]

I ′(t) ≤ a(t)I(t) + b(t)J(t) + c(t)

and then, by Proposition 2.14 and Cauchy–Bunyakovsky inequality,

I(t) ≤ exp

(∫ t

0

a dτ

)(
I(0) +

∫ t

0

(bJ + c)dτ

)
≤

≤ e‖a‖L1(0,t)
(
I(0) + ‖b‖L2(0,t)‖J‖L2(0,t) + ‖c‖L1(0,t)

)
and hence

‖I‖L∞(0,T ) ≤ e‖a‖L1(0,T )
(
‖b‖L2(0,T )‖J‖L2(0,T ) + ‖c‖L1(0,T ) + I(0)

)
.

Integrating the inequality J2 ≤ aI + bJ + c − I ′ and noting that I(T ) ≥ 0 we
obtain∫ T

0

J2dt ≤
∫ T

0

aI dτ +

∫ T

0

bJ dτ +

∫ T

0

c dτ + I(0) ≤

≤ ‖I‖L∞(0,T )‖a‖L1(0,T ) + ‖b‖L2(0,T )‖J‖L2(0,T ) + ‖c‖L1(0,T ) + I(0) ≤
≤ Ca

(
‖b‖L2(0,T )‖J‖L2(0,T ) + ‖c‖L1(0,T ) + I(0)

)
(2.2)

where
Ca = 1 + ‖a‖L1(0,T )e

‖a‖L1(0,T ) .

Applying Proposition 2.13 to (2.2) we get

‖J‖L2(0,T ) ≤ Ca
(√
‖c‖L1(0,T ) +

√
I(0) + ‖b‖L2(0,T )

)
Finally, by Young’s inequality

‖I‖L∞(0,T ) ≤ e‖a‖L1(0,T )

(
‖b‖2L2(0,T ) + ‖J‖2L2(0,T )

2
+ ‖c‖L1(0,T ) + I(0)

)
≤

≤ e‖a‖L1(0,T )

(
‖b‖2L2(0,T ) + ‖c‖L1(0,T ) + I(0) +

+
3

2
C2
a

(
‖b‖2L2(0,T ) + ‖c‖L1(0,T ) + I(0)

))
=

= C̃a

(
‖b‖2L2(0,T ) + ‖c‖L1(0,T ) + I(0)

)
,

where

C̃a = e‖a‖L1(0,T )

(
1 +

3

2
C2
a

)
.
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2.6 On the transport equation in a bounded domain

Let b : D × [0, T ] → Rd be a vector field such that b|∂D = 0. Consider the
following problem:

ut − (b,∇)u+ cu = f in D × (0, T ), (2.3)

u|t=0 = u◦ in D, (2.4)

where u, c, f : D × [0, T ] → R and u◦ : D → R is the initial condition for the
unknown function u = u(x, t), x ∈ D, t ∈ [0, T ].

Definition 2.16. Let 1 < p < ∞ and u◦ ∈ Lp(D), b ∈ L1(0, T ;W 1,p′

0 (D)),

c ∈ L1(0, T ;Lp
′
(D)), f ∈ L1(0, T ;L1(D)). Function u ∈ L∞(0, T ;Lp(D)) is

said to be a weak solution to the problem (2.3), (2.4) if for all Φ ∈ D(Rd×[0, T ))
the following equality holds:

−
∫ T

0

∫
D

uΦt dx dt−
∫
D

u◦Φ(·, 0) dx+

+

∫ T

0

∫
D

u[(c+ div b)Φ + (b,∇)Φ] dx dt =

∫ T

0

∫
D

fΦ dx dt

Note that in Definition 2.16 Φ|∂D can be nonzero.

Theorem 2.17. Let u ∈ L∞(0, T ;Lp(D)) be a weak solution to (2.3), (2.4). If,
in addition, {c,div b} ⊂ L1(0, T ;L∞(D)) and f ∈ L1(0, T ;Lp(D)), then for all
ψ ∈ D([0, T )) the following equality holds:

−
∫ T

0

ψt

∫
D

|u|p dx dt−
∫
D

|u◦|pψ(0) dx+

+

∫ T

0

ψ

∫
D

(
|u|p div b + pc|u|p − p|u|p−1f signu

)
dx dt = 0. (2.5)

The proof of Theorem 2.17 is based on some minor modifications of the
technique introduced in [17], where a similar result was established in case when
f = 0 and D = Rd (see [17], equality (26) on page 520). We skip this proof here
because it is quite long and goes beyond the scope of the present paper.

Remark 2.18. As in [17] one can show that if the assumptions of Theorem 2.17
are satisfied, then there exists a unique function u ∈ C(0, T ;Lp(D)) which is
a weak solution to (2.3), (2.4) such that u(t) = u(t) for a.e. t ∈ [0, T ] and
u|t=0 = u◦.

3 Linearization of the Navier–Stokes equations

In this section we derive the linearized equations of fluid motion which we are
going to study. Let us consider the barotropic Navier–Stokes equations in the
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cylinder D × (0, T ):

%t + div(%u) = 0, (3.1)

(%u)t + div(%u⊗ u) +∇p− (µ∆u + λ∇div u + %g) = 0, (3.2)

%− F (p) = 0, (3.3)

where %, u and p — are the density, velocity and pressure respectively; µ > 0
and λ ≥ 0 are the coefficients of viscosity, g is the external force (per unit
volume), F is a function of state.

Let Ek(%, u,p), k = 1, 2, 3, denote the left-hand sides of the equations (3.1),
(3.2) and (3.3) respectively. We will look for the solution of (3.1), (3.2), (3.3)
in the form

% = %+ τ%′, u = u + τu′, p = p + τp′,

where %, u,p are some given fields of density, velocity and pressure respectively,
τ ∈ R. We require that (3.1), (3.2) and (3.3) hold when τ = 1.

First we calculate LEk :=
d

dτ
Ek(%+ τ%′, u + τu′,p + τp′)

∣∣∣∣
τ=0

:

LE1 = %′t + div(%u′ + %′u),

LE2 = (%u′ + %′u)t + div(%u⊗ u′ + %u′ ⊗ u + %′u⊗ u) +

+∇p′ − µ∆u′ − λ∇ div u′ − %′g,
LE3 = %′ − F ′(p)p′

Then we can write

Ek(%+ τ%′, u + τu′,p + τp′)− Ek(%, u,p) = τLEk + τ2DEk,

k = 1, 2, 3, where

DE1 := div(%′u′),

DE2 := (%′u′)t + div(%u′ ⊗ u′ + %′u⊗ u′ + %′u′ ⊗ u + %′u′ ⊗ u′τ),

DE3 := −(F (p + τp′)− F (p)− τF ′(p)p′)/τ2

Hence the “variations” %′, u′,p′ of density, velocity and pressure satisfy the equa-
tions

LEk = Sk, k = 1, 2, 3, (3.4)

where Sk := −(Ek(%, u,p) +DEk|τ=1) since Ek(%+ %′, u + u′,p + p′) = 0.
Let us consider the system (3.4) when the terms Sk are given in advance.

In this case the system (3.4) is linear with respect to %′, u′,p′. Let us simplify
(3.4). First note that

(%′u)t = %′tu + %′ut = (S1 − div(%u′ + %′u))u + %′ut =

= S1u− div(%u′ ⊗ u + %′u⊗ u) + (%u′,∇)u + %′((u,∇)u + ut),
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hence for k = 2 we get

(%u′)t + (%u′,∇)u + div(%u⊗ u′) +

+∇p′ − µ∆u′ − λ∇ div u′ − %′(g − ut − (u,∇)u) = S2 − S1u. (3.5)

Denote
%′′ = F ′(p)p′,

then %′ = S3 + %′′ and when k = 1 the equation (3.4) takes the form

%′′t + div(%u′ + %′′u) = S1 − (S3)t − div(S3u), (3.6)

and the equation (3.5) takes the form

(%u′)t + (%u′,∇)u + div(%u⊗ u′) +

+∇p′ − µ∆u′ − λ∇div u′ − %′′f = S2 − S1u + S3f , (3.7)

where f = g − ut − (u,∇)u.
We will study the linearization of the equations (3.1), (3.2) and (3.3) near

the state with constant density %0 > 0, so let % = %0.
In addition we will assume that the function of state F (·) is linear and

denote α = dF/dp. Alternatively, we could consider arbitrary F (·) but constant
reference pressure p = const and then we would denote α = F ′(p). In both
cases from the physical point of view we have 1/α = dp/d% = c2 > 0, where c
is the speed of sound.

