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Abstract. We give a quantitative analysis of clustering in a stochastic model of one-
dimensional gas. At time zero the gas consists of n identical particles that are randomly
distributed on the real line and have zero initial speeds. Particles begin to move under
the forces of mutual attraction. When particles collide, they stick together forming a new
particle, called cluster, whose mass and speed are defined by the laws of conservation.

We are interested in the asymptotic behavior of Kn(t) as n →∞, where Kn(t) denotes
the number of clusters at time t in the system with n initial particles. Our main result
is a functional limit theorem for Kn(t). Its proof is based on the discovered localization
property of the aggregation process, which states that the behavior of each particle is
essentially defined by the motion of neighbor particles.
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1. Introduction

1.1. Description of the model. We give a quantitative analysis of clustering in a sto-
chastic model of one-dimensional gas. At time zero the gas consists of n point particles,
each one of mass 1

n
. These particles are randomly distributed on the real line and have zero

initial speeds. Particles begin to move under the forces of mutual attraction. When two
or more particles collide, they stick together forming a new particle, called cluster, whose
mass and speed are defined by the laws of mass and momentum conservation. Between
collisions particles move according to the laws of Newtonian mechanics.

We suppose that the force of mutual attraction does not depend on distance and equals
the product of masses. This assumption is natural for one-dimensional models because, by
the Gauss law applied to flux of the gravitational field, gravitation is proportional to the
distance to the power one minus dimension of the space. At any moment, the acceleration
of a particle is thus equal to difference of masses located to the right and to the left of the
particle.

Random initial positions of particles are usually described (see [8, 16, 25]) by the fol-
lowing natural models: in the uniform model, n particles are independently and uniformly
spread on [0, 1]; in the Poisson model, particles are located at points 1

n
S1,

1
n
S2, . . . ,

1
n
Sn,

where Si is a standard exponential random walk. In other words, particles are located at
points of first n jumps of a Poisson process with intensity n.

These two models are the most natural and interesting; let us call them the main
models of initial positions. However, we will see that behavior of the Poisson model is
essentially defined by independence of initial distances between particles rather than by
the particular type of the distances’ distribution. Therefore, it is of a great mathematical
interest to generalize the Poisson model by introducing the i.d.-model, where “i.d.” stands
for “independent distances”, as follows. Particles are initially located at 1

n
S1,

1
n
S2, . . . ,

1
n
Sn,

where Si is a positive random walk whose non-negative i.i.d. increments Xi satisfy the
normalization condition EXi = 1. Note that if we proceed to the limit as n → ∞, we
consider a system of total mass one, which consists of, roughly speaking, infinitesimal
particles homogeneously spread on [0, 1]; this is true for all the mentioned models of initial
positions.

The mathematical interest in sticky particles systems arises mainly from relations
between these systems and some non-linear partial differential equations originating from
fluid mechanics, e.g., the Burgers equation. These equations admit interpretation in terms
of sticky particles, see Gurbatov et al. [10], Brenier and Grenier [4], or E et al. [6]. Sticky
particles models are also used for numerical solving of other partial differential equations,
see Chertock et al. [5] for explanations and further references.

As time goes, particles aggregate in clusters. Clusters become larger and larger while
the number of clusters decreases until they merge into a single cluster containing all initial
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particles. This process of mass aggregation is strongly connected with additive coalescence,
see Bertoin [2] and Giraud [9] for the most recent results and references.

The aggregation process resembles formation of a star from dispersed space dust and
sticky particles models indeed have relations to astrophysics. It is appropriate to clarify
these relations since they are not so direct and cause a lot of misunderstanding.

It is known that the distribution of galaxies in the Universe is very inhomogeneous
and the regions of high density form a peculiar cellular structure. The first attempt to
understand the formation of such structures was made in 1970 by Ya.B. Zeldovich. Most
of the mass in the universe is believed to exist in the form of particles that practically do
not collide with each other and interact only gravitationally, e.g., neutrinos. In his model
Zeldovich considered an initially homogeneous collisionless medium of particles moving by
pure inertia; the gravitational interaction was taken away by an appropriate time change.
He showed that singularities, i.e., the thin regions of very high density of particles, so called
“pancakes”, appear even if initial speeds of particles form a smooth velocity field.

Zeldovich’s approximate model, however, does not explain formation of the cellular
structure of matter. His approximation does not take into account that particles hitting
a “pancake” are hampered by its strong gravitational field and start oscillating inside
the “pancake” instead of flying away. Although this gravitational adhesion of collisionless
particles is not precisely the same as the real sticking, the model of sticky particles serves as
a reasonable approximation. The effect of gravitational adhesion was then analyzed by the
use of the Burgers equation; S.N. Gurbatov, A.I. Saichev and S.F. Shandarin proposed it in
1984 to extend Zeldovich’s approximation, which is invalid after formation of “pancakes”.

The model of sticky particles is directly mentioned in Gurbatov et al. [11]; a compre-
hensive survey of the formation of the Universe’s large-scale structure could be found in
Shandarin and Zeldovich [23].

1.2. Statement of the problem and the results. In general, the problem is to describe
the process of mass aggregation. How fast is it? How large the clusters are? Where do
clusters appear most intensively, etc.? Numerous papers on the model, e.g., [8, 14, 16,
20, 25], are dedicated to probabilistic description of various properties of the aggregation
process as the number of initial particles n tends to infinity. Thus, the behavior of a typical
system consisting of a large number of particles is studied.

In this paper, we are interested in the asymptotic behavior of Kn(t), which denotes
the number of clusters at time t in the system with n initial particles. This variable is a
descreasing random step function satisfying Kn(0) = n and Kn(t) = 1 for t ≥ T last

n , where
T last

n denotes the moment of the last collision. While calculating Kn(t), we also count initial
particles that have not experienced any collisions; in other words, Kn(t) is the total number
of particles existing at time t.

It is very important to know the behavior of Kn(t). This gives us a deep understanding
of the aggregation process since the average size of a cluster at time t is n

Kn(t)
.

At first we give a short deterministic example. Suppose that particles are located at
points 1

n
, 2

n
, . . . , n

n
, i.e., Si = i. By simple calculations, we find that there would not be any

collisions before t = 1. At the moment t = 1, all particles simultaneously stick together,
hence Kn(t) = n for 0 ≤ t < 1 and Kn(t) = 1 for t ≥ 1.
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However, when the initial positions are random, the aggregation process behaves en-
tirely differently. In [25], the author proved the following statement.

Fact 1. There exists a deterministic function a(t) such that both in the Poisson and the
uniform models of initial positions, for any t ≥ 0, we have

Kn(t)

n

P−→ a(t), n →∞. (1)

The function a(t) is continuous, a(0) = 1, and a(t) = 0 for t ≥ 1. We conjecture, on the
basis of numerical simulations, that a(t) = 1− t2 for 0 ≤ t ≤ 1.

The relation a(t) = 0 for t > 1 is not of a surprise because we know from Giraud [8]

that both in the Poisson and the uniform models, T last
n

P−→ 1 (the limit constant is so
“fine” due to the proper scaling of the model). Therefore, we say that the moment t = 1
is critical; note that this moment coincides with the moment of the total collision in the
deterministic model.

The aim of this paper is to strengthen the result of [25]. We first generalize Fact 1 and
prove it for the i.d.-model. We will see (relations (20) and (28) below) that a(t) is equal to
the probability of a certain event that is expressed in terms of Xi. Also, we will prove that
a(t) depends on the common distribution of Xi as follows: a(t) = 1 on [0,

√
µ), where

µ := sup
{
y : P{Xi < y} = 0

}
;

a(t) ∈ (0, 1) on (
√

µ, 1); and a(t) = 0 on (1,∞).
Furthermore, we prove the conjecture from Fact 1 that aPoiss(t) = aUnif (t) = 1 − t2

for 0 ≤ t ≤ 1. There is an amazing contrast between the simplicity of this formula and
the hard calculations one needs to obtain it; although this problem seem to be technical,
its solution is based on quite original and interesting ideas. It is remarkable that now we
know the limit function a(t) for the main models of initial positions.

Our main goal is to improve (1) by finding the next term in the asymptotics of Kn(t).

The result is the following statement, where the standard symbol
D−→ denotes weak con-

vergence and D denotes the Skorohod space.

Theorem 1. In the i.d.-model with continuous Xi satisfying EXγ
i < ∞ for some γ > 4,

there exists a centered Gaussian process K(·) on [0, 1) such that

Kn(·)− na(·)√
n

D−→ K(·) in D[0, 1− ε] for all ε ∈ (0, 1) (2)

as n → ∞. The process K(·) depends on the distribution of Xi. This process satisfies
K(0) = 0 and has a.s. continuous trajectories. The covariance function R(s, t) of K(·) is
continuous on [0, 1)2, R(s, t) > 0 on (

√
µ, 1)2, and R(s, t) = 0 on [0, 1)2 \ (

√
µ, 1)2.

In the uniform model, (2) holds for some centered Gaussian process KUnif (·) on [0, 1).
This process satisfies KUnif (0) = 0 and has a.s. continuous trajectories. The covariance
function RUnif (s, t) of KUnif (·) is continuous on [0, 1)2, and RUnif (s, t) = RPoiss(s, t)−s2t2.

Thus, the Poisson and the uniform models lead to different limit processes KPoiss(·)
and KUnif (·), although aPoiss(·) = aUnif (·).
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As an immediate corollary of Theorem 1 (see Billingsley [3, Sec. 15]), we get

Kn(t)− na(t)√
n

D−→ N (0, σ2(t)), n →∞ (3)

for any t < 1, where σ2(t) := R(t, t). It is possible to show that in the i.d.-model, (3)
holds for all t 6= 1 under the less restrictive condition EX2

i < ∞, with σ2(t) = 0 for t > 1;
continuity of Xi is not required.

We also study convergence of the left-hand side of (3) at the critical moment t = 1.
Apparently, the limit is not Gaussian, but this complicated problem is related to a curious,
but hardly provable conjecture on integrated random walks. In view of this non-Gaussianity,
it seems impossible to prove any extended version of Theorem 1 that describes the weak
convergence of trajectories on the whole interval [0, 1]; we refer to Section 7 for further
discussion.

We finish this subsection with a note on scaling. In our model, the masses of particles
are equal to 1

n
and the distances between them are of the order 1

n
. Let us rescale the i.d.-

model by multiplying all masses and distances by n: the system of particles of mass one
each, initially located at points S1 − S[n

2
], S2 − S[n

2
], . . . , Sn − S[n

2
], is called the expanding

model. The particles are shifted by S[n
2
] because we want the system to expand “filling”

the whole line as n →∞ rather than only the positive half-line.
All results of our paper hold true for the expanding model. This is not unexpected

because the shift does not produce any changes and the rescaling of masses is equivalent
to the time contraction by n times while the rescaling of distances is equivalent to the time
expansion by n times. We refer the reader to Section 2 below or to Lifshits and Shi [16]
for rigorous arguments.

1.3. Organization of the paper. In Section 2 we describe a general method which is
used to study systems of sticky particles. This method is applied for studying the i.d.-
model in Section 3, where we investigate some properties of the aggregation process. We
will show that the aggregation process is highly local, i.e., the behavior of a particle is
essentially defined by the motion of neighbor particles. This localization property suggests
that we could use limit theorems for weakly dependent variables to prove both Fact 1 and
Theorem 1 for the i.d.-model; this will be done in Section 4. Then we will prove Theorem 1
for the uniform model in Section 5. In Section 6 we study the number of clusters at the
critical moment t = 1. Some open questions are discussed in Section 7. The proof of the
relation aPoiss(t) = 1− t2 for 0 ≤ t ≤ 1 is separated into Appendix.

2. Method of barycenters

In this section we briefly describe the method of barycenters, which is the main tool
used to study systems of sticky particles; it is also applicable to more general models where
particles could have non-zero initial speeds and different masses. The method of barycenters
was independently introduced by E et al. [6] and Martin and Piasecki [20].

Let us start with several definitions. We always numerate particles from left to right
and identify particles with their numbers. A block of particles is a nonempty set J ⊂ [1, n]
consisting of consecutive numbers. For example, the block (i, i + k] consists of particles
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i + 1, . . . , i + k. Note that there are not any relations between blocks and clusters: for
example, a block’s particles could be contained in different clusters and these clusters
could even contain particles that do not belong to the block.

It is convenient to assume that initial particles do not vanish at collisions but continue
to exist in created clusters. Then the coordinate xi,n(t) of a particle i could be defined
as the coordinate of a cluster that contains the particle at time t. The second subscript
n always indicates the number of initial particles; we will omit this subscript as often as
possible.

By xJ(t) := |J |−1
∑

i∈J xi(t) denote the position of the barycenter of a block J at time
t. Further, define

x∗J(t) := xJ(0) +
1

2

(
M

(R)
J −M

(L)
J

)
t2,

where M
(R)
J and M

(L)
J are the total masses of particles initially located to the right and to

the left of the block, respectively.
A block is free from the right up to time t if, up to this time, the block’s particles did

not collide with particles initially located to the right of the block. We similarly define
blocks that are free from the left and say that a block is free up to time t if it is both free
from the right and from the left.

The next statement plays the key role in the analysis of sticky particles systems. The
barycenter of a free block moves as an imaginary particle consisting of all particles of the
block put together at the initial barycenter. In a more precise and general way, we state the
following.

Proposition 1. If a block J is free from the right (resp. left) up to time t, then xJ(s) ≥
x∗J(s) for s ∈ [0, t] (resp. xJ(s) ≤ x∗J(s)). If a block J is free up to time t, then xJ(s) = x∗J(s)
for s ∈ [0, t].