Under these assumptions the equations (3.6) and (3.7) take the form

ρt + div(u + ρu) = σ, (3.8)

ut + (u,∇)u + div(u⊗ u) +∇p = ν∆u + κ∇div u + ρf + s, (3.9)

ρ = αp, (3.10)

where

ρ = %′′, u = %0u
′, p = p′,

ν = µ/%0, κ = λ/%0,

σ = S1 − (S3)t − div(S3u), s = S2 − S1u + S3f .

Note that in the homogeneous case (i.e. when S1 = S2 = S3 = 0) we have s = 0
and σ = 0.

4 Initial–boundary value problem for the lin-
earized Navier–Stokes equations

In this section we study the following initial–boundary value problem for a
slightly generalized version of the system (3.8)–(3.10):
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ρt − (b,∇)ρ+ cρ+ div u = σ, (4.1)

ut +∇p = −Au + ρf + s, (4.2)

ρ = αp, (4.3)

u|t=0 = u◦, (4.4)

p|t=0 = p◦, (4.5)

u|∂D = 0, (4.6)

where
−Au ≡ ν∆u + κ∇ div u− (a,∇)u +Mu, (4.7)

where b,u, f , s : D × (0, T ) → Rd are vector fields, ρ, c, σ, p, : D × (0, T ) → R
are scalar fields, u◦ : D → Rd, p◦ : D → R, α > 0, M : D × (0, T ) → Rd×d is a
square matrix of size d× d dependent on x ∈ D and t ∈ [0, T ]. In what follows
we assume that b|∂D = 0, so there is no need in boundary conditions for ρ. If

b = −u, c = −div b = div u,

a = u, Mij = −div(u)δij − ∂jui,

where δij is the Kronecker symbol, i, j = 1, 2, ..., d, then the system (4.1), (4.2),
(4.3) coincides with (3.8), (3.9), (3.10).

There are three unknowns in the problem (4.1)–(4.6): density ρ, velocity
u and pressure p; the rest quantities are given in advance. Since it is easy to
exclude the equation (4.3) from the system (4.1)–(4.3), we will consider only
u and p as the unknowns. In what follows by default we assume that ρ is
determined by p via (4.3).

Throughout this paper we will assume that the following assumptions are
satisfied:

1◦ ν > 0, κ ≥ 0, M ∈ L∞(D × (0, T );Rd×d),
a ∈ L∞(D × (0, T );Rd), f ∈ L2(0, T ;L∞(D)d);

2◦ b ∈ L1(0, T ;H1
0 (D)d), div b ∈ L1(0, T ;L∞(D)),

c ∈ L1(0, T ;L∞(D));

3◦ u◦ ∈ L2(D)d, σ ∈ L2(0, T ;L2(D)),
p◦ ∈ L2(D), s ∈ L2(0, T ;H−1(D)d).

Now let us give a definition of weak solution to the problem (4.1)–(4.6).

Definition 4.1. A pair {u, p} ∈ L2(0, T ;H1
0 (D)d)× L∞(0, T ;L2(D)) is called

weak solution to the problem (4.1)–(4.6) if for all ϕ ∈ D(Rd) and Φ ∈ D(D)d

the functions t 7→ (ρ(t), ϕ)D and t 7→ (u(t),Φ)D satisfy

∂t (ρ, ϕ)D + (ρ[c+ div b], ϕ)D + (ρb,∇ϕ)D + (div u− σ, ϕ)D = 0, (4.8)

∂t (u,Φ)D − (p,div Φ)D = −〈Au,Φ〉+ (ρf ,Φ)D + 〈s,Φ〉 (4.9)
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in sense of distributions D ′(0, T ) and moreover

(ρ(t), ϕ)D |t=0 = (ρ◦, ϕ)D , (4.10)

(u(t),Φ)D |t=0 = (u◦,Φ)D . (4.11)

Equations (4.10) and (4.11) should be read in accordance with Remark 2.2.
Before turning the question of well-posedness of the problem (4.1)–(4.6) let

us discuss some properties of the operator A Let t ∈ [0, T ]. Consider an operator
A(t) : D(D)d → H−1(D)d, which maps v ∈ D(D)d to the functional

`v(h) =

∫
D

(A(t)v,h) dx, h ∈ H1
0 (D)d.

By the assumption 1◦ this mapping is defined for a.e. t ∈ [0, T ]. Since ∂D is
piecewise-smooth, by Ostrogradsky–Gauss theorem

`v(h) =

∫
D

(
ν(∇⊗ u,∇⊗ h) +

+ κdiv u div h + (h, (a(t),∇)u)− (M(t)u,h)
)
dx, (4.12)

where (∇⊗ u,∇⊗ h) =
∑d
i,k=1(∂iuk)(∂ihk).

Lemma 4.2. 1. There exists a constant C > 0, dependent only on ν, κ,a,M
and D such that for a.e. t ∈ [0, T ] for all v ∈ D(D)d and h ∈ H1

0 (D)d the
following inequality holds:

| 〈A(t)v,h〉 | ≤ C‖v‖H1
0 (D)d‖h‖H1

0 (D)d .

2. For a.e. t ∈ [0, T ] the operator A(t) : H1
0 (D)d 3 v 7→ `v → H−1(D)d

where `v is defined in (4.12) is linear and bounded (uniformly with respect
to t ∈ [0, T ]).

3. There exist positive constants γ and β, dependent only on ν, κ,a,M and
D, such that for a.e. t ∈ [0, T ] for any v ∈ H1

0 (D)d the following inequality
holds:

β‖v‖H1
0 (D)d ≤ 〈A(t)v,v〉+ γ‖v‖L2(D)d .

The proof is almost identical to the proof of well-known similar statement from
the theory of parabolic equations (see e.g. 6.2.2 in [16], p. 300).

Lemma 4.2 shows that A(t) ∈ B(H1
0 (D)d;H−1(D)d) for a.e. t ∈ [0, T ],

where B(X,Y ) denotes the space of bounded linear operators from a Banach
space X to another Banach space Y .

4.1 Uniqueness of weak solution

Theorem 4.3. If {u, p} is a weak solution to the problem (4.1)–(4.6) then
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1. {u, p} satisfies the energy equality:

1

2

(
‖u‖2L2(D)d + α‖p‖2L2(D)

)
t

+ α

(
p

[
1

2
div b + c

]
, p

)
D

+

+ 〈Au,u〉 = (p, σ)D + (ρf ,u)D + 〈s,u〉 in D ′(0, T ); (4.13)

2. for any α1 > 0 there exists a constant C > 0 (dependent only on α1, T ,
domain D, coefficients of the operator A and fields b, c and f) such that
for any α ∈ (0, α1) the following estimates of {u, p} hold:

‖u‖L2(0,T ;H1
0 (D)d) ≤ C · E,

‖u‖L∞(0,T ;L2(D)d) +
√
α‖p‖L∞(0,T ;L2(D)) ≤ C · E,

where

E ≡ ‖u◦‖L2(D)d +
√
α‖p◦‖L2(D) +

+ ‖s‖L2(0,T ;H−1(D)d) +
1√
α
‖σ‖L2(0,T ;L2(D)).

Proof. Let {u, p} be a weak solution to (4.1)–(4.6).
Theorem 2.17 implies that the density ρ satisfies(∫

D

|ρ|2 dx
)
t

+

∫
D

(
|ρ|2 div b + 2c|ρ|2 + 2ρ(div u− σ)

)
dx = 0 (4.14)

in D ′(0, T ). Definition 4.1 and Assumption 2◦ together with (4.14) imply that
the function t 7→

∫
D
|ρ(t)|2 dx belongs to W 1,1(0, T ;R). Hence (2.5) and Re-

mark 2.8 imply that ∫
D

|ρ(t)|2 dx
∣∣∣∣
t=0

=

∫
D

|ρ◦|2 dx. (4.15)

Definition 4.1 implies that ∀v ∈ H1
0 (D)d and ∀ψ ∈ D(0, T )

−
∫ T

0

〈ı(u),v〉ψt dt =

∫ T

0

(−〈∇p,v〉 − 〈Au,v〉+ (ρf ,v)D + 〈s,v〉)ψ dt,

where the embedding ı : H1
0 (D)d → H−1(D)d is defined on page 9. Then

−

〈∫ T

0

ı(u)ψt dt,v

〉
=

〈∫ T

0

(−∇p−Au + ρf + s)ψ dt,v

〉
,

hence, since v is arbitrary,

−
∫ T

0

ı(u)ψt dt =

∫ T

0

(−∇p−Au + ρf + s)ψ dt
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in H−1(D)d. Lemma 4.2 implies that A is a bounded linear operator from
L2(0, T ;H1

0 (D)d) to L2(0, T ;H−1(D)d). But ∇ is a bounded linear operator
which maps L2(D) toH−1(D)d (see e.g. [10]), hence∇maps L∞(0, T ;L2(D)) to
L∞(0, T ;H−1(D)d). Therefore the assumption 1◦ implies that ı(u) ∈W 1,2(0, T ;H−1(D)d)
and

ı(u)t +∇p = −Au + ρf + s. (4.16)

Hence u ∈ W(0, T ), consequently Proposition 2.6 and equality (4.11) imply that
u|t=0 = u◦ and hence ∫

D

|u(t)|2 dx
∣∣∣∣
t=0

=

∫
D

|u◦|2 dx (4.17)

in sense of Remark 2.2.
For brevity let us introduce the following notation:

ut ≡ ı(u)t,

| · | ≡ ‖ · ‖L2(D)k ,

‖ · ‖ ≡ ‖ · ‖H1
0 (D)k ,

‖ · ‖−1 ≡ ‖ · ‖H−1(D)k ,

where the natural number k is uniquely defined by “·”.
Equation (4.14) and equation of state (4.1) imply that

1

2
α|p|2t + α

(
p

[
1

2
div b + c

]
, p

)
D

+ (p,div u− σ)D = 0. (4.18)

Since u(t) ∈ H1
0 (D)d for a.e. t ∈ [0, T ] we have

〈ut,u〉+ 〈∇p,u〉 = −〈Au,u〉+ (ρf ,u)D + 〈s,u〉 (4.19)

a.e. on [0, T ]. By Remark 2.9 1
2 |u|

2
t = 〈ut,u〉, so adding (4.19) to (4.18) and

using the identity 〈∇p,u〉 = − (p,div u)D we obtain

(
|u|2 + α|p|2

)
t

+ α

(
p

[
1

2
div b + c

]
, p

)
D

+

+ 〈Au,u〉 = (p, σ)D + (ρf ,u)D + 〈s,u〉 (4.20)

in D ′(0, T ), i.e. the energy identity (4.13) holds.
Let us fix t ∈ [0, T ]. Lemma 4.2 implies that

〈Au,u〉 ≥ β‖u‖2 − γ|u|2 ≥ β‖u‖2 − γ
(
|u|2 + α|p|2

)
,

where γ and β are positive constants dependent only on ν, κ,a,M and D.
Let us denote

I(t) =
1

2

(
|u(t)|2 + α|p(t)|2

)
,

J(t) =
√
β‖u(t)‖,
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then
〈Au,u〉 ≥ J2 − 2γI.

Denoting ‖ · ‖∞ ≡ ‖ · ‖L∞(D)k we obtain

−α
(
p

[
1

2
div b + c

]
, p

)
D

≤ α
∥∥∥∥1

2
div b + c

∥∥∥∥
∞
|p|2 ≤ ‖div b + 2c‖∞I.

The inequalities of Young and Cauchy–Bunyakovski imply that

(p, σ)D =

(√
αp,

1√
α
σ

)
D

≤ 1

2
α|p|2 +

1

2α
|σ|2 ≤ I +

1

2α
|σ|2,

(ρf ,u)D ≤
√
α‖f‖∞

√
α|p| · |u| ≤

√
α‖f‖∞

1

2

(
α|p|2 + |u|2

)
=
√
α‖f‖∞I.

Finally, 〈s,u〉 ≤ ‖s‖−1 · ‖u‖ = 1√
β
‖s‖−1J .

The calculations above are valid for a.e. t ∈ [0, T ], hence (4.20) implies that

It + J2 ≤ ãI +
1√
β
‖s‖−1J +

1

2α
|σ|2, (4.21)

where
ã = 1 + 2γ + ‖ div b‖∞ + 2‖c‖∞ + α‖f‖∞.

Equalities (4.15) and (4.17) imply that I|t=0 = 1
2

(
|u◦|2 + α|p◦|2

)
. Hence

(4.21) implies that the continuous version Ī of I satisfies

Ī ′ + J2 ≤ ãĪ +
1√
β
‖s‖−1J +

1

2α
|σ|2,

a.e. in [0, T ]. Consequently by Lemma 2.15 we have

‖J‖L2(0,T ) ≤ Cã

(√
Ī(0) +

√
1

2α
‖σ‖2L2(0,T ;L2(D)) +

1√
β
‖s‖L2(0,T ;H−1(D)d)

)
,

‖Ī‖L∞(0,T ) ≤ Cã
(
Ī(0) +

1

2α
‖σ‖2L2(0,T ;L2(D)) +

1

β
‖s‖2L2(0,T ;H−1(D)d)

)
,

where constant Cã depends only on
∫ T
0
ã dt. Using simple inequality

√
x+ y ≤√

x+
√
y, x, y ≥ 0, we obtain√

β‖u‖L2(0,T ;H1
0 (D)d) ≤ Cã

(
‖u◦‖L2(D)d +

√
α‖p◦‖L2(D) +

+
1√
α
‖σ‖L2(0,T ;L2(D)) +

1√
β
‖s‖L2(0,T ;H−1(D)d)

)
,

‖u‖L∞(0,T ;L2(D)d) +
√
α‖p‖L∞(0,T ;L2(D)) ≤ Cã

(
‖u◦‖L2(D)d +

√
α‖p◦‖L2(D) +

+
1√
α
‖σ‖L2(0,T ;L2(D)) +

1√
β
‖s‖L2(0,T ;H−1(D)d)

)
.

When α ∈ (0, α1) we have ã ≤ â ≡ 1 + 2γ+‖div b‖∞+ 2‖c‖∞+α1‖f‖∞. From
the proof of Lemma 2.15 one can see that Cã ≤ Câ.
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4.2 Existence of weak solution

Theorem 4.4. The problem (4.1)–(4.6) has a weak solution {u, p}.