This statement could be found, for example, in Lifshits and Shi [16], Proposition 4.1.
The easy proof is based on the property of conservation of momentum.

The moment when a particle j sticks with its right-hand neighbor j + 1 is called the
merging time Tj,n of the particle j. In other words, Tj,n is the first moment when particles
j and j + 1 are contained in a common cluster; here j ∈ [1, n − 1]. Proposition 4.3 from
Lifshits and Shi [16], which is stated below, gives us a way to calculate Tj,n.

Proposition 2. For every j ∈ [1, n− 1], we have

Tj,n = min
j<k≤n
0≤l<j

{
s ≥ 0 : x∗(j,k](s) = x∗(l,j](s)

}
. (4)

Thus, Tj,n is expressed by means of barycenters. Note that since

x∗(j,k](s)− x∗(l,j](s) = x(j,k](0)− x(l,j](0)− k − l

2n
s2, (5)

each of the equations x∗(j,k](s) = x∗(l,j](s) has a unique non-negative solution. We also
mention that at the moment Tj,n appears a cluster that consists of the particles l+1, . . . , k,
where k and l are minimizers of the right-hand side of (4).
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We will prove Proposition 2 since the proof is simple and perfectly illustrates the sense
of the method of barycenters.

Proof. For any u < Tj,n, the particles j and j + 1 are contained in different clusters.
Therefore, for every l < j, the block [l, j] is free from the right up to time u, and for every
k > j, the block [j + 1, k] is free from the left. By Proposition 1,

x∗(l,j](u) ≤ x(l,j](u) ≤ xj(u) < xj+1(u) ≤ x(j,k](u) ≤ x∗(j,k](u),

and since, by (5), the function x∗(j,k](s)− x∗(l,j](s) is decreasing for s ≥ 0, we conclude that

u <
{

s ≥ 0 : x∗(j,k](s) = x∗(l,j](s)
}

.

Taking minimum over k, l and taking supremum over u, we get Tj,n ≤ min{. . . }.
Let us prove the last inequality in the other direction. By the definition of Tj,n, there

exist an l < j and a k > j such that the blocks (l, j] and (j, k] are free up to time Tj,n

(clusters containing particles from these blocks collide exactly at time Tj,n). In view of
Proposition 1,

x∗(l,j](Tj,n) = x(l,j](Tj,n) = x(j,k](Tj,n) = x∗(j,k](Tj,n);

hence Tj,n =
{

s ≥ 0 : x∗(j,k](s) = x∗(l,j](s)
}

, and Tj,n ≥ min{. . . }. ¤

3. Study of the i.d.-model. The localization property

At first, note that

Kn(t) = 1 +
n−1∑
i=1

1{t<Ti,n} (6)

because the total number of clusters decreases by one at each moment Ti,n. This represen-
tation plays the key role in the investigation of Kn(t). Clearly, we need to study properties
of the r.v.’s Ti,n to prove limit theorems for Kn(t); such study will be done in this section.

3.1. The initial study. Let us simplify the representation for Tj,n from Proposition 2. In
this section we consider the i.d.-model of initial positions, where xj,n(0) = 1

n
Sj. Recall that

Sj is a random walk with i.i.d. increments {Xj}j∈Z (we will need the variables {Xj}j≤0

later).
Rewrite the initial distance between barycenters as

x(j,k](0)− x(l,j](0) =
1

k − j

k∑
i=j+1

1

n
Si − 1

j − l

j∑

i=l+1

1

n
Si

=
1

n

(
1

k − j

k∑
i=j+1

(Si − Sj+1) +
1

j − l

j∑

i=l+1

(Sj − Si) + (Sj+1 − Sj)

)

=
1

n

(
1

k − j

k−j−1∑
i=1

(Sj+i+1 − Sj+1) +
1

j − l

j−l−1∑
i=1

(Sj − Sj−i) + Xj+1

)
;
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let us agree that
∑
∅ := 0. Further, by

x(j,k](0)− x(l,j](0)

=
1

n

(
1

k − j

k−j−1∑
i=1

j+i+1∑
m=j+2

Xm +
1

j − l

j−l−1∑
i=1

j∑
m=j−i+1

Xm + Xj+1

)

=
1

n

(
1

k − j

k−j−1∑
i=1

(k − j − i)Xj+i+1 +
1

j − l

j−l−1∑
i=1

(j − l − i)Xj−i+1 + Xj+1

)
,

and (5), we have

x∗(j,k](s)− x∗(l,j](s) = Fk−j,j,j−l(s),

where

Fp,j,q(s) :=
1

p

p−1∑
i=1

(p− i)Xj+i+1 +
1

q

q−1∑
i=1

(q − i)Xj−i+1 + Xj+1 − p + q

2
s2 (7)

(for p, q ≥ 1 and j ∈ Z). Now, by Proposition 2, we get

Tj,n = min
j<k≤n
0≤l<j

{
s ≥ 0 : Fk−j,j,j−l(s) = 0

}
= min

1≤k≤n−j
1≤l≤j

{
s ≥ 0 : Fk,j,l(s) = 0

}
. (8)

Note that Fp,j,q(0) ≥ 0 for all p, j, q and Fp,j,q(s) is decreasing for s ≥ 0. This function
could be also written in the more convenient form

Fp,j,q(s) =
1

p

p−1∑
i=1

(p− i)(Xj+i+1 − s2) +
1

q

q−1∑
i=1

(q − i)(Xj−i+1 − s2) + (Xj+1 − s2). (9)

3.2. Localization property of the aggregation process. We see that Tj,n is a function
of X2, . . . , Xn; in other words, it is necessary to know the distances between all n particles to
find Tj,n. The aggregation process is actually highly local, i.e., the value of Tj,n is essentially
defined by the initial distances between neighbor particles {i} of j for which |j − i| is small
enough.

To make this statement rigorous, we need to introduce the following notation. Let us
put

T
(M)
j := min

1≤k,l≤M

{
s ≥ 0 : Fk,j,l(s) = 0

}
, j ∈ Z, M ∈ N,

which is expressed in terms of the variables {Xi}|j−i|≤M only. Also, define

Tj := inf
k,l≥1

{
s ≥ 0 : Fk,j,l(s) = 0

}
, j ∈ Z,

which is, in some sense, the merging time in an appropriate infinite system of particles.
The reader could construct such system by considering the limit of the expanding model,
see Sec. 1.

It is clear that

Tj ≤ Tj,n ≤ T
(j ∧n−j)
j , j, n ∈ N, j ≤ n, (10)
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where by ∧ and ∨ we denote minimum and maximum, respectively, and

Tj ≤ T
(M)
j , j ∈ Z, M ∈ N. (11)

Let us estimate the rate of the convergence of P
{
Tj 6= T

(M)
j

}
to zero as the “radius

of the neighborhood” M tends to infinity. We thus could “measure” the above-mentioned

locality of the aggregation process. In fact, by (10), we have P{Tj,n 6= T
(M)
j } ≤ P{Tj 6=

T
(M)
j } for any n ∈ N, j ≤ n, and M ≤ j ∧ n− j.

Lemma 1. Suppose EXγ
i < ∞ for some γ ≥ 1. Then there exists a non-decreasing function

ρ(t) such that

max

(
P
{
1{t≤Tj} 6= 1{t≤T

(M)
j }

}
, P

{
Tj 6= T

(M)
j , T

(M)
j ≤ t

})
≤ ρ(t)M1−γ (12)

for any t ∈ (0, 1), j ∈ Z, and M ∈ N. Moreover, for any t < 1, the left-hand side of (12)
is o(M1−γ).

Proof. Let us estimate the first probability in the left-hand side of (12). By properties of

Fk,j,l(·) and definitions of T
(M)
j and of Tj,

P
{
1{t≤Tj} 6= 1{t≤T

(M)
j }

}
= P

{
Tj < t ≤ T

(M)
j

}

= P
{

inf
k,l≥1

Fk,j,l(t) < 0, min
1≤k,l≤M

Fk,j,l(t) ≥ 0
}

.

By (9), this expression does not depend on j, and putting j := −1,

P
{
1{t≤Tj} 6= 1{t≤T

(M)
j }

}

= P
{

inf
k≥1

1

k

k−1∑
i=1

(k − i)(Xi − t2) + inf
l≥1

1

l

l−1∑
i=1

(l − i)(X−i − t2) + (X0 − t2) < 0,

min
1≤k≤M

1

k

k−1∑
i=1

(k − i)(Xi − t2) + min
1≤l≤M

1

l

l−1∑
i=1

(l − i)(X−i − t2) + (X0 − t2) ≥ 0

}
.

We then compare the inequalities in the braces and obtain

P
{
1{t≤Tj} 6= 1{t≤T

(M)
j }

}

≤ 2P
{

inf
k>M

1

k

k−1∑
i=1

(k − i)(Xi − t2) < min
1≤k≤M

1

k

k−1∑
i=1

(k − i)(Xi − t2)

}

= 2P
{

inf
k>M

1

k

k−1∑
i=1

(Si − it2) < min
1≤k≤M

1

k

k−1∑
i=1

(Si − it2)

}

≤ 2P
{

inf
k>M

1

k

k−1∑
i=1

(Si − it2) < min
k∈{1,M}

1

k

k−1∑
i=1

(Si − it2)

}
.
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Now rewrite the event in the last line as
{
∃ k > M :

1

k

k−1∑
i=1

(Si − it2) < min
(
0,

1

M

M−1∑
i=1

(Si − it2)
)}

=

{
∃ k > M :

1

k

M−1∑
i=1

(Si − it2) +
1

k

k−1∑
i=M

(Si − it2) < min
(
0,

1

M

M−1∑
i=1

(Si − it2)
)}

.

Analyzing both cases 0 ≤ 1
M

∑M−1
i=1 (Si − it2) and 0 > 1

M

∑M−1
i=1 (Si − it2), we conclude that

the considered event implies

{
∃ k > M :

1

k

k−1∑
i=M

(Si − it2) < 0
}

=
{
∃ k > M :

k−1∑
i=M

(Si − it2) < 0
}

.

Clearly, the latter implies
{
∃ i ≥ M : Si − it2 < 0

}
=

{
inf
i≥M

Si

i
< t2

}
;

hence, combining all the estimates together, we get

P
{
1{t≤Tj} 6= 1{t≤T

(M)
j }

}
≤ 2P

{
inf
i≥M

Si

i
< t2

}
. (13)

Note that we obtained (13) without any assumptions on the moments of Xi.
We now estimate the right-hand side of (13); recall that EXi = 1. Then the first

part of (12) immediately follows from the classical result of Baum and Katz [1] (see their
Theorem 3 and Lemma):

Fact 2. If EXi = a and E|Xi|γ < ∞ for some γ ≥ 1, then

P
{

sup
i≥k

∣∣∣Si

i
− a

∣∣∣ > ε
}

= o(k1−γ), k →∞

for any ε > 0. In addition, the series
∑∞

k=1 P
{
supi≥k

∣∣Si

i
− a

∣∣ > ε
}

converges for all ε > 0
if γ = 2.

The estimation of the second probability in the left-hand side of (12) is completely
analogous, since {

Tj 6= T
(M)
j , T

(M)
j ≤ t

}
=

{
Tj < T

(M)
j ≤ t

}

=
{

inf
1≤k,l

Fk,j,l

(
T

(M)
j

)
< 0, min

1≤k,l≤M
Fk,j,l

(
T

(M)
j

)
= 0, T

(M)
j ≤ t

}
.

We put j := −1, repeat the estimates, and get

P
{

Tj 6= T
(M)
j , T

(M)
j ≤ t

}
≤ 2P

{
∃ i ≥ M : Si − i[T

(M)
−1 ]

2
< 0, T

(M)
−1 ≤ t

}

instead of (13). The right-hand side does not exceed 2P
{∃ i ≥ M : Si − it2 < 0

}
, hence

P
{

Tj 6= T
(M)
j , T

(M)
j ≤ t

}
≤ 2P

{
inf
i≥M

Si

i
< t2

}
. (14)
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¤

3.3. The distribution function of the merging time T0 in the Poisson model.
It is amazing that in the Poisson model, the distribution function of T0 could be found
explicitly. This is important because by (28) below, the limit function a(t) equals P

{
T0 > t

}
for the i.d.-model. Also, in the proof of Theorem 1 for the uniform model, we will need
aPoiss(t) = P

{
T Poiss

0 ≥ t
}

to be twice differentiable and have a continuous second derivative.

Lemma 2. In the Poisson model, for 0 ≤ t ≤ 1, we have

P
{

T0 ≥ t
}

= 1− t2. (15)

In addition, for t ≥ 0, n ≥ 2, and 1 ≤ j ≤ n− 1, we have

P
{

Tj,n ≥ t
}

= et2P
{

min
1≤k≤j

k∑
i=1

(Si − it2) ≥ 0

}
· P

{
min

1≤k≤n−j

k∑
i=1

(Si − it2) ≥ 0

}
(16)

where Si is a standard exponential random walk.

Proof. We start with (16). By (8), (9), and properties of Fk,j,l(·),

P
{

Tj,n ≥ t
}

= P
{

min
1≤k≤n−j

1≤l≤j

Fk,j,l(t) ≥ 0
}

= P
{

min
1≤k≤n−j

1

k

k−1∑
i=1

(k − i)(Xj+i+1 − t2) (17)

+ min
1≤l≤j

1

l

l−1∑
i=1

(l − i)(Xj−i+1 − t2) + Xj+1 − t2 ≥ 0

}
.

In the right-hand side of the last equality, by Y denote the first minimum and by Ỹ denote
the second one.

Suppose X is a standard exponential r.v., Z is a non-negative r.v., and that X and Z
are independent; then

P{Z ≤ X} =

∫ ∞

0

P{Z ≤ x}e−xdx =

∫ ∞

0

E1{Z≤x}e
−xdx = E

∫ ∞

0

1{Z≤x}e
−xdx = E e−Z .

Hence in view of independence of Y , Ỹ , Xj+1 we get

P
{

Y + Ỹ + Xj+1 − t2 ≥ 0
}

= E eY +Ỹ−t2 = et2E eY−t2 E eỸ−t2 ;

and therefore,

P
{

Tj,n ≥ t
}

= et2P
{

Y + Xj+1 − t2 ≥ 0
}
P
{

Ỹ + Xj+1 − t2 ≥ 0
}

.
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Now, by

P
{

Ỹ + Xj+1 − t2 ≥ 0
}

= P
{

min
1≤l≤j

1

l

l−1∑
i=1

(l − i)(Xj−i+1 − t2) + Xj+1 − t2 ≥ 0

}

= P
{

min
1≤l≤j

( l−1∑
i=1

(l − i)(Xi+1 − t2) + l(X1 − t2)

)
≥ 0

}
(18)

= P
{

min
1≤l≤j

l∑
i=1

(l − i + 1)(Xi − t2) ≥ 0

}
,

we conclude the proof of (16). Indeed, the expression in the last line equals the first
probability in the right-hand side of (16).

Now let us prove (15). From the definition of T0 and T
(k)
0 we see that 1{t≤T

(k)
0 } → 1{t≤T0}

a.s. as k →∞; then by (16),

P
{

T0 ≥ t
}

= et2P2

{
inf
k≥1

k∑
i=1

(Si − it2) ≥ 0

}
.

Then we need to check that

P
{

inf
k≥1

k∑
i=1

(Si − it) ≥ 0

}
=
√

1− te−t/2 (19)

for 0 ≤ t ≤ 1. The complicated calculations of this probability take about ten pages,
and therefore, they were separated into Appendix. Although these calculations seem to be
technical, they are based on quite original ideas. ¤

3.4. Some properties of merging times Ti. In this subsection we prove several impor-
tant properties of the r.v.’s Ti.

1. The sequence Ti is stationary.
Proof. This statement immediately follows from the definition of Ti and stationarity of Xi,
which are i.i.d..

2. The common distribution function of Ti is defined by

P
{

Ti ≥ t
}

= P
{

inf
k≥1

1

k

k−1∑
i=1

(k−i)(Xi−t2)+inf
l≥1

1

l

l−1∑
i=1

(l−i)(X−i−t2)+(X0−t2) ≥ 0

}
. (20)

Proof. This formula follows from (9).
3. We have P

{√
µ ≤ Ti ≤ 1

}
= 1 while sup

{
y : P{Ti < y} = 0

}
=
√

µ and

inf
{
y : P{Ti < y} = 1

}
= 1; recall that µ = sup

{
y : P{Xi < y} = 0

}
. In addition, if

EX2
i < ∞, then P

{
Ti = 1

}
= 0.

Proof. First, P
{√

µ ≤ Ti

}
= 1 is trivial, because both infima in (20) are non-positive.
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Second, fix a t ≥ 1 and consider P
{
Ti ≥ t

}
. Taking into account that infima in (20)

are non-positive, we obtain

P
{

Ti ≥ t
}
≤ P

{
inf
k≥1

1

k

k−1∑
i=1

(k − i)(Xi − t2) + (X0 − t2) ≥ 0

}
.

Then by the same arguments as in (18),

P
{

Ti ≥ t
}
≤ P

{
inf
k≥1

k∑
i=1

(k − i + 1)(Xi − t2) ≥ 0

}
= P

{
inf
k≥1

k∑
i=1

(Si − it2) ≥ 0

}
.

By the strong law of large numbers, this probability is zero for all t > 1.
If t = 1 and EX2

i < ∞, then

P
{

inf
k≥1

k∑
i=1

(Si − i) ≥ 0

}
= lim

n→∞
P
{

min
1≤k≤n

k∑
i=1

(Si − i) ≥ 0

}

= lim
n→∞

P
{

min
1≤k≤n

1

n

k∑
i=1

Si − i√
n

≥ 0

}
,

and from the invariance principle, we get

P
{

Ti ≥ 1
}
≤ P

{
min

0≤s≤1

∫ s

0

W (u)du ≥ 0

}
.

It follows from the asymptotics of unilateral small deviation probabilities of an integrated
Wiener process, see (44) and (45) below, that the last expression equals zero.

Third, sup
{
y : P{Ti < y} = 0

}
=
√

µ and inf
{
y : P{Ti < y} = 1

}
= 1 follow if we

prove that for any t < EXi = 1, the common distribution of the i.i.d. infima in (20) has
an atom at zero. But we have

P
{

inf
k≥1

1

k

k−1∑
i=1

(k − i)(Xi − t2) = 0

}
= P

{
inf
k≥1

1

k

k−1∑
i=1

(Si − it2) = 0

}
≥ P

{
inf
i≥1

Si

i
≥ t2

}
,

and it could be shown via the strong law of large numbers that the last probability is
strictly positive for all t < 1.

4. Suppose Xi is continuous. Then T
(k)
j and Tj,n are continuous for any j, k, n and the

common distribution of Tj could have an atom only at 1. In addition, if EX2
i < ∞, then

Tj are continuous.
Proof. By (7) and (8),

Tj,n = min
1≤k≤n−j

1≤l≤j

√
H(k, j, l), (21)

where

H(p, j, q) :=
2

p + q

(
1

p

p−1∑
i=1

(p− i)Xj+i+1 +
1

q

q−1∑
i=1

(q − i)Xj−i+1 + Xj+1

)
.
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Hence Tj,n is continuous as a minimum of a finite number of continuous r.v.’s. The T
(k)
j

are also continuous because T
(k)
j

D
= Tk,2k.

Now we prove the continuity of Tj. By Property 3, it only remains to verify that

P
{
Tj ≥ t

}
is continuous on [0, 1). But P

{
T

(k)
j ≥ t

}− P{
Tj ≥ t

}
= P

{
1{t≤Tj} 6= 1{t≤T

(k)
j }

}
,

and in view of (13),

sup
0≤t≤s

∣∣∣P
{

T
(k)
j ≥ t

}− P{
Tj ≥ t

}∣∣∣ ≤ sup
0≤t≤s

2P
{

inf
m≥k

Sm

m
< t2

}
= 2P

{
inf
m≥k

Sm

m
< s2

}

for every s < 1 = EXi. The last expression tends to zero by the strong law of large
numbers; then P

{
Tj ≥ t

}
is continuous on [0, s] as a uniform limit of continuous functions

P
{
T

(k)
j ≥ t

}
. Since s < 1 is arbitrary, P

{
Tj ≥ t

}
is continuous on [0, 1).

5. The cov(1{s≤T0},1{t≤Tk}) tends to zero as k →∞ for all s, t ∈ [0, 1). If, in addition,
EXγ

i < ∞ for some γ > 1, then for any s, t ∈ [0, 1) and k ∈ N, we have
∣∣cov(1{s≤T0},1{t≤Tk})

∣∣ ≤ 2γ
(
ρ(s) + ρ(t)

)
k1−γ. (22)

Proof. The idea is to approximate 1{s≤T0} and 1{t≤Tk} by 1{s≤T
(k/2)
0 } and 1{t≤T

(k/2)
k },

respectively; here by k/2 we mean dk/2e, where dxe = min{m ∈ Z : m ≥ x}. Note that
1{s≤T

(k/2)
0 } and 1{t≤T

(k/2)
k } are independent because the first is a function of {Xi}i≤k/2 while

the second is a function of {Xi}i≥k/2+1. We then have
∣∣cov(1{s≤T0},1{t≤Tk})

∣∣
=

∣∣cov(1{s≤T0},1{t≤Tk})− cov(1{s≤T
(k/2)
0 },1{t≤T

(k/2)
k })

∣∣
≤

∣∣E(
1{s≤T0}1{t≤Tk} − 1{s≤T

(k/2)
0 }1{t≤T

(k/2)
k }

)∣∣
+

∣∣E(
1{s≤T0} − 1{s≤T

(k/2)
0 }

)∣∣ +
∣∣E(

1{t≤Tk} − 1{t≤T
(k/2)
k }

)∣∣ (23)

= P
{
1{s≤T0}1{t≤Tk} 6= 1{s≤T

(k/2)
0 }1{t≤T

(k/2)
k }

}

+P
{
1{s≤T0} 6= 1{s≤T

(k/2)
0 }

}
+ P

{
1{t≤Tk} 6= 1{t≤T

(k/2)
k }

}
.

But

P
{
1{s≤T0}1{t≤Tk} 6= 1{s≤T

(k/2)
0 }1{t≤T

(k/2)
k }

}

≤ P
{
1{s≤T0} 6= 1{s≤T

(k/2)
0 }

⋃
1{t≤Tk} 6= 1{t≤T

(k/2)
k }

}
,

therefore the result follows from Lemma 1.
6. The r.v.’s {Ti}i∈Z, {T (k)

i }i∈Z, and {Ti,n}n−1
i=1 are associated; the author owes this

observation to M.A. Lifshits.
Proof. Let us first recall the definition and some basic properties of associated variables.
R.v.’s ξ1, . . . , ξm are associated if for any coordinate-wise nondecreasing functions f, g :
Rm → R, it is true that

cov
(
f(ξ1, . . . , ξm), g(ξ1, . . . , ξm)

) ≥ 0
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(assuming that the left-hand side is well defined). An infinite set of r.v.’s is associated if
any finite subset of its variables is associated.

The following sufficient conditions of association are well known, see [7].

(a) Independent variables are associated.
(b) Coordinate-wise nondecreasing functions (of finite number of arguments) of associ-

ated r.v.’s are associated.

(c) If the variables ξ1,k, . . . , ξm,k are associated for every k and (ξ1,k, . . . , ξm,k)
D−→

(ξ1, . . . , ξm) as k →∞, then ξ1, . . . , ξm are associated.
(d) If two sets of associated variables are independent, then the union of these sets is

also associated.

Then {Ti,n}n−1
i=1 are associated for every n by (a), (b), and (21). Analogously, {T (k)

i }i∈Z
are associated for every k. Finally, since T

(k)
i → Ti a.s. as k → ∞ for every i, (c) ensures

the association of {Ti}i∈Z.
7. For any s, t ∈ R and k ∈ Z,

cov(1{T0≤s},1{Tk≤t}) ≥ 0. (24)

Proof. This inequality follows from cov(1{T0≤s},1{Tk≤t}) = cov(1{s<T0},1{t<Tk}), the asso-
ciation of T0, Tk, and (b).

8. If EXγ
i < ∞ for some γ ≥ 2, then the stationary sequence min{Ti, t} is strongly

mixing for any t < 1 and its coefficients of strong mixing α(k) satisfy α(k) = o(k2−γ).
Proof. Recall that stationary r.v.’s ξi are strongly mixing if α(k) → 0 as k → ∞, where
α(k) are the coefficients of strong mixing defined as

α(k) := sup
A∈F0

−∞, B∈F∞k

∣∣P(AB)− P(A)P(B)
∣∣;

here F0
−∞ := σ(ξ0, ξ−1, . . . ) and F∞

k := σ(ξk, ξk+1, . . . ) are the σ-algebras of “past” and
“future”, respectively. It is readily seen that

α(k) ≤ sup
0≤f,g≤1

∣∣cov(
f(ξ0, ξ−1, . . . ), g(ξk, ξk+1, . . . )

)∣∣, (25)

where the supremum is taken over Borel functions f, g : R∞ → [0, 1].
Let us estimate α(k) in the same way we estimated the left-hand side of (22). Fix some

Borel functions f, g : R∞ → [0, 1]. We approximate the variables from the “past” T0 ∧ t,

T−1∧t, T−2∧t, . . . by T
(k/2)
0 ∧t, T

(k/2+1)
−1 ∧t, T

(k/2+2)
−2 ∧t, . . . , respectively; and for the variables

from the “future”, we use the analogous approximation. Now, f
(
T

(k/2)
0 ∧ t, T

(k/2+1)
−1 ∧ t, . . .

)

and g
(
T

(k/2)
k ∧t, T

(k/2+1)
k+1 ∧t, . . .

)
are independent because the first is a function of {Xi}i≤k/2

and the second is a function of {Xi}i≥k/2+1. We then argue in the same way as in (23) to
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get
∣∣∣cov

(
f
(
T0 ∧ t, T−1 ∧ t, . . .

)
, g

(
Tk ∧ t, Tk+1 ∧ t, . . .

))∣∣∣

≤ 2P
{ ∞⋃

i=0

(
T−i ∧ t

) 6= (
T

(k/2+i)
−i ∧ t

)}
+ 2P

{ ∞⋃
i=0

(
Tk+i ∧ t

) 6= (
T

(k/2+i)
k+i ∧ t

)}

≤ 4
∞∑

i=k/2

P
{(

T0 ∧ t
) 6= (

T
(i)
0 ∧ t

)}
.

Now, by the formula of total probability, we have

P
{(

T0 ∧ t
) 6= (

T
(i)
0 ∧ t

)}

= P
{(

T0 ∧ t
) 6= (

T
(i)
0 ∧ t

)
, T

(i)
0 ≥ t

}
+ P

{(
T0 ∧ t

) 6= (
T

(i)
0 ∧ t

)
, T

(i)
0 < t

}

≤ P
{
1{t≤T0} 6= 1{t≤T

(i)
0 }

}
+ P

{
T0 6= T

(i)
0 , T

(i)
0 ≤ t

}

and combining all the estimates together, by Lemma 1, (25), and arbitrariness of f and
g, we get α(k) ≤ 8

∑∞
i=k/2 o(i1−γ) = o(k2−γ) if γ > 2. For γ = 2, we get α(k) ≤

16
∑∞

i=k/2 P
{
infi≥M

Si

i
< t2

}
= o(1) using the same argument and applying (13), (14),

and Fact 2 instead of Lemma 1.