Proof. Let {πi}∞i=1 be a orthonormal basis of polynomials in L2(D). Then
p◦ = lim

m→∞
p◦m, where

p◦m =

m∑
j=1

P ◦j πj ,

P ◦j = (p◦, πj)D. Let {ei}∞i=1 be an orthonormal basis of H1
0 (D)d. Since H1

0 (D)

is dense in L2(D), the linear span of {ei}∞i=1 is also dense in L2(D)d. Hence
u◦ can be approximated by linear combinations of {ei}∞i=1. Without loss of
generality we may assume that u◦ = lim

m→∞
u◦m, where

u◦m ≡
m∑
j=1

U◦m,jej ,

U◦m,j ∈ R, j = 1, 2, ...,m. Let us look for absolutely continuous functions
Pm,j = Pm,j(t) and Um,j = Um,j(t) such that

um =

m∑
j=1

Um,jej , pm =

m∑
j=1

Pm,jπj

and ρm ≡ αpm satisfy the “approximate” system

((ρm)t − (b,∇)ρm + cρm + div um, πi)D = (σ, πi)D , i = 1, ...,m, (4.22)

〈(um)t +∇pm, ei〉 = 〈−Aum + ρmf + s, ei〉 , i = 1, ...,m (4.23)

and initial conditions

pm|t=0 = p◦m, (4.24)

um|t=0 = u◦m. (4.25)

(The equalities (4.22) and (4.23) are understood in sense of D ′(0, T ).)
The equalities (4.22) and (4.23) together with the initial conditions (4.24)

and (4.25) represent a Cauchy problem for a linear system of ordinary differential
equations. This system has a unique (weak) solution {P,U} ∈W 1,2(0, T ;Rm)2,
which can be considered to be absolutely continuous by Proposition 2.1.

Since for all t ∈ [0, T ] um(t) and pm(t) belong to the linear spans of {ei}mi=1

and {πi}mi=1 respectively, from (4.22) and (4.23) we obtain

(α(pm)t − (b,∇)αpm + cαpm + div um, pm)D = (σ, pm)D , (4.26)

〈(um)t +∇pm,um〉 = 〈−Aum + ρmf + s,um〉 . (4.27)

Since pm(t) is a polynomial, by Ostrogradsky–Gauss theorem

− ((b,∇)pm, pm)D = −
∫
D

(b, 12∇p
2
m) dx =

∫
D

1
2p

2
m div b dx.
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By Remark 2.5
((pm)t, pm)D = 1

2 |pm|
2
t ,

((um)t,um)D = 1
2 |um|

2
t

a.e. in [0, T ], where | · | ≡ ‖ · ‖L2(D)k , k ∈ N being determined by the argument
of | · |. Adding (4.26) to (4.27) and using the identity

〈∇pm,um〉 = − (pm,div um)D

we get

(
|um|2 + α|pm|2

)
t

+ α

(
pm

[
1

2
div b + c

]
, pm

)
D

+

+ 〈Aum,um〉 = (pm, σm)D + (ρmf ,um)D + 〈s,um〉 (4.28)

Repeating for {um, pm} the calculations we carried out for {u, p} on pages 18–19
we obtain the estimates√

β‖um‖L2(0,T ;H1
0 (D)d) ≤ Cã

(
‖u◦m‖L2(D)d +

√
α‖p◦m‖L2(D) +

+
1√
α
‖σ‖L2(0,T ;L2(D)) +

1√
β
‖s‖L2(0,T ;H−1(D)d)

)
, (4.29)

‖um‖L∞(0,T ;L2(D)d) +
√
α‖pm‖L∞(0,T ;L2(D)) ≤ Cã

(
‖u◦m‖L2(D)d +

+
√
α‖p◦m‖L2(D) +

1√
α
‖σ‖L2(0,T ;L2(D)) +

1√
β
‖s‖L2(0,T ;H−1(D)d)

)
, (4.30)

where the constant Cã depends only on
∫ T
0
ã dt,

ã = 1 + 2γ + ‖ div b‖∞ + 2‖c‖∞ + α‖f‖∞.

When m is sufficiently large the following inequalities hold:

‖u◦m‖L2(D)d ≤ 2‖u◦‖L2(D)d and ‖p◦m‖L2(D) ≤ 2‖p◦‖L2(D).

Then the estimates (4.29) and (4.30) imply that the sequence {um}m∈N is
bounded in L2(0, T ;H1

0 (D)d) (and in L∞(0, T ;L2(D)d)), and the sequence {pm}m∈N
is bounded in L2(0, T ;L2(D)). By Proposition 2.11 (we also take into account
Proposition 2.10) there exists a sequence {mk}k∈N such that

umk
⇁ u in L2(0, T ;H1

0 (D)d),

pmk
⇁ p in L2(0, T ;L2(D))

when k →∞. Then ρmk
⇁ ρ ≡ αp in L2(0, T ;L2(D)) when k →∞.
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Let us write (4.22) and (4.23) in the integral form: for all ψ ∈ D([0, T )),
ϕ ∈ span ({πi}mi=1) and Φ ∈ span ({ei}mi=1)

−
∫ T

0

(ρm, ϕ)D ψt dt− (ρ◦m, ϕ)D ψ(0) +

∫ T

0

(ρm[c+ div b], ϕ)D ψ dt+

+

∫ T

0

(ρmb,∇ϕ)D ψ dt+

∫ T

0

(div um − σ, ϕ)D ψ dt = 0,

−
∫ T

0

(um,Φ)D ψt dt− (u◦m,Φ)D ψ(0)−
∫ T

0

(pm,div Φ)D ψ dt =

= −
∫ T

0

〈Aum,Φ〉ψ dt+

∫ T

0

(ρmf ,Φ)D ψ dt+

∫ T

0

〈s,Φ〉ψ dt.

If we pass to the limit in the equalities above when m = mk and k → ∞,
then we will see that ρ, u and p satisfy (4.8) and (4.9) for all ψ ∈ D([0, T )),
ϕ ∈ span ({πi}∞i=1) and Φ ∈ span ({ei}∞i=1). Since span ({πi}∞i=1) is dense in
C1(D), and span ({ei}∞i=1) is dense in H1

0 (D)d, then (4.8) and (4.9) hold for all
ϕ ∈ C1(D) and Φ ∈ H1

0 (D)d. Then by Definition 4.1 the pair {u, p} is a weak
solution to the problem (4.1)–(4.6).

Combining Theorems 4.3, 4.4 and Remark 2.18 we obtain

Corollary 4.5. The problem (4.1)–(4.6) has a unique weak solution {u, p}.
Besides,

1. there exists unique p̄ ∈ C(0, T ;L2(D)) such that

p̄(0) = p◦ and p̄(t) = p(t) for a.e. t ∈ [0, T ];

2. u ∈ W(0, T );

3. there exists unique ū ∈ C(0, T ;L2(D)d) such that

ū(0) = u◦ and ū(t) = u(t) for a.e. t ∈ [0, T ].

4.3 Enhanced estimates of weak solutions

Theorem 4.6. Suppose that {u, p} is a weak solution to the problem (4.1)–(4.6)
and α ∈ (0, α1), where α1 > 0. Assume that the term σ in the equation (4.1)
has the form

σ = σ1 + σ2, (4.31)

where
σ1 ∈ L2(0, T ;L2(D)),

σ2 = div w, where w ∈ W(0, T ).
(4.32)
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Then there exists a constant C > 0 (dependent only on α1, T , domain D,
coefficients of A and fields b, c and f) such that {u, p} satisfies the following
estimates:

‖u‖L2(0,T ;H1
0 (D)d) ≤ C · E′, (4.33)

‖u‖L∞(0,T ;L2(D)d) +
√
α‖p‖L∞(0,T ;L2(D)) ≤ C · E′, (4.34)

where

E′ ≡ ‖u◦‖L2(D)d +
√
α‖p◦‖L2(D) +

+ ‖s‖L2(0,T ;H−1(D)d) +
1√
α
‖σ1‖L2(0,T ;L2(D)) + ‖w‖W(0,T ).