3.5. The last collision. We finish this section with a statement on the convergence of the
moments of the last collision.

Proposition 3. In the i.d.-model, T last
n

P−→ 1 as n →∞ if EX2
i < ∞.

This result is well known for the Poisson model, see Giraud [8].

Proof. Let us first prove that P
{
T last

n ≥ t
} → 0 as n → ∞ for all t > 1. Since T last

n =
max1≤j≤n−1 Tj,n, we have

P
{
T last

n ≥ t
} ≤

n−1∑
j=1

P
{
Tj,n ≥ t

}
. (26)

By taking into account that the minima in (17) are non-positive and by arguing as in (18),

P
{
Tj,n ≥ t

} ≤ P
{

min
1≤k≤j ∨n−j

1

k

k−1∑
i=1

(k − i)(Xj+i+1 − t2) + Xj+1 − t2 ≥ 0

}

= P
{

min
1≤k≤j ∨n−j

k∑
i=1

(k − i + 1)(Xi − t2) ≥ 0

}

≤ P
{

min
1≤k≤n/2

k∑
i=1

(Si − it2) ≥ 0

}
.
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We claim that (without any assumptions on the moments of Xi)

P
{
Tj,n ≥ t

} ≤ P
{

sup
i≥ t−1

4t
n

Si

i
>

1 + t2

2

}
; (27)

recall that t > 1. Clearly, (27) follows if we check that

{
min

1≤k≤n/2

k∑
i=1

(Si − it2) ≥ 0

}
⊂

{
sup

i≥ t−1
4t

n

Si

i
>

1 + t2

2

}
.

Assume the converse; then, by the non-negativity of Si,

0 ≤
n/2∑
i=1

(Si − it2) =
cn∑
i=1

(Si − it2) +

n/2∑
i=cn+1

(Si − it2)

≤
cn∑
i=1

(Scn − it2) +

n/2∑
i=cn+1

(
i
1 + t2

2
− it2

)
,

where c := t−1
4t

. We estimate the last expression with

cnScn − (cn)2

2
t2 − (n/2)2 − (cn)2

2
· t2 − 1

2
≤ c2

2
n2 − 1/4− c2

2
· t2 − 1

2
n2.

It is simple to check that the right-hand side is negative, thus we have a contradiction.
Then from (26), (27), and Fact 2 it follows that P

{
T last

n ≥ t
}

=
∑n−1

i=1 o
(
(cn)−1

)
= o(1)

for all t > 1.
Now let us prove that P

{
T last

n < t
} → 0 as n → ∞ for all t < 1. Since T last

n =
max1≤j≤n−1 Tj,n, we estimate

P
{
T last

n < t
} ≤ P

{
max

1≤j≤√n−1
Tj
√

n,n < t
}

= P
{

max
1≤j≤√n−1

T
(
√

n/2)

j
√

n
< t

}
+

√
n−1∑

j=1

P
{
1{t≤Tj

√
n,n} 6= 1{t≤T

(
√

n/2)

j
√

n
}

}
.

In view of (10) and Lemma 1, the sum is
∑√

n−1
j=1 o(n−1/2) = o(1), hence it remains to

check that the first probability in the last line tends to zero. For a fixed n, all T
(
√

n/2)

j
√

n

are independent because each one is a function of {Xi}|j√n−i|≤√n/2 (to be precise, of
Xj

√
n−√n/2+2, . . . , Xj

√
n+
√

n/2). Thus,

P
{

max
1≤j≤√n−1

T
(
√

n/2)

j
√

n
< t

}
= P

√
n−1

{
T

(
√

n/2)√
n

< t
}
≤ P

√
n−1

{
T0 < t

}
,

which tends to zero; indeed, P
{
T0 < t

}
< 1 by Property 3, Subsection 3.4. ¤
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4. Proofs of Fact 1 and Theorem 1 for the i.d.-model

Recall that the number of clusters Kn(t) is given by (6). Our idea is to study∑n−1
i=1 1{t<Ti} instead of

∑n−1
i=1 1{t<Ti,n}: We thus deal with a single sequence Ti and avoid

considering the triangular array Ti,n.
Let us now prove Fact 1 for the i.d.-model. We prove (1) for t 6= 1 without any

additional assumptions on Xi; for t = 1, we require EX2
i < ∞. The properties of the limit

function a(t) were studied in Subsection 3.4, Properties 3 and 4.

Proof of Fact 1. We put

a(t) := P
{
T0 > t

}
. (28)

Let us first prove (1) for all t < 1. It is sufficient to check that

Kn(t)

n
− 1

n

n∑
i=1

1{t<Ti}
P−→ 0, n →∞. (29)

Indeed, the stationary sequence 1{t<Ti} satisfies the law of large numbers by Property 5,
Subsection 3.4, and the well-know result of S.N. Bernstein:

Fact 3. The law of large numbers holds for r.v.’s ξi if there exists a sequence r(k) → 0
such that cov(ξi, ξj) ≤ r(|i− j|) for all i, j ∈ N.

By (6), ∣∣∣∣
Kn(t)

n
− 1

n

n∑
i=1

1{t<Ti}

∣∣∣∣ ≤
1

n
+

1

n

n−1∑
i=1

(
1{t<Ti,n} − 1{t<Ti}

)

where we used (10) to get the non-negativity of the right-hand side. Then (29) immediately
follows from the Chebyshev inequality provided that the expectation of the right-hand side
tends to zero. By using (10), we obtain

1

n

n−1∑
i=1

E
(
1{t<Ti,n} − 1{t<Ti}

) ≤ 1

n

n−1∑
i=1

(
E1{t<T

(i∧n−i)
i } − E1{t<Ti}

)

=
1

n

n−1∑
i=1

P
{
1{t<Ti} 6= 1{t<T

(i∧n−i)
i }

}
,

which is 2
n

∑n/2
i=1 o(1) = o(1) by Lemma 1. To be very precise, Lemma 1 deals with slightly

different indicators, but we can estimate the considered probability by repeating the proof
of Lemma 1 word for word.

We now check that (1) holds for all t > 1. Using (27) gives EKn(t)
n

= 1
n

∑n−1
i=1 P

{
Ti,n >

t
} → 0 as n →∞ and Kn(t)

n

P−→ a(t) = 0 follows from the Chebyshev inequality.
It remains to check that (1) holds for t = 1 if EX2

i < ∞ to conclude the proof. By
Property 3 from Subsection 3.4, we have a(1) = 0 and P

{
T0 = 1

}
= 0; consequently, a(t) =

P
{
T0 > t

}
is continuous at t = 1. Then (1) is true for t = 1 since 0 < Kn(1)

n
≤ Kn(t)

n

P−→ a(t)
for any t ∈ (0, 1) and a(t) → a(1) = 0 as t ↗ 1. ¤
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Now we prove Theorem 1 for the i.d.-model. We think of D[0, 1] as of a separable
metric space equipped with the Skorohod metric d, which induces the Skorohod topology.

Proof of Theorem 1. At first, we prove (2). In view of representation (6) for Kn(t),
relation (2) follows from the relation

sup
0≤t≤1−ε

∣∣∣∣
1√
n

n−1∑
i=1

1{t<Ti,n} −
1√
n

n∑
i=1

1{t<Ti}

∣∣∣∣
P−→ 0 for all ε ∈ (0, 1) (30)

and the existence of a centered Gaussian process K(·) on [0, 1) such that

1√
n

{ n∑
i=1

1{t<Ti} − na(t)

}
D−→ K(·) in D[0, 1− ε] for all ε ∈ (0, 1). (31)

Indeed, if Yn
D−→ Y and d(Yn, Y

′
n)

P−→ 0 for some random elements Yn, Y ′
n, Y of the separable

metric space D[0, 1− ε], then Y ′
n

D−→ Y ; recall that d(Yn, Y
′
n) ≤ supt∈[0,1−ε] |Yn(t)− Y ′

n(t)|.
We start with (30). It is sufficient to prove that the expectation of the left-hand side

tends to zero. Since the supremum of a sum does not exceed the sum of suprema, let us
check that

1√
n

n−1∑
i=1

E sup
0≤t≤1−ε

∣∣1{t<Ti,n} − 1{t<Ti}
∣∣ −→ 0 for all ε ∈ (0, 1). (32)

By (10), we have

E sup
0≤t≤1−ε

∣∣1{t<Ti,n} − 1{t<Ti}
∣∣ ≤ E sup

0≤t≤1−ε

(
1{t<T

(i∧n−i)
i } − 1{t<Ti}

)

= P
{

Ti 6= T
(i∧n−i)
i , Ti ≤ 1− ε

}

= P
{

Ti 6= T
(i∧n−i)
i , T

(i∧n−i)
i < 1− ε

}

+P
{
1{1−ε≤Ti} 6= 1{1−ε≤T

(i∧n−i)
i }

}
,

where the last equality was obtained via the formula of total probability. Combining the
estimates together and using Lemma 1,

1√
n

n−1∑
i=1

E sup
0≤t≤1−ε

∣∣1{t<Ti,n} − 1{t<Ti}
∣∣ ≤ 2ρ(1− ε)√

n

n−1∑
i=1

(i ∧ n− i)1−γ =
4ρ(1− ε)√

n

n/2∑
i=1

i1−γ.

The last expression is O(n3/2−γ) and (32), which implies (30), follows.
Now let us prove (31). As long as

Un(t) := − 1√
n

{ n∑
i=1

1{t<Ti} − na(t)

}
=
√

n

{
1

n

n∑
i=1

1{Ti≤t} −
(
1− a(t)

)}
,

the Un(·) is the empirical process of stationary r.v.’s Ti with the continuous common distri-

bution function 1−a(t). By K(·) D
= −K(·), (31) is equivalent to the existence of a centered
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Gaussian process K(·) on [0, 1) such that

Un(·) D−→ K(·) in D[0, 1− ε] for all ε ∈ (0, 1). (33)

We will use the following result from Lin and Lu [17, Sec. 12] on convergence of
empirical processes. They attribute this statement to Q.-M. Shao, who published it in
1986, in Chinese.

Fact 4. Let ξi be a sequence of stationary strongly mixing r.v.’s distributed on [0, 1], and
let F be the common distribution function of ξi. Suppose F (x) = x on [0, 1] (i.e., ξi

are uniformly distributed) and the coefficients of strong mixing of the sequence F (ξi) de-
crease as O(k−(2+δ)) as k → ∞ for some δ > 0. Then the empirical processes of ξi

weakly converge in D[0, 1] to a centered Gaussian process with the covariance function∑
i∈Z cov

(
1{ξ0≤s},1{ξi≤t}

)
.

Remark. The limit Gaussian process is a.s. continuous on [0, 1]. Fact 4 also holds true if
F is an arbitrary continuous distribution function.

The a.s. continuity of the limit process could be concluded by a comparison of the
proof from Lin and Lu [17] with the proof of Theorem 22.1 from Billingsley [3]. The
statements and the proofs of these theorems are identical, but Lin and Lu do not state the
continuity while Billingsley does. Further, since F (ξi) is uniformly distributed on [0, 1] if
F is continuous, Fact 4 holds true for every continuous F ; see the proof of Theorem 22.1
by Billingsley [3] for explanations.

Recall that we need to prove the convergence of the empirical process of Ti. It seems
that the r.v.’s Ti are not strongly mixing; but min{Ti, 1 − ε} are strongly mixing because
of Property 8, Subsection 3.4. These variables are not continuous and so we need to fix
them up. Let us fix an ε ∈ (0, 1), and let αi be i.i.d. r.v.’s independent of all Ti and, say,
uniformly distributed on [0, ε]; we define T̃i := min{Ti, 1− ε}+ 1{Ti≥1−ε} αi.

The stationary variables T̃i are distributed on [0, 1], their common distribution function
G is continuous, and the coefficients of strong mixing of G(T̃i) decrease as o(k2−γ). The
proof of the last statement is the same as the proof of Property 8 from Subsection 3.4. In-

deed, approximate the variables G(T̃0), G(T̃−1), . . . from the “past” by G(T̃
(k/2)
0 ), G(T̃

(k/2+1)
−1 ), . . .

where T̃
(m)
i := min{T (m)

i , 1− ε} + 1{T (m)
i ≥1−ε} αi; use the analogous approximation for the

variables from the “future”; and then repeat word for word the arguments of the previous
proof.

Now, recalling that γ > 4, we see that T̃i satisfy the assumptions of Fact 4, with the
only difference that their distribution is not uniform. By Ũn(·) denote the empirical process
of T̃i; clearly, Ũn(·) coincides with the empirical process Un(·) of Ti on [0, 1 − ε]. By the
Remark to Fact 4, we conclude that, first,

Ũn(·) D−→ K̃(·) in D[0, 1], (34)

where K̃(·) is a centered Gaussian process with the covariance function

R̃(s, t) :=
∑

i∈Z
cov

(
1{T̃0≤s},1{T̃i≤t}

)
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and, second, trajectories of K̃(·) are a.s. continuous on [0, 1].
[There exists a simpler and more elegant proof of (34). Note that {T̃i}i∈Z are associated as coordinate-

wise nondecreasing functions of associated r.v.’s {Ti, αi}i∈Z, see (a), (b), and (d) from Property 6, Subsec-
tion 3.4. Then we can obtain (34) applying the result of Louhichi [18] on convergence of empirical processes
of stationary associated r.v.’s ξi instead of using Fact 4. Her theorem requires only cov

(
F (ξ0), F (ξk)

)
=

O(k−(4+δ)), which could be proved analogously to Property 5, Subsection 3.4. Thus we avoid the compli-
cated estimations of the strong mixing coefficients, and the proof of (34) is becomes much simpler. The
only problem is that this proof requires γ > 5.