Proof. Let us look for the solution to (4.1)–(4.6) in the form u = v + w, where
v is the weak solution to

ρt − (b,∇)ρ+ cρ+ div v = σ1,

vt +∇p = −Av + ρf + s−wt −Aw,

ρ = αp,

v|t=0 = u◦ −w|t=0,

p|t=0 = p◦,

v|∂D = 0,

From Lemma 4.2 one can see that

‖wt +Aw‖L2(0,T ;H−1(D)d) ≤ ‖wt‖L2(0,T ;H−1(D)d) + ‖A‖‖w‖L2(0,T ;H1
0 (D)d) ≤

≤ ‖w‖W(0,T ) + C1‖w‖W(0,T ) ≤ C‖w‖W(0,T ),

where C1, C = const and ‖A‖ = ess supt∈[0,T ] ‖A(t)‖B(H1
0 (D)d;H−1(D)d). By

Proposition 2.6 ‖w|t=0‖L2(D)d ≤ C‖w‖W(0,T ), where C = const. Theorem 4.3
provides the following estimate of v:

‖v‖L2(0,T ;H1
0 (D)d) + ‖v‖L∞(0,T ;L2(D)d) +

√
α‖p‖L∞(0,T ;L2(D)) ≤ C · E,

where

E ≡ ‖u◦ −w|t=0‖L2(D)d +
√
α‖p◦‖L2(D) +

+ ‖s−wt −Aw‖L2(0,T ;H−1(D)d) +
1√
α
‖σ‖L2(0,T ;L2(D)) ≤

≤ ‖u◦‖L2(D)d +
√
α‖p◦‖L2(D) +

+ ‖s‖L2(0,T ;H−1(D)d) + C‖w‖W(0,T ) +
1√
α
‖σ‖L2(0,T ;L2(D)).
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To complete the proof we write

‖u‖L2(0,T ;H1
0 (D)d) + ‖u‖L∞(0,T ;L2(D)d) ≤
≤ ‖u−w‖L2(0,T ;H1

0 (D)d) + ‖u−w‖L∞(0,T ;L2(D)d) +

+ ‖w‖L2(0,T ;H1
0 (D)d) + ‖w‖L∞(0,T ;L2(D)d) ≤

≤ ‖v‖L2(0,T ;H1
0 (D)d) + ‖v‖L∞(0,T ;L2(D)d) + C‖w‖W(0,T )

and use the estimate of v obtained above.

Lemma 4.7. If f ∈ W 1,2(0, T ; L̂2(D)) then there exists a vector field v ∈
W 1,2(0, T ;H1

0 (D)d) such that

1) div v(t) = f(t) a.e. in D for a.e. t ∈ [0, T ],

2) ‖v‖W 1,2(0,T ;H1
0 (D)d) ≤ C‖f‖W 1,2(0,T ;L̂2(D)),

where the constant C depends only on the domain D.

Proof. Let us consider the operator ∇ as a mapping from L̂2(D) to H−1(D)d

given by
〈∇p,u〉 = − (p,div u)D , u ∈ H1

0 (D)d, p ∈ L̂2(D).

The operator∇ defined above is adjoint to the linear bounded operator div : H1
0 (D)d →

L̂2(D). Then by Fredholm’s theorem

ker(∇) = ker(div∗) = Im(div)⊥,

where ker and Im denote the kernel and the image of the operator respectively,
and M⊥ denotes the orthogonal complement of a subspace M of L̂2(D).

By Nečas inequality (see e.g. [10], I §1, proposition 1.2)

‖p‖L̂2(D) ≤ C‖∇p‖H−1(D)d ,

where constant C doesn’t depend on p. Hence ker(∇) = {0}, consequently

Im(div) = L̂2(D).
Let Λ(D) denote the orthogonal complement of V (D) in H1

0 (D)d. Since

ker(div) = V (D) the operator div is a bijection from Λ(D) onto L̂2(D). By Ba-

nach’s bounded inverse theorem there exists a bounded linear operatorR : L̂2(D)→
Λ(D) such that

divR(p) = p ∀p ∈ L̂2(D).

Definition of weak derivative implies that v := R(f) ∈W 1,2(0, T ;H1
0 (D)d) and

vt = R(ft). From the definition of R it is clear that v also satisfies 1) and
2).

The idea of the proof given above belongs to A.A. Ilyin. An operator similar
to R was explicitly constructed by M.E. Bogovskii [18].
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Theorem 4.8. Let {u, p} be a weak solution to (4.1)–(4.6) and α ∈ (0, α1),
α1 > 0. Suppose that the term σ in the equation (4.1) has the form

σ = σ1 + σ2 + σ3,

where
σ1 ∈ L2(0, T ;L2(D)),

σ2 = div w, where w ∈ W(0, T ),

σ3 ∈W 1,2(0, T ; L̂2(D)).

Then there exists a constant C > 0 (dependent only on α1, T , domain D,
coefficients of A and fields b, c and f) such that {u, p} satisfies the following
estimates:

‖u‖L2(0,T ;H1
0 (D)d) ≤ C · E′′,

‖u‖L∞(0,T ;L2(D)d) +
√
α‖p‖L∞(0,T ;L2(D)) ≤ C · E′′,

where

E′′ ≡ ‖u◦‖L2(D)d +
√
α‖p◦‖L2(D) + ‖s‖L2(0,T ;H−1(D)d) +

+
1√
α
‖σ1‖L2(0,T ;L2(D)) + ‖w‖W(0,T ) + ‖σ3‖W 1,2(0,T ;L̂2(D)).

Proof. By Lemma 4.7 there exists v ∈W 1,2(0, T ;H1
0 (D)d) such that div v = σ3

and ‖v‖ ≤ C‖σ3‖W 1,2(0,T ;L̂2(D)).

Using Poincaré inequality one can show that W 1,2(0, T ;H1
0 (D)d) is contin-

uously embedded into W(0, T ), hence

‖v‖W(0,T ) ≤ C‖v‖W 1,2(0,T ;H1
0 (D)d)

(where C = const), consequently σ = σ1 + div(v + w) and all that remains to
complete the proof is to use Theorem 4.6.

5 Incompressible limit

Let us consider a family of the initial–boundary problems (4.1)–(4.6) where the
terms s, σ and the initial data p◦, u◦ depend on the compressibility α:

σ = σα ∈ L2(0, T ;L2(D)), s = sα ∈ L2(0, T ;H−1(D)d),

u◦ = u◦α ∈ L2(D)d, p◦ = p◦α ∈ L2(D).

We will also assume that α ∈ (0, 1). Then Corollary 4.5 implies that for any
α ∈ (0, 1) the corresponding problem (4.1)–(4.6) has a unique weak solution
{u, p}, which we denote by {uα, pα}. In this section we focus on passage to the
limit when α→ 0.

25



If σα → 0 and sα → s (we will specify the topology of this convergence later)
as α→ 0, then the equations (4.1) and (4.2) formally turn into the equations

div v = 0, (5.1)

vt +∇q = −Av + s (5.2)

respectively. For these equations we will consider the following initial and
boundary conditions:

v|t=0 = v◦, (5.3)

v|∂D = 0, (5.4)

Let us give a definition of the solution to the initial–boundary value problem
(5.1)–(5.4):

Definition 5.1. A pair {v, q} ∈ L2(0, T ;V (D)) × D ′(D × (0, T )) is called a
weak solution to (5.1)–(5.4) if (5.1), (5.2) hold in sense of D ′(D × (0, T )) and
for any Φ ∈ V(D)

∂t (v,Φ)D = 〈−Av + s,Φ〉 (5.5)

in D ′(0, T ), and also (v(t),Φ)D |t=0 = (v◦,Φ)D (see Remark 2.2).

Theorem 5.2. Let {v, q} be a weak solution to (5.1)–(5.4). Then

1

2
|v|2t = −〈Av,v〉+ 〈s,v〉 (5.6)

in D ′(0, T ). If {v1, q1} is another weak solution to the problem (5.1)–(5.4) then
v1(t) = v(t) for a.e. t ∈ [0, T ] and ∇q1 = ∇q.

When A = −ν∆ this theorem is proved in [10], III §1. Lemma 4.2 shows that
in fact the proof from [10] is also valid when the operator A given by (4.7).

Our goal is to study the convergence of the solutions {uα, pα} as α → 0.
Such passage to the limit is singular because the equation (4.1) has the term
αpt which vanishes when α = 0.

5.1 Convergence of velocity

First of all we prove the following analog of the results obtained in [3, 4]:

Theorem 5.3. If when α→ 0 we have

‖σα‖L2(0,T ;L2(D)) = O(
√
α), sα

∗
⇁ s in L2(0, T ;H−1(D)d),

u◦α ⇁ u◦ in L2(D)d, ‖p◦α‖L2(D) = O

(
1√
α

)
,
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then

uα ⇁ v in L2(0, T ;H1
0 (D)d),

uα
∗
⇁ v in L∞(0, T ;L2(D)d),

(5.7)

∇pα
∗
⇁ ∇q in H−1(D × (0, T ))d

as α→ 0, where {v, q} is a weak solution to (5.1)–(5.4) with initial condition

v◦ = PHu◦. (5.8)

Proof. From Theorem 4.3 and the hypotheses of Theorem 5.3 the solutions
{uα, pα} to the problem (4.1)–(4.6) are bounded when α ∈ (0, 1):

‖uα‖L2(0,T ;H1
0 (D)d) + ‖uα‖L∞(0,T ;L2(D)d) +

√
α‖pα‖L∞(0,T ;L2(D)) ≤ const

(5.9)

By Proposition 2.11 ∃u ∈ L2(0, T ;H1
0 (D)d) and ∃{αn}n∈N ⊂ (0, 1) such that

αn → 0 as n→ 0 and

un ⇁ u in L2(0, T ;H1
0 (D)d).

By Definition 4.1 for ∀α ∈ (0, 1) and ∀ϕ ∈ D(Rd × [0, T ))

−
∫ T

0

∫
D

αpαϕt dx dt−
∫
D

αp◦αϕ(·, 0) dx+

∫ T

0

∫
D

αpα[c+ div b]ϕdx dt+

+

∫ T

0

∫
D

αpα(b,∇)ϕdx dt+

∫ T

0

∫
D

(div u− σ)ϕdx dt = 0,

Passing to the limit in this equality when α = αn and n → 0 (and using
boundedness of

√
αpα in L∞(0, T ;L2(D))) we obtain∫ T

0

∫
D

(div u)ϕdx dt = 0.

Since ϕ is arbitrary, the du Bois-Reymond lemma implies that div u = 0 for a.e.
(x, t) ∈ D × (0, T ), hence

u ∈ L2(0, T ;V (D)).

From Definition 4.1 we see that for ∀ψ ∈ D([0, T )) and ∀h ∈ V(D)

−
∫ T

0

∫
D

(uα,h)ψt dx dt−
∫
D

(u◦α,h)ψ(0) dx− 0 =

= −
∫ T

0

〈Auα,h〉ψ dt+

∫ T

0

∫
D

αpα(f ,h)ψ dx dt+

∫ T

0

〈sα,h〉ψ dt.
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Passing to the limit when α = αn and n→∞ we obtain

−
∫ T

0

∫
D

(u,h)ψt dx dt−
∫
D

(u◦,h)ψ(0) dx =

= −
∫ T

0

〈Au,h〉ψ dt+ 0 +

∫ T

0

〈s,h〉ψ dt.

Since h ∈ V (D) we have (u◦,h)D = (u◦, PHh)D = (PHu◦,h)D. Hence by
Definition 5.1 v = u is a solution to the problem (5.1)–(5.4) with the initial con-
dition v◦ = PHu◦. By Theorem 5.2 the velocity v is unique, hence Remark 2.12
implies that when α→ 0

uα ⇁ u in L2(0, T ;H1
0 (D)d).

By Proposition 2.11 ∃w ∈ L∞(0, T ;L2(D)d) and ∃{α′n}n∈N ⊂ (0, 1) such that
when n→ 0 we have α′n → 0 and

uα′n
∗
⇁ w in L∞(0, T ;L2(D)d).

Hence ∀ψ ∈ D(0, T ) and ∀Φ ∈ D(D)d∫ T

0

∫
D

(uαn
,Φ)ψ dx dt→

∫ T

0

∫
D

(w,Φ)ψ dx dt, n→∞.

On the other hand, since uα ⇁ u in L2(0, T ;H1
0 (D)d) as α→ 0, we have∫ T

0

∫
D

(uαn
,Φ)ψ dx dt→

∫ T

0

∫
D

(u,Φ)ψ dx dt, n→∞.

Hence u = w for a.e. (x, t) ∈ D × (0, T ). Then Remark 2.12 implies that

uα
∗
⇁ u in L∞(0, T ;L2(D)d).

as α→ 0. Then we introduce the pressure q as described in [10], III, §1.5.
Finally we express the gradient of the pressure from the equation (4.2) and

pass to the limit when α→ 0 using the established convergence of the velocity
and boundedness of

√
αpα in L∞(0, T ;L2(D)).

Remark 5.4. The proof of theorem 5.3 can be considered as a proof of existence
of weak solution to the problem (5.1)–(5.4).

We have shown that when α→ 0 the solutions of the problem (4.1)–(4.6) con-
verge to the incompressible limit, i.e. to the solution of the problem (5.1)–(5.4)
with v◦ = PHu◦. Now let us fix {v, q} and analyze the established convergence
in more detail.

In what follows and till the end of Section 5.2 {v, q} will denote a weak
solution of the problem (5.1)–(5.4) with fixed v◦ ∈ H(D).
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Theorem 5.5. Let

b ∈ L∞(0, T ;L∞(D)d), c ∈ L2(0, T ;L∞(D)), (5.10)

q ∈W 1,2(0, T ;L2(D)) ∩ L2(0, T ;H1(D)). (5.11)

If when α→ 0 we have

‖σα‖L2(0,T ;L2(D)) = o(
√
α), sα → s in L2(0, T ;H−1(D)d),

u◦α → u◦ in L2(D)d, ‖p◦α‖L2(D) = o

(
1√
α

)
,

and
u◦ = v◦ (5.12)

then

uα → v in L2(0, T ;H1
0 (D)d),

uα → v in L∞(0, T ;L2(D)d),

∇pα → ∇q in H−1(D × (0, T ))d.

as α→ 0.

Proof. The hypotheses of Theorem 5.5 and the equation (5.2) imply that v ∈
W(0, T ) and the difference {uα − v, pα − q} is a weak solution to

(α(pα − q))t − (b,∇)(α(pα − q)) + cα(pα − q) + div(uα − v) =

= σα − αqt + α(b,∇)q − αcq ≡ σ′α, (5.13)

(uα − v)t +∇(pα − q) = −A(uα − v) + α(pα − q)f + αqf + sα − s, (5.14)

(uα − v)|t=0 = u◦α − v◦, (5.15)

(pα − q)|t=0 = p◦α − q◦, (5.16)

(uα − v)|∂D = 0, (5.17)

where q◦ = q|t=0 (see Remark 2.2). Then by Theorem 4.3 the difference {uα −
v, pα − q} satisfies

‖uα−v‖L2(0,T ;H1
0 (D)d) +‖uα−v‖L∞(0,T ;L2(D)d) +

√
α‖pα−q‖L∞(0,T ;L2(D)) ≤

≤ C

(
‖u◦α − v◦‖L2(D)d +

√
α‖p◦α − q◦‖L2(D) + α‖qf‖L2(0,T ;H−1(D)d) +

+ ‖sα − s‖L2(0,T ;H−1(D)d) +
‖σ′α‖L2(0,T ;L2(D))√

α

)
≡ E(α) (5.18)

when 0 < α < 1. By the hypotheses of Theorem 5.5 u◦ = v◦, so

‖u◦α − v◦‖ = o(1)
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when α→ 0. Besides,

√
α‖p◦α − q◦‖L2(D) ≤

√
α‖p◦α‖L2(D) +

√
α‖q◦‖L2(D) = o(1) + o(

√
α) = o(1)

when α→ 0. We also have

‖(b,∇)q‖L2(0,T ;L2(D)) ≤ C‖b‖L∞(0,T ;L∞(D)d)‖q‖L2(0,T ;H1(D)),

‖cq‖L2(0,T ;L2(D)) ≤ C‖c‖L2(0,T ;L∞(D))‖q‖L∞(0,T ;L2(D)) ≤
≤ C‖c‖L2(0,T ;L∞(D))‖q‖W 1,2(0,T ;L2(D)),

‖qt‖ ≤ ‖q‖W 1,2(0,T ;L2(D)),

‖qf‖L2(0,T ;L2(D)) ≤ ‖q‖L∞(0,T ;L2(D))‖f‖L2(0,T ;L∞(D)) ≤
≤ C‖q‖W 1,2(0,T ;L2(D))‖f‖L2(0,T ;L∞(D))

hence
‖σ′α‖L2(0,T ;L2(D)) = o(

√
α) +O(α) = o(

√
α)

when α → 0. Hence the convergence sα → s implies that E(α) = o(1) when
α → 0. This means that the velocity converges strongly. Finally we express
the gradient of the pressure ∇pα from (4.2) and pass to the limit when α → 0
using the established strong convergence of the velocity and the boundedness of√
αpα in L∞(0, T ;L2(D)).