We also note that the a.s. continuity of K̃(·) could be proved directly, without referring to the proof
of Fact 4. The arguments should be the same as in the proof of the continuity of KUnif (·) in Section 5.]

Define

R(s, t) :=
∑

i∈Z
cov

(
1{T0≤s},1{Ti≤t}

)
, (35)

which is, evidently, equal to R̃(s, t) on [0, 1−ε]2. Since R̃(s, t) is positive definite and ε > 0
is arbitrary, the function R(s, t) is positive definite on [0, 1)2. Therefore, by Lifshits [15,
Sec. 4], there exists a centered Gaussian process K(·) on [0, 1) with the covariance function

R(s, t). The trajectories of K(·) are a.s. continuous on [0, 1) by K(·) D
= K̃(·) on [0, 1− ε],

arbitrariness of ε > 0, and the a.s. continuity of K̃(·) on [0, 1].

Finally, by (34), Ũn(·) = Un(·) on [0, 1 − ε], K̃(·) D
= K(·) on [0, 1 − ε], and the a.s.

continuity of K̃(·), we get (33). Since (33) implies (31), we conclude the proof of (2).
Only the stated properties of R(s, t) remain to be proven. The continuity of the joint

distribution function of continuous variables T0 and Ti implies that cov
(
1{T0≤s},1{Ti≤t}

)
is

continuous on [0, 1)2 for every i ≥ 0. Then, in view of (22), R(s, t) is continuous on [0, 1)2

as a sum of uniformly converging series of continuous functions.
The strict positivity of R(s, t) on (

√
µ, 1)2 trivially follows from (35), (24), and

cov
(
1{T0≤s},1{T0≤t}

)
= a(s ∨ t)

(
1− a(s ∧ t)

)
> 0; the last inequality holds by Property 3,

Subsection 3.4. The R(s, t) = 0 on [0, 1)2 \ (
√

µ, 1)2 follows from P
{
Ti ≤ √

µ
}

= 0, which
holds by Properties 3 and 4 from Subsection 3.4. ¤

We note that (3) holds for t 6= 1 under the less restrictive condition EX2
i < ∞. For

t < 1, the proof is almost the same: By (30), which is true for γ > 3/2, we conclude that (3)
holds if the stationary associated sequence 1{t<Ti} satisfies the central limit theorem. Then
we refer to the central limit theorem for stationary associated sequences from Newman [21];
his theorem requires only R(t, t) < ∞, i.e., the convergence of the right-hand side of (35).
This condition holds by (13) and Fact 2. For t > 1, relation (3) holds true with σ2(t) = 0
because of Proposition 3.

Finally, note that the process K(·) is associated, i.e., the r.v.’s {K(t)}t∈[0,1) are asso-
ciated. In fact, by (6), Property 6 from Subsection 3.4, and condition (b) from the same

Property 6, the processes Kn(·)−na(·)√
n

are associated for every n. Then K(·) is associated by

(2) and (c), Property 6.
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5. Proof of Theorem 1 for the uniform model

There exists a simple method that allows to extend results from the Poisson model
to the uniform model and vise versa. The method is based on the next statement (see
Karlin [13, Sec. 9.1]).

Fact 5. Let Si be an exponential random walk. Then for any k ≥ 1, we have
( S1

Sk+1

,
S2

Sk+1

, . . . ,
Sk

Sk+1

)
D
=

(
U1,k, U2,k, . . . , Uk,k

)
, (36)

where Ui,k are the order statistics of k i.i.d. r.v.’s uniformly distributed on [0, 1]. Moreover,
the random vector in the left-hand side of (36) is independent of Sk+1.

Therefore, if xPoiss
j,n (0) = 1

n
Sj are the initial positions of particles in the Poisson model,

then for the initial positions of particles in the uniform model, we have xUnif
j,n (0) = n

Sn+1
·

xPoiss
j,n (0). By Proposition 2 and (5), we conclude that

TUnif
j,n = β−1

n T Poiss
j,n , βn :=

√
Sn+1

n
, (37)

and hence, using (6), we get

KUnif
n (t) = KPoiss

n (βnt). (38)

Note that the process KUnif
n (·) and the r.v. βn are independent since values of the process

are defined by xUnif
1,n (0), . . . , xUnif

n,n (0), which are mutually independent of βn by Fact 5.
Now we prove Theorem 1 for the uniform model.

Proof of Theorem 1. Denote

Yn(t) :=
KUnif

n (t)− na(t)√
n

, Zn(t) :=
√

n
(
a(t)− a(βnt)

)
;

we stress that Yn(·) and Zn(·) are independent.
Fix an ε ∈ (0, 1). First, it follows from (2) for the Poisson model and (38) that

Yn(·) + Zn(·) D−→ KPoiss(·) in D[0, 1− ε]. (39)

Indeed, the process Yn(·) + Zn(·) is obtained from 1√
n

(
KPoiss

n (·) − na(·)) by the random

time change t 7→ βnt; and since ‖βnt− t‖C[0,1−ε]
P−→ 0, we have

d
(
Yn(·) + Zn(·), KPoiss

n (·)− na(·)√
n

)
P−→ 0

by the definition of the Skorohod metric d.
Second, from Fact 1, (15), and (28) it follows that aUnif (t) = aPoiss(t) = P

{
T Poiss

0 ≥
t
}

= 1− t2 for 0 ≤ t ≤ 1, and by the central limit theorem,

Zn(t)
D−→ t2η in D[0, 1− ε], (40)

where η is a standard Gaussian r.v.
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We claim that (39), the independence of Yn(·) and Zn(·), and (40) yield the weak
convergence of Yn(·) in D[0, 1− ε]. Let us check the tightness of Yn(·) and the convergence
of their finite-dimensional distributions.

The tightness of Yn(·) in D[0, 1− ε] follows from Yn(·) =
(
Yn(·) + Zn(·))−Zn(·), (39),

and (40). Indeed, by the Prokhorov theorem, (39) and (40) yield that both sequences
Yn(·) + Zn(·) and −Zn(·) are tight. But trajectories of −Zn(·) are a.s. continuous because
of the continuity of a(·), and the tightness follows from the continuity of addition + :
D × C → D and the fact that under any continuous mapping, the image of a compact set
is also a compact set.

Now we study convergence of finite dimensional distributions of Yn(·). Recall that the

characteristic function of a centered Gaussian vector in Rm is e−
1
2
(Ru,u), where u ∈ Rm and

R is the covariance matrix of the vector. Then (39), the independence of Yn(·) and Zn(·),
and (40) yield that for the characteristic function of a finite-dimensional distribution of
Yn(·), we have

Eei(Yn(t),u) −→ e
− 1

2

({
RPoiss(tj ,tk)−t2j t2k

}m

j,k=1
u,u

)
, (41)

where u ∈ Rm, t = (t1, . . . , tm) ∈ [0, 1− ε]m, and Yn(t) :=
(
Yn(t1), . . . , Yn(tm)

)
.

We see that the matrix
{
RPoiss(tj, tk) − t2j t

2
k

}m

j,k=1
is positive definite for any t =

(t1, . . . , tm) ∈ [0, 1 − ε]m and m ≥ 1 since the absolute value of the left-hand side of (41)
does not exceed one. Putting

RUnif (s, t) := RPoiss(s, t)− s2t2,

we have
{
RPoiss(tj, tk) − t2j t

2
k

}m

j,k=1
=

{
RUnif (tj, tk)

}m

j,k=1
; then the function RUnif (s, t) is

positive definite on [0, 1)2 since ε > 0 is arbitrary. Thus, by Lifshits [15, Sec. 4], RUnif (s, t)
is the covariance function of some centered Gaussian process KUnif (·) on [0, 1).

Clearly, (41) yields the convergence of finite-dimensional distributions of (tight) Yn(·)
to finite-dimensional distributions of KUnif (·). Now check that KUnif (·) ∈ C[0, 1 − ε] a.s.
to conclude the proof of Theorem 1 for the uniform model.

For this purpose, let us prove that a.s., trajectories of Yn(·) have jumps of size 1√
n

only. In fact, the jumps of Yn(·) coincide with the jumps of 1√
n
KUnif

n (·), whose jumps are

of size 1√
n

if and only if TUnif
j1,n 6= TUnif

j2,n for 1 ≤ j1 6= j2 ≤ n − 1. By (37), we need to

verify that T Poiss
j1,n 6= T Poiss

j2,n a.s. for 1 ≤ j1 6= j2 ≤ n − 1. This relation follows from (21) if
H(k1, j1, l1) 6= H(k2, j2, l2) a.s. for j1 6= j2 and k1, k2, l1, l2 ≥ 1. The last a.s. inequality is
obvious because if the equality holds true, then a certain nontrivial linear combination of
i.i.d. exponential Xi equals zero.

Then there exist a.s. continuous Ỹn(·) such that supt∈[0,1−ε]

∣∣Ỹn(t) − Yn(t)
∣∣ ≤ 1√

n
a.s.;

consequently, d
(
Ỹn, Yn

) ≤ 1√
n

a.s. By tightness, some subsequence Yni
(·) weakly converges

to a random element K ′(·) ∈ D[0, 1 − ε] and consequently, Ỹni
(·) D−→ K ′(·). But 1 =

lim inf P
{
Ỹni

(·) ∈ C
} ≤ P

{
K ′(·) ∈ C

}
since C ⊂ D is closed in the Skorohod topology,

therefore K ′(·) is a.s. continuous. It remains to note that K ′(·) D
= KUnif (·) on [0, 1 − ε],

hence a.s., KUnif (·) is continuous on [0, 1− ε]. The proof of (2) is finished.
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Since ε ∈ (0, 1) is arbitrary, a.s., KUnif (·) is continuous on the whole interval [0, 1).
The RUnif (s, t) = RPoiss(s, t)− s2t2 is continuous on [0, 1)2 because RPoiss(s, t) is. ¤

6. The number of clusters at the critical moment

Now we turn our attention to the number of clusters at the critical moment t = 1. We
are interested in the behavior of

Kn(1)− na(1)√
n

=
Kn(1)√

n
,

which is the left-hand side of (3) at t = 1; here we have a(1) = 0 under EX2
i < ∞, see

Property 3, Subsection 3.4.
We do not know if this sequence is weakly convergent, but we hope that it is. We also

have a naive guess that its limit is Gaussian because the limit in Theorem 1 is Gaussian.
In view of Kn(1) ≥ 1, this conjectured weak limit is nonnegative, hence it is Gaussian if
and only if it is identically equal to zero. However, the results of this section show that the
limit is non-zero, thus our guess on Gaussianity fails.

The study of convergence of Kn(1)√
n

is quite complicated. Therefore, in this section, we

consider only the Poisson model. First, let us prove the following statement.

Proposition 4. In the Poisson model, we have lim
n→∞

P
{
Kn(1) = 1

}
> 0.

Proof. On the one hand, Kn(1) = 1 is equivalent to T last
n;Poiss ≤ 1, where T last

n;Poiss denotes
the moment of the last collision in the Poisson model. On the other hand, a result by
Giraud [8] states that in the uniform model,

√
n
(
T last

n;Unif − 1
) D−→ sup

0≤x≤1

(
1

1− x

∫ 1

x

◦
W (y)dy − 1

x

∫ x

0

◦
W (y)dy

)
=: τ,

where
◦

W (·) is a Brownian bridge. Now, by (37), we have T last
n;Unif = β−1

n T last
n;Poiss, hence

√
n
(
β−1

n T last
n;Poiss − 1

) D−→ τ. (42)

But from the central limit theorem and the law of large numbers,

√
n
(
β−1

n − 1
)

= −Sn+1 − n√
n

· n√
Sn+1

(√
Sn+1 +

√
n
) D−→ η

2
, (43)

where η is a standard Gaussian r.v. and Si is a standard exponential random walk that
defines initial positions of particles. Since, in view of Fact 5, T last

n;Unif = β−1
n T last

n;Poiss and βn

are independent, from (42), (43), and the law of large numbers it follows that
√

n
(
T last

n;Poiss − 1
) D−→ τ − η

2
D
= τ +

η

2
,

where τ and η are independent. Thus,

lim
n→∞

P
{

Kn(1) = 1
}

= lim
n→∞

P
{

T last
n;Poiss ≤ 1

}
= P

{
τ +

η

2
≤ 0

}
> 0.

¤
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The main advantage of the Poisson model is that, by Lemma 2, we have P
{
Tj,n ≥

1
}

= epjpn−j, where

pk := P
{

min
1≤m≤k

m∑
i=1

(Si − ESi) ≥ 0
}

and Si is a standard exponential random walk. We say that the sequence of r.v.’s
∑m

i=1(Si−
ESi) is an integrated random walk. In the proof of Property 3, Subsection 3.4, we showed
that pk → 0 as k → ∞. Therefore, it is reasonable to say that pk are the unilateral small
deviation probabilities of an integrated centered random walk.

We need to obtain the asymptotics of pk → 0 to continue the study of convergence of
Kn(1)√

n
. Unfortunately, the results of the rest of this section are completely dependent on the

correctness of the following conjecture.