Remark 5.6. The estimate (5.18) indicates that when u◦α ≡ v◦, sα ≡ s, p◦α ≡ p◦
and σα ≡ 0

‖uα − v‖L2(0,T ;H1
0 (D)d) = O(

√
α),

i.e. the rate of the convergence of the velocity is
√
α.

Remark 5.7. The pressure q has the regularity demanded in (5.11) when, for
instance, ∂D ∈ C2, b = 0, c = 0, −A ≡ ν∆, f = 0, sα = 0, σα = 0 and v◦

satisfies

1. v◦ ∈ V (D) ∩H3(D);

2. PH∆v◦ ∈ V (D).

Remark 5.8. In fact condition (5.12) is not only sufficient but also necessary for
the convergence of the velocity uα to be strong. More precisely, if when α→ 0
we have

uα → v in L2(0, T ;H1
0 (D)d),

pα bounded in L∞(0, T ;L2(D)),

then u◦ = v◦.

Proof. By Corollary 4.5 without loss of generality we can assume that ∀α ∈ (0, 1)

{uα, pα} ∈ C(0, T ;L2(D)d)× C(0, T ;L2(D)).

By Proposition 2.6 we can also assume that v ∈ C(0, T ;H(D)).
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Since uα → v in L2(0, T ;H1
0 (D)d) as α→ 0, there exists a sequence α ≡ αn,

n ∈ N such that αn → 0, n→∞ and when α→ 0

uα(t)→ v(t) in H1
0 (D)d (5.19)

for a.e. t ∈ [0, T ] (see e.g. [19], III.3.6, III.6.13).
Let us denote | · | ≡ ‖ · ‖L2(D)k and ‖ · ‖ ≡ ‖ · ‖H1

0 (D)k , the value of k being
defined by the argument. Consider a sequence of real numbers

Xα = |uα(t)− v(t)|2 + α|pα(t)|2 +

+

∫ t

0

α (pα[div b + 2c], pα)D dt+ 2

∫ t

0

〈A(uα − v),uα − v〉 dt.

(Recall that α ≡ αn.) Expanding the parentheses we write

Xα = X(1) +X(2)
α +X(3)

α ,

where

X(1) = |v(t)|2 + 2

∫ t

0

〈Av,v〉 dt,

X(2)
α = −2(uα(t),v(t))− 2

∫ t

0

〈Auα,v〉 dt− 2

∫ t

0

〈Av,uα〉 dt,

X(3)
α = |uα(t)|2 + α|pα(t)|2 +

+

∫ t

0

α (pα[div b + 2c], pα)D dt+ 2

∫ t

0

〈Auα,uα〉 dt

Integrating (5.6) with respect to time t we obtain

X(1) = |v◦|2 + 2

∫ t

0

〈s,v〉 dt.

Then (5.19) and Theorem 5.3 imply

X(2)
α → −2(v(t),v(t))− 2

∫ t

0

〈Av,v〉 dt− 2

∫ t

0

〈Av,v〉 dt,

− 2|v(t)|2 − 4

∫ t

0

〈Av,v〉 dt = −2X(1).

Now let us rewrite X(3) using the energy equality (4.13) and pass to the limit
when α→ 0:

X(3)
α = |u◦|2 + α|p◦|2 + 2

∫ t

0

(pα, σα)D dt+ 2

∫ t

0

〈αpαf + sα,uα〉 →

→ |u◦|2 + 2

∫ t

0

〈s,v〉 = |u◦|2 − |v◦|2 +X(1).
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Thus, when α→ 0 we have

Xα → |u◦|2 − |v◦|2.

On the other hand it is clear from our assumptions and the definition of Xα that
Xα → 0 as α → 0. Hence |u◦| = |v◦|. This equality holds only when u◦ = v◦

since v◦ = PHu◦.

5.2 Convergence of pressure

Observe that Definition 4.1 implies that any weak solution {u, p} to the problem
(4.1)–(4.6) satisfies the equality

∂t

∫
D

p(t) dx+

∫
D

(c(t) + div b(t))p(t) dx =
1

α

∫
D

σ dx.

in sense of distributions. When σ ∈ L2(0, T ; L̂2(D)) the equality above takes
the form

∂t

∫
D

p(t) dx+

∫
D

(c(t) + div b(t))p(t) dx = 0. (5.20)

The compressibility coefficient α is not contained in (5.20) explicitly. Hence if
we could pass to the limit when α→ 0 in (5.20), then the limit of the pressure
should satisfy (5.20) as well.

However the pressure q in the incompressible fluid doesn’t satisfy the equality
(5.20) in general case. Even when c = −div b the corresponding equality can
fail to hold because the pressure q is defined up to an additive function of time.
Nevertheless, this function can be redefined in a unique way so that (5.20) will
hold. More precisely, the following statement is true:

Lemma 5.9. If q ∈ L∞(0, T ;L2(D)) and
∫
D
q dx ∈ W 1,2(0, T ) then for any

M ∈ R there exists a unique function Q ∈ W 1,2(0, T ) such that p := q − Q
satisfies (5.20) t ∈ [0, T ] and

∫
D
p dx

∣∣
t=0

= M .

Proof. Indeed, substituting p = q −Q into (5.20) we obtain∫
D

Qt dx+

∫
D

(c+ div b)Qdx =

(∫
D

q dx

)
t

+

∫
D

(c+ div b)q dx,

Then the initial condition
∫
D
p dx

∣∣
t=0

= M is equivalent to the condition∫
Q(0) dx =

∫
D
q dx

∣∣
t=0
−M , hence Q must be a solution to the Cauchy problem

Qt + kQ = s,

Q|t=0 =

(∫
D

q dx

∣∣∣∣
t=0

−M
)/∫

D

dx,
(5.21)

where

k =

∫
D

c dx

/∫
D

dx,

s =

((∫
D

q dx

)
t

+

∫
D

(c+ div b)q dx

)/∫
D

dx.
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The hypotheses of Lemma 5.9 imply that k ∈ L2(0, T ) and s ∈ L2(0, T ). Hence
the problem (5.21) has a unique weak solution Q ∈W 1,2(0, T ).

By Theorem 5.3 the velocity uα converges weakly to the velocity v of the
incompressible fluid as α→ 0. The following theorem shows that if the solution
{v, q} has some regularity then the pressure pα behaves the same way:

Theorem 5.10. Suppose that the assumptions (5.10)–(5.11) hold and ∀α ∈
(0, 1) σα ∈ L2(0, T ; L̂2(D)). If when α→ 0 we have

‖σα‖L2(0,T ;L̂2(D)) = O(α), ‖sα − s‖L2(0,T ;H−1(D)d) = O(
√
α),

‖u◦α − u◦‖L2(D)d = O(
√
α), p◦α ⇁ p◦ in L2(D),

and u◦ = v◦ then

pα
∗
⇁ q̂ in L∞(0, T ;L2(D))

as α→ 0, where {v, q̂} is the weak solution to (5.1)–(5.4) such that

∂t

∫
D

q̂(t) dx+

∫
D

(c(t) + div b(t))q̂(t) dx = 0

and
∫
D
q̂ dx

∣∣
t=0

=
∫
D
p◦ dx.