Conjecture 1. We have pk ∼ c1k
−1/4 as k →∞ for some c1 ∈ (0,∞).

Simulations show that the conjecture is true and c1 ≈ 0.36. The weaker form pk ³ k−1/4

of Conjecture 1 was proved by Sinai [22], but only for integrated symmetric Bernoulli ran-
dom walks. It also interesting to note that, by McKean [19], the unilateral small deviation
probabilities of an integrated Wiener process have the same order as T →∞:

P
{

min
0≤s≤T

∫ s

0

W (u)du ≥ −1

}
∼ c2T

−1/4 (44)

for some c2 ∈ (0,∞). The left-hand side of (44) is a unilateral small deviation probability
since

P
{

min
0≤s≤T

∫ s

0

W (u)du ≥ −1

}
= P

{
min

0≤s≤1

∫ s

0

W (u)du ≥ −T−3/2

}
. (45)

To be precise, McKean was interested in a more general problem, and some calculations
are required to obtain (44) from his results. Therefore, we additionally refer to Isozaki and
Watanabe [12] who state (44) explicitly.

By the results mentioned above, we also suppose that Conjecture 1 is true for other
integrated centered random walks that satisfy some moment conditions.

Now we are able to prove the following result on convergence of Kn(1)√
n

.

Proposition 5. Suppose Conjecture 1 holds true. Then in the Poisson model, we have

lim
n→∞

E
(Kn(1)√

n

)
= c3, sup

n≥1
E

(Kn(1)√
n

)2

< ∞ (46)

for some c3 ∈ (0,∞); the sequence Kn(1)√
n

is tight and uniformly integrable; and the limit of

any weakly converging subsequence of Kn(1)√
n

takes value zero with positive probability, but is

not identically equal to zero.

Numerical simulations show that Kn(1)√
n

is weakly convergent and that this conver-

gence is quite fast. In Fig. 1 we present the (empirical) distribution function of Kn(1)√
n

for

n = 10 000. Since the simulations performed for n = 40 000 showed a hardly perceptible
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difference, this function seems to be a good candidate for the distribution function of the
conjectured limit.

1 2 3 4
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jj KnH1L����������������!!!!n

< x
y
{
zz

Figure 1. The distribution function of Kn(1)√
n

for n = 10 000.

Note that if we weaken Conjecture 1 to pk ³ k−1/4, then Proposition 5 still holds true

with the only difference that EKn(1)√
n
³ 1.

Proof. We start with the convergence of the expectation. On the one hand, by (6) and
Lemma 2,

E
(Kn(1)√

n

)
=

1√
n

+
e√
n

n−1∑
i=1

pipn−i,

and on the other hand,

1√
n

n−1∑
i=1

i−1/4(n− i)−1/4 =
1

n

n−1∑
i=1

( i

n

)−1/4(
1− i

n

)−1/4

−→ B(3/4, 3/4)

as the integral sum of Beta function. Then it follows from Conjecture 1 and standard

arguments that EKn(1)√
n

converges to c3 := ec2
1B(3/4, 3/4) > 0.
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Now we check the uniform boundedness of E
(Kn(1)√

n

)2
. By (6) and the convergence of

EKn(1)√
n

, it is sufficient to prove that

sup
n≥1

1

n

n−1∑

i,j=1,i6=j

P
{

Ti,n > 1, Tj,n > 1
}

< ∞. (47)

Suppose i < j; then by using (8) and properties of Fk,j,l(·), we get

P
{

Ti,n > 1, Tj,n > 1
}

= P
{

min
1≤k≤n−i

1≤l≤i

Fk,i,l(1) > 0, min
1≤k≤n−j

1≤l≤j

Fk,j,l(1) > 0
}

≤ P
{

min
1≤k≤(j−i)/2

1≤l≤i

Fk,i,l(1) > 0, min
1≤k≤n−j

1≤l≤(j−i)/2

Fk,j,l(1) > 0
}

,

where by (j− i)/2 we mean d(j− i)/2e. The minima in the last expression are independent
as functions of {Xm}m≤(i+j)/2 and {Xm}m≥(i+j)/2+1, respectively; hence

P
{

Ti,n > 1, Tj,n > 1
}

≤ P
{

min
1≤k≤(j−i)/2

1≤l≤i

Fk,i,l(1) > 0
}
· P

{
min

1≤k≤n−j
1≤l≤(j−i)/2

Fk,j,l(1) > 0
}

= P
{

Ti,i+(j−i)/2 > 1
}
· P

{
T(j−i)/2,n−j+(j−i)/2 > 1

}

= e2pip
2
d(j−i)/2epn−j,

where the first equality follows from (8) and the second follows from Lemma 2.
Recalling Conjecture 1, we get

1

n

n−1∑

i,j=1,i6=j

P
{

Ti,n > 1, Tj,n > 1
}

≤ 1

n

n−1∑

i,j=1,i 6=j

e2pip
2
d(j−i)/2epn−j

≤ c

n

n−1∑

i,j=1,i 6=j

i−1/4d(j − i)/2e−1/2(n− j)−1/4

≤ c

n2

n−1∑

i,j=1,i6=j

( i

n

)−1/4
∣∣∣∣
j

n
− i

n

∣∣∣∣
−1/2 (

1− j

n

)−1/4

for some c > 0. The last expression is an integral sum converging to

c

∫ 1

0

∫ 1

0

x−1/4|x− y|−1/2(1− y)−1/4dxdy,

and it is a simple exercise to check that the integral is finite. This concludes (47).

The uniform integrability of Kn(1)√
n

follows from the second relation from (46), see

Billingsley [3, Sec. 5], and the tightness follows from the uniform integrability.

Finally, suppose
Kni (1)√

ni

D−→ ξ for some subsequence ni → ∞ and some r.v. ξ. Then

Eξ = c3 > 0 by the uniform integrability and (46), and hence ξ is not identically equal to
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zero. But the distribution of ξ has an atom at zero since by Proposition 4 and properties
of weak convergence,

P
{

ξ = 0
}

= lim
ε↘0

P
{

ξ ≤ ε
}
≥ lim

ε↘0
lim sup

i→∞
P
{

Kni
(1)√
ni

≤ ε

}
≥ lim

ε↘0
lim
i→∞

P
{

Kni
(1) = 1

}
> 0.

¤

7. Open questions

1. The number of clusters at the critical moment t = 1.
Here the main question is if Conjecture 1 holds true. Even by itself, this problem is

worth studying.
But even if Conjecture 1 is true, we still do not have a proof of weak convergence of

Kn(1)√
n

, it is only known that this sequence is tight. The author strongly believes, relying on

numerical simulations, that the limit exists. It would be interesting to find this conjectured
limit, which should be nontrivial by Proposition 5, in an explicit form.

2. The weak convergence of Kn(·)−na(·)√
n

on the whole interval [0, 1].

It is very natural to ask if it is possible to strengthen Theorem 1 by proving the weak

convergence of Kn(·)−na(·)√
n

in D[0, 1]. This complicated problem returns us again to Ques-

tion 1 because the weak convergence of Kn(·)−na(·)√
n

in D[0, 1] implies the weak convergence

of Kn(1)−na(1)√
n

= Kn(1)√
n

, see Billingsley [3, Sec. 15]. But even if Kn(1)√
n

converges, its weak

limit K(1) is not Gaussian, hence the limit process K(·), which is Gaussian on [0, 1), is
no more Gaussian on [0, 1]. Therefore, it is doubtful that Theorem 1 is true in D[0, 1];
at least, one should provide a proof completely different from the presented one. Also, it
is unclear how to define the finite-dimensional distributions of the non-Gaussian K(·) on
[0, 1] because simulations show that K(1) would not be independent with K(t) for t < 1.

3. The number of clusters in the warm gas.
In the presented case, initial speeds of particles are zero. This model is often called

the cold gas according to its zero initial temperature. We introduce a new model stating
that initial speeds of particles are anv1, anv2, . . . , anvn, where vi are some i.i.d. r.v.’s and
an is a sequence of normalization constants. This model, called the warm gas, was studied
in many papers, e.g., [14, 16, 20, 25].

It is of a great interest to study the behavior of Kn(t) in the warm gas. In [25],
the author proved that in the basic case where an = 1 for all n and Ev2

i < ∞, we have
Kn(t)

n

P−→ 0 for all t > 0. The question is to find a normalization of Kn(t) leading to some
nontrivial limit. Clearly, this normalization depends on an, but it is very possible that there
is an effect of phase transition similar to the one discovered by Lifshits and Shi [16]: If an

are small enough, then the gas has a low temperature and the normalization is the same
as in the cold gas. If an are big enough, as in the basic case an ≡ 1, then the normalization
and the behavior of the gas differ entirely from the case of the cold gas.

The author believes that the localization property, which is described in Section 3,
could be helpful in a study of these questions.
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It is also interesting to compare the behavior of Kn(1) in the warm and in the cold
gases; in the warm gas, the moment t = 1 plays the same “critical” role as in the cold gas,
see Lifshits and Shi [16]. The variable Kn(1) was studied by Suidan [24], who considered the
warm gas with an ≡ 1 and deterministic initial positions of particles (his initial positions
were 1

n
, 2

n
, . . . , n

n
). For this case, Suidan found the distribution of Kn(1) and showed that

EKn(1) ∼ log n. Recall that in the presented case, EKn(1) ∼ c3

√
n.

4. The number of clusters in ballistic systems of sticky particles.
A sticky particles model is called ballistic if it evolves according to the laws introduced

in Section 1, but in the absence of gravitation. Such models are, in some sense, more natural
than gravitational ones because the basic assumption that gravitation does not depend on
distance is sometimes confusing. However, an unpublished paper of M.A. Lifshits and L.V.
Kuoza shows that certain gravitational and ballistic models are tightly connected.

It seems interesting to study the number of clusters in the ballistic model. The author
does not know any results in this field.
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Appendix

Recall that in the proof of Lemma 3.3, while proving that aPoiss(t) = 1−t2 for 0 ≤ t ≤ 1,
we showed that this relation is equivalent to

G(t) := P
{

inf
k≥1

k∑
i=1

(
Si − it

) ≥ 0

}
=
√

1− t e−t/2, 0 ≤ t ≤ 1, (48)

where Si is a standard exponential random walk, see (19).
In this Appendix we prove the relation (48); our proof is completely independent of

the main part of the paper. Let us rewrite G(t) in the more convenient form

G(t) = P
{

inf
k≥1

2

k(k + 1)

k∑
i=1

Si ≥ t

}
.

Our proof is organized as follows. In Sec. A.1 and A.2 we study properties of the functions

Gn(t) := P
{

min
1≤k≤n

2

k(k + 1)

k∑
i=1

Si ≥ t

}
,

which converge to G(t). We show that Gn(t) are continuously differentiable and that G′
n(t)

converge uniformly; consequently, G(t) has a continuous derivative. We also obtain an
ordinary differential equation for G(t), but the right-hand side of this equation will be
represented as the sum of a series with unknown coefficients. In Sec. A.3 we find these
coefficients, solve the differential equation, and get (48).
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A.1. “Partial densities” and continuity of G(t)

We will use the bold type for multi-dimensional variables. Let us indicate the dimen-
sion of these variables with subscript, e.g., xn ∈ Rn; we will omit these subscripts as often
as possible. The coordinates of xn will be always denoted by x1, . . . , xn. By 0 = 0n and
1 = 1n denote (0, . . . , 0)> ∈ Rn and (1, . . . , 1)> ∈ Rn, respectively.

Recall that Xi are increments of the standard exponential random walk Si = X1 +
· · · + Xi. By definition, Xi are i.i.d. standard exponential random variables. Put Yk :=

2
k(k+1)

∑k
i=1 Si; clearly, we have Yk = 2

k(k+1)

∑k
i=1(k − i + 1)Xi. Hence Yn = (Y1, . . . , Yn)>

is a linear function of Xn = (X1, . . . , Xn)>, that is Yn = AnXn, where

An :=




1 0 0 . . . 0
2/3 1/3 0 . . . 0
3/6 2/6 1/6 . . . 0
...

...
...

. . . 0
2n

n(n+1)
2(n−1)
n(n+1)

2(n−2)
n(n+1)

. . . 2
n(n+1)




.

This matrix is nonsingular; by Ln := A−1
n denote the inverse matrix. As far as for every

k ≥ 3,

Xk = Sk − Sk−1 =

( k∑
i=1

Si −
k−1∑
i=1

Si

)
−

(k−1∑
i=1

Si −
k−2∑
i=1

Si

)

=
k∑

i=1

Si − 2
k−1∑
i=1

Si +
k−2∑
i=1

Si =
k(k + 1)

2
Yk − (k − 1)k Yk−1 +

(k − 2)(k − 1)

2
Yk−2,

we conclude that

Ln =




1 0 0 0 . . . 0 0 0
−2 3 0 0 . . . 0 0 0
1 −6 6 0 . . . 0 0 0
0 3 −12 10 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . ln−2 0 0
0 0 0 0 . . . −2ln−2 ln−1 0
0 0 0 0 . . . ln−2 −2ln−1 ln




, lk :=
k(k + 1)

2
.

This matrix has three nonzero diagonals; note that the sum of elements of each row equals
one and the sum of elements of each column except the last two equals zero.

The distribution of Yn = AXn is concentrated on the n-dimensional cone {y = yn :
Ly ≥ 0} ⊂ Rn

+, because LYn = Xn ≥ 0 (x ≥ y denotes coordinate-wise inequali-
ties). For the density pYn(y) = p(y) of Yn, we have pYn(y) = | det A−1|pXn(A−1y) =
n!(n+1)!

2n exp{−(Ly,1)}1{Ly≥0}. For each of n−2 first columns of L, the sum of its elements

equals zero; the sum of elements in the columns n − 1 and n equals −ln−1 = − (n−1)n
2

and
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ln = n(n+1)
2

, respectively. Thus we conclude

p(yn) =
n!(n + 1)!

2n
e−

n(n+1)
2

yn+
(n−1)n

2
yn−1 · 1{Ly≥0}. (49)

This is not surprise that the density of Yn = (Y1, . . . , Yn)> depends only on Yn−1 and Yn.

In fact, we have n(n+1)
2

Yn − (n−1)n
2

Yn−1 = Sn, and the density of independent exponential

random variables Xn = (X1, . . . , Xn)> depends on Sn only.
Now we write

Gn(t) = P
{

min
1≤k≤n

Yk ≥ t
}

=
n∑

k=1

P
{

min
1≤i≤n

Yi = Yk, Yk ≥ t
}

, (50)

and for any 1 ≤ k ≤ n introduce

g(k)
n (t) :=

∫

{y=yn:y≥t1, yk=t}

p(y)dλn−1(y), (51)

where λn−1 denotes the Lebesgue measure on the (n − 1)-dimensional set
{
y = yn : y ≥

t1, yk = t
}
. Then by the Lebesgue theorem, for a.e. t,

g(k)
n (t) = −P

{
min

1≤i≤n
Yi = Yk, Yk ≥ t

}′
, (52)

where the derivative exists a.e. Consequently, Gn(t) is differentiable a.e., and for almost
every t, we have

G′
n(t) = −

n∑

k=1

g(k)
n (t). (53)

Let us call g
(k)
n (t) the kth partial density of the random variable min

1≤k≤n
Yk. In the next

section we will show that partial densities are continuous, hence (52) and (53) hold for
every t and Gn(t) is differentiable.

Finally, making the change of variables y = t(z + 1) in (51) and using (49), we get

g(k)
n (t) =

n!(n + 1)!

2n
tn−1e−nt

∫

{z=zn: Lz≥−1, z≥0, zk=0}

e−
n(n+1)

2
tzn+

(n−1)n
2

tzn−1dλn−1(z). (54)

Indeed, the inequality Ly ≥ 0 transforms to Lz ≥ −1 because for each row of L, the sum
of its elements equals one.

We finish the section with the following statement.

Proposition 6. The functions Gn(t) are continuous. For every ε ∈ (0, 1), Gn(t) converge
to G(t) uniformly on [0, 1− ε]. The function G(t) is continuous on [0, 1).

Proof. As

Gn(t) = P
{

min
1≤k≤n

k∑
i=1

(
Si − it

) ≥ 0

}
,
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we can write

Gn(t)−G(t) = P
{

min
1≤k≤n

k∑
i=1

(Si − it) ≥ 0, inf
k>n

k∑
i=1

(Si − it) < 0

}

< P
{

inf
k>n

k∑
i=n+1

(Si − it) < 0

}

< P
{
∃ i > n : Si − it < 0

}
.

Then

sup
0≤t≤1−ε

∣∣Gn(t)−G(t)
∣∣ < sup

0≤t≤1−ε
P
{

inf
i>n

Si

i
< t

}
= P

{
inf
i>n

Si

i
< 1− ε

}
,

and the last expression tends to zero by the strong law of large numbers.
By (51) and (53), Gn(t) are (absolutely) continuous; hence G(t) is continuous on [0, 1)

as a uniform limit of continuous functions. ¤

A.2. Properties of “partial densities” and differentiability of G(t)

Here we prove several important properties of partial densities g
(k)
n (t). Let us first

state the auxiliary Lemmata 3, 4, and 5, and then prove the differentiability of G(t) in
Proposition 7. The lemmata will be proved afterwards.

Lemma 3. For every n ≥ 1,

g
(1)
n+1(t) = Gn(t)e−t.

Lemma 4 (Chaining property). For every n ≥ 2 and 1 ≤ k ≤ n− 1,

g(k)
n (t) = ck

(
te−t

)k−1
g

(1)
n−k+1(t),

where {ck}k≥1 are some positive constants. These constants satisfy ck = O
(√

k ek
)
.

Lemma 5. The functions g
(n)
n (t) are continuous. For every ε ∈ (0, 1), g

(n)
n (t) converge to

0 uniformly on [0, 1− ε].

Proposition 7. The functions Gn(t) are continuously differentiable. For every ε ∈ (0, 1),

G′
n(t) converge to −G(t)e−t

∑∞
k=1 ck

(
te−t

)k−1
uniformly on [0, 1− ε]. The function G(t) is

continuously differentiable on [0, 1), and

G′(t) = −G(t)e−t

∞∑

k=1

ck

(
te−t

)k−1
, t ∈ [0, 1).

Proof of Proposition 7. By (50), (51), and (52), we get continuous differentiability of

Gn(t) if we show that partial densities are continuous. The last partial density g
(n)
n (t) is

continuous by Lemma 5. Using Lemmata 3 and 4,

g(k)
n (t) = ck

(
te−t

)k−1
Gn−k(t)e

−t, 1 ≤ k ≤ n− 1; (55)
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but Gn−k(t) are continuous by Proposition 6, thus g
(k)
n (t) are continuous. Note that now

we know that (52) and (53) are true for every t.

Further,
(
te−t

)′
= (1−t)e−t ≥ 0 on [0, 1], thus te−t < 1 ·e−1 = e−1 for t ∈ [0, 1). There-

fore in view of the estimate on the rate of growth of ck from Lemma 4,
∑∞

k=1 ck

(
te−t

)k−1

converges on [0, 1). Clearly, this convergence is uniform on [0, 1− ε].
Recall that 1 ≥ Gn(t) ↘ G(t) ≥ 0 for every t. Then by (53) (which holds for every t)

and (55),
∣∣∣∣−G(t)e−t

∞∑

k=1

ck

(
te−t

)k−1 −G′
n(t)

∣∣∣∣

≤ e−t

n−1∑

k=1

ck

(
te−t

)k−1(
Gn−k(t)−G(t)

)
+ e−tG(t)

∞∑

k=n

ck

(
te−t

)k−1
+ g(n)

n (t)

≤ (
Gn/2(t)−G(t)

) n/2∑

k=1

ck

(
te−t

)k−1
+

∞∑

k=n/2+1

ck

(
te−t

)k−1
+ g(n)

n (t).

The last expression tends to zero uniformly in t ∈ [0, 1− ε]. Indeed, for the third term, use
Lemma 5; the second one is a remainder of the uniformly converging series; and the first
term tends to zero by Proposition 6. ¤

Proof of Lemma 3. The Y1 = X1 is a standard exponential random variable, therefore

g
(1)
n+1(t) = −P

{
min

1≤k≤n+1
Yk = Y1, Y1 ≥ t

}′
= −P

{
min

2≤k≤n+1
Yk ≥ Y1, Y1 ≥ t

}′

= −
(∫ ∞

t

E
{

min
2≤k≤n+1

Yk ≥ Y1

∣∣∣Y1 = s
}

dP
{
Y1 < s

})′

= E
{

min
2≤k≤n+1

Yk ≥ Y1

∣∣∣Y1 = t
}

e−t

for a.e. t. After simple transformations

E
{

min
2≤k≤n+1

Yk ≥ Y1

∣∣∣Y1 = t
}

= E
{
∀ 2 ≤ k ≤ n + 1,

2

k(k + 1)

(
kX1 +

(
k − 1

)
X2 + · · ·+ Xk

)
≥ X1

∣∣∣X1 = t
}

= E
{
∀ 2 ≤ k ≤ n + 1,

2

k(k + 1)

((
k − 1

)
X2 + · · ·+ Xk

)
≥

(
1− 2

k + 1

)
X1

∣∣∣X1 = t
}

,

we use the independence of Xi and find

E
{

min
2≤k≤n+1

Yk ≥ Y1

∣∣∣Y1 = t
}

= P
{
∀ 2 ≤ k ≤ n + 1,

2

(k − 1)k

((
k − 1

)
X2 + · · ·+ Xk

)
≥ t

}
.

The right-hand side equals Gn(t). It remains to note that the conditional expectation is
continuous because Gn(t) is continuous (by Proposition 6), therefore our argument is true
for every t. ¤
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Proof of Lemma 4. The case k = 1 is trivial, we put c1 := 1. Now suppose that 2 ≤ k ≤
n− 1.

Let us introduce the following notations. For an l ×m matrix M , by M{i1,...,ir;j1,...,js}

(where r ≤ l, s ≤ m and 1 ≤ i1 < · · · < ir ≤ l, 1 ≤ j1 < · · · < js ≤ m) denote the
(l − r)× (m− s) matrix obtained from M by deleting the rows i1, . . . , ir and the columns
j1, . . . , js. For multi-dimensional variables, we will use the analogous notation.

Consider the integration set
{
y = yn : Ly ≥ −1, y ≥ 0, yk = 0

}
from (54). We

claim that the first k − 1 and the last n − k coordinates of any element of this set satisfy
independent constraints. Precisely, for 2 ≤ k ≤ n− 1,

{
y = yn : Ly ≥ −1, y ≥ 0, yk = 0

}

=
{
y = yk−1 : L

{∅;k}
k y ≥ −1k−1, y ≥ 0k−1

}× {
0
}

(56)

× {
y = yn−k : L{1,...,k+1;1,...,k}

n y ≥ −1n−k, y ≥ 0n−k

}
;

here L
{∅;k}
k is k× (k− 1) matrix consisting of the elements from the top left “corner” of Ln

and L
{1,...,k+1;1,...,k}
n is the (n− k − 1)× (n− k) matrix consisting of the elements from the

bottom right “corner” of Ln.

Take an y ∈ {
y = yn : Ly ≥ −1, y ≥ 0, yk = 0

}
, then y{k} satisfies L

{∅;k}
n y{k} ≥

−1n−1 and y{k} ≥ 0n−1. In view of y{k} ≥ 0n−1, the (k+1)th of the inequalities L
{∅;k}
n y{k} ≥

−1n−1, namely, (k−1)k
2

yk−1 + (k+1)(k+2)
2

yk+1 ≥ −1, holds automatically. Therefore we can

delete the row k + 1 from L
{∅;k}
n , that is

{
L{∅;k}

n y{k} ≥ −1n−1, y{k} ≥ 0n−1

}
=

{
L{k+1;k}

n y{k} ≥ −1n−1, y{k} ≥ 0n−1

}
.

Since Ln has three nonzero diagonals,

L{k+1;k}
n =

(
L
{∅;k}
k 0

0 L
{1,...,k+1;1,...,k}
n

)

is a block matrix. This implies that the constraints for y1, . . . , yk−1 and yk+1, . . . , yn are
independent, i.e., (56) holds true.

Now define

Pm :=
{
y = ym−1 : L

{∅;m}
m y ≥ −1m−1, y ≥ 0m−1

}
, m ≥ 2

vm := λm−1(Pm), (57)

cm := 2−mm!(m + 1)!vm,

and combine (56) with Fubini’s theorem to rewrite (54) in a simpler form. For k = n − 1
we get

g(n−1)
n (t) =

n!(n + 1)!

2n
tn−1e−ntvn−1

∫

{y≥0}

e−
n(n+1)

2
tydλ1(y), (58)
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and for 2 ≤ k ≤ n− 2 we get

g(k)
n (t) =

n!(n + 1)!

2n
tn−1e−ntvk (59)

×
∫

{
y=yn−k: L

{1,...,k+1;1,...,k}
n y≥−1n−k,y≥0n−k

}
e−

n(n+1)
2

tyn−k+
(n−1)n

2
tyn−k−1dλn−k(y).

For the simpler case k = n− 1, we integrate in (58) and find

g(n−1)
n (t) = cn−1t

n−2e−nt. (60)

But by Lemma 3, g
(1)
2 (t) = e−2t, and there is nothing to prove.

For the harder case 2 ≤ k ≤ n− 2, we use (54) and write

g
(1)
n−k+1(t) =

(n− k + 1)!(n− k + 2)!

2n−k+1
tn−ke−(n−k+1)t (61)

×
∫

{z=zn−k+1: Lz≥−1, z≥0, z1=0}

e−
(n−k+1)(n−k+2)

2
tzn−k+1+

(n−k)(n−k+1)
2

tzn−kdλn−k(z).

Take an element z of the integration set, then z{1} satisfies L
{∅;1}
n−k+1z

{1} ≥ −1n−k and

z{1} ≥ 0n−k. But the first of the inequalities L
{∅;1}
n−k+1z

{1} ≥ −1n−k, that is 0 ≥ −1, is always

true, while the second one, 3z2 ≥ −1, follows from z{1} ≥ 0n−k. Therefore

{
z = zn−k+1 : Ln−k+1z ≥ −1, z ≥ 0, z1 = 0

}

=
{
0
}× {

z = zn−k : L
{1,2;1}
n−k+1z ≥ −1n−k, z ≥ 0n−k

}
,

and transforming the integral in (61), we get

g
(1)
n−k+1(t) =

(n− k + 1)!(n− k + 2)!

2n−k+1
tn−ke−(n−k+1)t (62)

×
∫

{z=zn−k: L
{1,2;1}
n−k+1z≥−1n−k, z≥0n−k}

e−
(n−k+1)(n−k+2)

2
tzn−k+

(n−k)(n−k+1)
2

tzn−k−1dλn−k(z).