Proof. Theorem 5.5 implies that when α→ 0

uα → v in L2(0, T ;H1
0 (D)d),

uα → v in L∞(0, T ;L2(D)d).

Using our assumptions and the estimates (5.18) we obtain that

‖pα‖L∞(0,T ;L2(D)) ≤ ‖pα − q‖L∞(0,T ;L2(D)) + ‖q‖L∞(0,T ;L2(D)) ≤ const

when 0 < α < 1. Then by Proposition 2.11 there exist q̂ ∈ L∞(0, T ;L2(D)) and
a sequence {αn}n∈N ⊂ (0, 1) such that when n→∞

pαn

∗
⇁ q̂ in L∞(0, T ;L2(D)).

If we let α = αn and pass to the limit when n → ∞ in the integral forms of
(4.1) and (4.2) then we will see that {v, q̂} is a weak solution to (5.1)–(5.4) (as
in the proof of Theorem 5.3).

As it was observed above, for any α ∈ (0, 1) the pressure pα satisfies (5.20),
hence for any ψ ∈ D([0, T ))

−
∫ T

0

∫
D

pα dxψt dt−
∫
D

p◦α dxψ(0) +

∫ T

0

∫
D

(c+ div b)pα dxψ dt = 0.

Passing to the limit when α = αn and n→∞ we obtain

−
∫ T

0

∫
D

q̂ dxψt dt−
∫
D

p◦ dxψ(0) +

∫ T

0

∫
D

(c+ div b)q̂ dxψ dt = 0,
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hence q̂ satisfies (5.20) and also the condition
∫
D
q̂ dx

∣∣
t=0

=
∫
D
p◦ dx.

In view of Lemma 5.9 the pressure q̂ with the specified properties is unique,
so by Remark 2.12 pα

∗
⇁ q̂ as α→ 0.

The estimate (5.18) yields only boundedness of the pressure. This is a result
of presence of the multiplier 1/

√
α before the term ‖σ‖L2(0,T ;L2(D)) in the esti-

mate from Theorem 4.3. However Theorem 4.8 shows that if we use a finer norm
for the source term, then the multiplier 1/

√
α vanishes, what can be observed

from the term ‖σ3‖W 1,2(0,T ;L̂2(D)) in Theorem 4.8. We use this fact to prove the

following result:

Theorem 5.11. Let

b ∈W 1,2(0, T ;W 1,∞(D)d), c ∈W 1,2(0, T ;L∞(D)), (5.22)

q ∈W 2,2(0, T ;L2(D)) ∩ L2(0, T ;H1(D)),

and suppose that when α→ 0 we have

‖σα‖L2(0,T ;L2(D)) = o(α), ‖sα − s‖L2(0,T ;H−1(D)d) = o(
√
α),

‖u◦α − u◦‖L2(D)d = o(
√
α), p◦α → p◦ in L2(D).

If
u◦ = v◦ and p◦ = q|t=0 (5.23)

then

pα → q̂ in L∞(0, T ;L2(D))

where q̂ is defined in Theorem 5.10.

Proof. The real-valued function Q = q − q̂ is the solution to (5.21) with M =∫
D
p◦ dx. Hypothesis (5.22) implies thatQ ∈W 2,2(0, T ). Then q̂ ∈W 2,2(0, T ;L2(D))∩

L2(0, T ;H1(D)) and since {v, q̂} is a weak solution to (5.1)–(5.4) without loss
of generality we may assume that q = q̂.

Observe that

qt − (b,∇)q + cq = qt + (c+ div b)q − div(bq).

Let us denote ξ = qt+ (c+ div b)q. The hypotheses of Theorem 5.11 imply that

ξ ∈ L2(0, T ; L̂2(D)) and

qtt ∈ L2(0, T ;L2(D)),

div bt ∈ L2(0, T ;L∞(D)d), ct ∈ L2(0, T ;L∞(D)),

p, pt ∈ L∞(0, T ;L2(D)),

hence there exists a weak derivative

ξt = qtt + (ct + div bt)q + (c+ div b)qt ∈ L2(0, T ;L2(D)).
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But ξ ∈ L2(0, T ; L̂2(D)), hence (by the definition of weak derivative) ξt ∈
L2(0, T ; L̂2(D)). Thus ξ ∈W 1,2(0, T ; L̂2(D)).

Similarly there exists a weak derivative

(bq)t = btq + bqt ∈ L2(0, T ;L2(D)d),

hence bq ∈ W(0, T ). Then by Theorem 4.8 we have the following estimate

‖pα − q‖L∞(0,T ;L2(D)) ≤ C

(
‖u◦α − v◦‖L2(D)d√

α
+ ‖p◦α − q◦‖L2(D) +

+
√
α‖qf‖L2(0,T ;H−1(D)d) +

‖sα − s‖L2(0,T ;H−1(D)d)√
α

+

+
1

α
‖σα‖L2(0,T ;L2(D)) +

√
α‖bq‖W(0,T ) +

√
α‖ξ‖W 1,2(0,T ;L̂2(D))

)
,

from which the strong convergence of the pressure follows directly.

Remark 5.12. The pressure q has the regularity demanded in (5.22) when, for
instance, ∂D ∈ C2, b = 0, c = 0, −A ≡ ν∆, f = 0, sα = 0, σα = 0 and v◦

satisfies

1. v◦ ∈ V (D) ∩H5(D);

2. PH∆v◦ ∈ V (D);

3. (PH∆)2v◦ ∈ V (D).

Remark 5.13. Theorem 5.11 still holds if we require only ∇p◦ = ∇q|t=0 instead
of p◦ = q|t=0 in (5.23). This is a consequence of the fact that only ∇q (but not
q) is uniquely determined by v.

5.3 Explicit solution in one-dimensional case

Though the one-dimensional incompressible hydrodynamics is quite trivial1, it
is very convenient to demonstrate Theorems 5.3, 5.5, 5.10 and 5.11 in case
when d = 1. Let D = [−π, π] and ν = 1. We will assume that b = 0, c = 0,
−A ≡ ν∆, f = 0, sα = 0 and σα = 0. One can show that the solution to the
problem (4.1)–(4.6) with the initial data

u◦(x) = A◦ sinx, p◦(x) = B◦ cosx

(where A◦, B◦ ∈ R) is given by

uα(x, t) = A(t) sinx, pα(x, t) = B(t) cosx,

1When d = 1, the equality div v = 0 and the boundary conditions (4.6) imply v ≡ 0.

35



where

A(t) = e−t/2
(
A◦ cos(ωαt) +

1

ωα

(
B◦ − 1

2
A◦
)

sin(ωαt)

)
,

B(t) =
1

2
A(t)−A◦ωαe−t/2 sin(ωαt) +

(
B◦ − 1

2
A◦
)
e−t/2 cos(ωαt),

ωα =
√

1/α− 1/4,

(5.24)

provided that α < 4. The solution to the limit problem (5.1)–(5.4) with v◦ =
PHu◦ = 0 is clearly given by

v ≡ 0, q = Q(t),

hence q̂ ≡ 0. One can observe from the formulas (5.24) that

1. when α→ 0 we have uα ⇁ v, which is in agreement with Theorem 5.3;

2. uα → v as α→ 0 if and only if A◦ = 0, which is equivalent to the condition
(5.12) from Theorem 5.5;

3. when A◦ = 0 the rate of the convergence uα → v is
√
α. This is precisely

the rate which can be found in the proof of Theorem 5.5 (see Remark 5.6);

4. when A◦ = 0 we also have pα
∗
⇁ q̂ as α → 0, which is in agreement with

Theorem 5.10;

5. pα → q̂ as α → 0 if and only if A◦ = B◦ = 0, which is equivalent to the
condition (5.23) from Theorem 5.11.
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