Compare (59) and (62). The integrals in these formulas do not look nice, but the point
is that one could be obtained from the other by a very simple change of variables. Recall
that

L
{1,2;1}
n−k+1 =




−6 6 0 . . . 0 0
3 −12 10 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . ln−k 0
0 0 0 . . . −2ln−k ln−k+1
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and

L{1,...,k+1;1,...,k}
n =




−2lk+1 lk+2 0 . . . 0 0
lk+1 −2lk+2 lk+3 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . ln−1 0
0 0 0 . . . −2ln−1 ln




.

By Js7→i
m , where i, s, m ≥ 1, we denote the m × m diagonal matrix with the elements

li
ls
, li+1

ls+1
, . . . , li+m−1

ls+m−1
on the diagonal (counting from the top left corner). Then

L
{1,2;1}
n−k+1 = L{1,...,k+1;1,...,k}

n Jk+17→2
n−k (63)

because the right-sided multiplication by Jk+17→2
n−k multiplies the first column of L

{1,...,k+1;1,...,k}
n

by l2
lk+1

= 3
lk+1

, the second column by l3
lk+2

= 6
lk+2

, etc.

Hence the change of variables z =
(
Jk+17→2

n−k

)−1
y transforms the integral from (62) to

the integral from (59) times
∣∣det

(
Jk+17→2

n−k

)−1∣∣. But

det Js7→i
m =

(s− 1)!s!(i + m− 1)!(i + m)!

(i− 1)!i!(s + m− 1)!(s + m)!
, (64)

and from (59) and (62),

g
(k)
n (t)

g
(1)
n−k+1(t)

=
n!(n+1)!

2n tn−1e−ntvk

det
(
Jk+17→2

n−k

)−1 · (n−k+1)!(n−k+2)!
2n−k+1 tn−ke−(n−k+1)t

=
k!(k + 1)!vk

2k
tk−1e−(k−1)t.

It remains to check that ck = O
(√

k ek
)

to finish the proof of Lemma. By (60),

g
(k)
k+1(t) = ckt

k−1e−(k+1)t, and integrating from 0 to ∞, we get P
{

min
1≤i≤k+1

Yi = Yk

}
=

ck
(k−1)!
(k+1)k . Then ck < (k+1)k

(k−1)!
, and by Stirling’s formula,

ck ≤ C
(k + 1)kek−1

(k − 1)k−1
√

2π(k − 1)
= C

(
k + 1

k − 1

)k−1
k + 1√

2π(k − 1)
ek−1 = O

(√
k ek

)
.

¤

Proof of Lemma 5. Using notations (57), formula (54) could be written as

g(n)
n (t) =

n!(n + 1)!

2n
tn−1e−nt

∫

Pn

e
(n−1)n

2
tyn−1dλn−1(yn−1). (65)

Recall that, first, yn−1 ∈ Pn implies yn−1 ≥ 0, and second, from the proof of Lemma 4 we
know that Pn ⊂ Rn−1 has finite volume. Then Pn is bounded since it is an intersection of
half-spaces; note that we give another proof of boundedness of Pn while proving Lemma 6
from the next section.

Now it is clear that g
(n)
n (t) is continuous. Further, as far as yn−1 ≥ 0 for yn−1 ∈ Pn,

the integral from (65) increases in t. By
(
tn−1e−nt

)′
= tn−2e−nt

(
(n− 1)−nt)

)
, we conclude
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that g
(n)
n (t) increases (in t) at least on [0, n−1

n
]. Now suppose n is such that n−1

n
≥ 1− ε/2;

then g
(n)
n is increasing on [0, 1− ε/2], and in view of (52) (which holds for every t),

sup
0≤t≤1−ε

g(n)
n (t) = g(n)

n (1− ε) ≤ 2

ε

1−ε/2∫

1−ε

g(n)
n (s)ds ≤ 2

ε
P
{

Yn ≤ 1− ε/2
}

.

The last expression tends to zero as n →∞. Indeed, Yn = 2
n(n+1)

∑n
i=1 Si → 1 a.s. because

Sn → 1 a.s. by the strong law of large numbers. ¤

A.3. The differential equation for G(t)

By Proposition 7, we know that G(t) satisfies
{

G′(t) = −G(t)t−1f
(
te−t

)
, t ∈ [0, 1)

G(0) = 1,
(66)

where f(x) :=
∑∞

k=1 ckx
k is the generating function of ck. By Lemma 4, this series converges

for |x| < e−1. Let us formulate Lemma 6, which is indispensable for finding f(x), and then
find G(t) in Proposition 8. The lemma will be proved afterwards.

Lemma 6. For n ≥ 2, we have

cn =
n(n + 1)

n− 1

n−1∑

k=1

ckcn−k

(k + 1)(n− k + 1)
,

and c1 = 1.

Proposition 8. The function G(t) satisfies the differential equation
{

G′(t) = t−2
2(1−t)

G(t), t ∈ [0, 1)

G(0) = 1,
(67)

which has a unique on [0, 1) solution
√

1− te−t/2.

Proof of Proposition 8. Define the variables bn := cn

n+1
. The generating function h(x) :=∑∞

k=1 bkx
k of these variables satisfies

(
xh(x)

)′
= f(x), |x| < e−1 (68)

and h(0) = 0; we recall that the sum of a power series could be differentiated termwise
inside the circle of its convergence.

Using Lemma 6, we find that bn = n
n−1

∑n−1
k=1 bkbn−k for n ≥ 2 and b1 = 1/2. Then for

|x| < e−1,

h2(x) =
(
b1x + b2x

2 + . . .
)2

=
∞∑

n=2

n−1∑

k=1

bkbn−kx
n =

∞∑
n=1

n− 1

n
bnxn =

∞∑
n=1

bnx
n −

∞∑
n=1

bn

n
xn,
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and by differentiation,

2h(x)h′(x) = h′(x)− h(x)

x
, |x| < e−1.

Now we have {
2h−1

h
h′ = − 1

x
, |x| < e−1

h′(0) = b1 = 1/2,

and by taking into account that h > 0 for x > 0,

2h− ln h = − ln x + C, 0 ≤ x < e−1;

then
ln 2h− 2h = ln x + C ′, 0 ≤ x < e−1,

2he−2h = C ′′x, 0 ≤ x < e−1.

Using h′(0) = 1/2, we find that C ′′ = 1. The function q(x) := xe−x is invertible on [0, 1],
and we obtain

h(x) =
q−1(x)

2
, 0 ≤ x < e−1.

Finally, by (68),

f(te−t) = f(q(t)) = h(q(t)) + q(t)h′(q(t)) = h(q(t)) + q(t)
h(q(t))′

q′(t)

=
t

2
+ te−t 1/2

(1− t)e−t
=

2− t

2(1− t)
t, t ∈ [0, 1),

and applying (66), we see that G(t) satisfies (67).
It remains to solve (67). As far as t−2

2(1−t)
= −1

2
− 1

2(1−t)
, we get

{
ln G(t) = − t

2
+ 1

2
ln(1− t) + C, t ∈ [0, 1)

G(0) = 1.

Then C = 0, and G(t) =
√

1− te−t/2 on [0, 1). Note that this equality holds on [0, 1]. ¤
Proof of Lemma 6. We recall that cn = 2−nn!(n+1)!vn for n ≥ 2, where vn is the volume
of

Pn =
{
y = yn−1 : L{∅;n}

n y ≥ −1n−1, y ≥ 0n−1

}
,

see (57). That is why our goal is to find vn. As far as c1 = 1, we define v1 := 1 to satisfy
c1 = 2−11!(1 + 1)!v1.

Let us study properties of Pn. We will temporary forget about geometric intuition and
use algebraic arguments only. Evidently,

Pn =
{
y = yn−1 : L{1;n}

n y ≥ −1n−1, y ≥ 0n−1

}

because the first of the inequalities L
{∅;n}
n y ≥ −1n−1, namely, y1 ≥ −1, follows from

y ≥ 0n−1.

We claim that (for every n ≥ 2) the matrix L
{1;n}
n is nonsingular. By IM

k denote the

k × k upper triangular matrix with all its k(k+1)
2

nonzero elements equal 1, and denote
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IO
k := (IM

k )>, which is lower triangular. For the matrix L
{1;n}
n , the sum of elements of each

column except the first and the last ones equals zero. For the matrix IO
n−1L

{1;n}
n , the sum

of elements of each column except the first one equals zero. That is why we easily get

IM
n−1I

O
n−1L

{1;n}
n =




−n 0 0 . . . 0 0
−n + 2 −3 0 . . . 0 0
−n + 3 0 −6 . . . 0 0

...
...

...
. . .

...
...

−2 0 0 . . . −ln−2 0
−1 0 0 . . . 0 −ln−1




, (69)

and thus det L
{1;n}
n = det(IM

n−1I
O
n−1L

{1;n}
n ) 6= 0.

Let us now show that L
{1;n}
n y ≥ 0 implies y ≤ 0. The proof is by induction. For

n = 2, the statement is trivial. Assume that the statement is true for an n ≥ 2; then

check that it holds for n + 1. Since IM
n IO

n has positive elements only, L
{1;n+1}
n+1 y ≥ 0 implies

IM
n IO

n L
{1;n+1}
n+1 y ≥ 0, and by (69) we conclude that y1 ≤ 0. Further, L

{1;n+1}
n+1 y ≥ 0 implies

L
{1,2;1,n+1}
n+1 y{1} ≥ 0n−1. In fact, we just get rid of the first of the inequalities L

{1;n+1}
n+1 y ≥ 0

and replace y1 − 6y2 + 6y3 ≥ 0, which is the second inequality, by the less restrictive

−6y2 + 6y3 ≥ 0 (recall that y1 ≤ 0 !). Then L
{1,2;1,n+1}
n+1 = L

{1;n}
n J17→2

n−1 (see the comment

to analogous statement (63) and the definition of Js 7→i
m ), therefore L

{1,2;1,n+1}
n+1 y{1} ≥ 0n−1

is equivalent to L
{1;n}
n z ≥ 0n−1, where z := J17→2

n−1 y{1}. By the assumption, z ≤ 0n−1;

hence y{1} ≤ 0n−1 because z is obtained from y{1} by the tension with positive coefficients.
Finally, we get y ≤ 0n.

By (69) we easily find that a unique solution of L
{1;n}
n y = −1 is

y∗n−1 :=
(n− 1

2
,
n− 2

3
, . . . ,

2

n− 1
,
1

n

)>
. (70)

We see that y∗ ∈ Pn, and since L
{1;n}
n (y − y∗) ≥ 0n−1 for every y ∈ Pn, we have y ≤ y∗.

x1

x2

n = 3

0

F
(2)
n

F
(1)
n

On

Pn

Now it is clear that Pn is an (n−1)-dimensional convex polyhedron with 2(n−1) faces.

Denote by On the point of intersection of n− 1 hyperplanes (faces) L
{1;n}
n y = −1n−1, and

put F
(k)
n := Pn ∩

{
y = yn−1 : yk = 0

}
, where 1 ≤ k ≤ n − 1, see the figure. Naturally,

On = y∗n−1, and by yn−1 ∈ Pn =⇒ yn−1 ≤ y∗n−1, the Pn is a disjoint union of n−1 simpleces

with the common vertex On and the bases F
(k)
n (to be pedantic, the simpleces themselves
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are not disjoint, but their interiors are). Recalling (70),

vn =
1

n− 1

n−1∑

k=1

n− k

k + 1
· λn−2(F

(k)
n ). (71)

Thus we reduced the problem of finding the volume of Pn to finding the volumes of F
(k)
n .

For 2 ≤ k ≤ n− 2, we have

F (k)
n =

{
y = yn−1 : L{1;n}

n y ≥ −1n−1, y ≥ 0n−1, yk = 0
}

=
{
y = yk−1 : L

{1;k}
k y ≥ −1k−1, y ≥ 0k−1

}× {
0
}

× {
y = yn−k−1 : L{1,...,k+1;1,...,k,n}

n y ≥ −1n−k−1, y ≥ 0n−k−1

}
,

which is very similar to (56). The only difference is that this statement deals with L
{1;n}
n

while (56) is a statement about Ln. Therefore the proof is a verbatim copy of the proof of
(56). Then

F (k)
n = Pk ×

{
0
}× {

y = yn−k−1 : L{1,...,k+1;1,...,k,n}
n y ≥ −1n−k−1, y ≥ 0n−k−1

}
,

and in view of L
{1;n−k}
n−k = L

{1,...,k+1;1,...,k,n}
n Jk+17→1

n−k−1 (see the comment to analogous statement

(63) and the definition of Js7→i
m ), we make the change of variables y = Jk+17→1

n−k−1 z and obtain

F (k)
n = Pk ×

{
0
}× Jk+17→1

n−k−1

{
z = zn−k−1 : L

{1;n−k}
n−k z ≥ −1n−k−1, z ≥ 0n−k−1

}
.

Finally, F
(k)
n = Pk ×

{
0
}× Jk+17→1

n−k−1 Pn−k, and by (64),

λn−2(F
(k)
n ) =

k!(k + 1)!(n− k − 1)!(n− k)!

(n− 1)!n!
vkvn−k. (72)

For k = 1, we could repeat word by word the argument we used in the case 2 ≤ k ≤
n− 2. At the final step, we get F

(1)
n =

{
0
} × J27→1

n−2 Pn−1, and since v1 = 1, (72) also holds
for k = 1.

For k = n−1, it is readily seen that F
(n−1)
n = Pn−1×{0}, hence (72) holds for k = n−1.

Thus (72) is true for 1 ≤ k ≤ n− 1. It remains to take a look at (71) and (72) to get

vn =
1

(n− 1)(n− 1)!n!

n−1∑

k=1

(
(n− k)!k!

)2
vkvn−k.

The application of vn = 2n

n!(n+1)!
cn finishes the proof of Lemma. ¤
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