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Abstract. This paper is devoted to the classification of embeddings of higher dimensional manifolds. We present a short

proof of an explicit formula for the group of links in the 2-metastable dimension. This improves a result of Haefliger from

1966. Denote by Lm
p,q (resp. Km

p ) the group of smooth embeddings Sp tSq → Sm (resp. Sp → Sm) up to smooth isotopy.

Theorem 1. Suppose that 1 ≤ p ≤ q ≤ m− 3 and 2p + 2q ≤ 3m− 6; then

Lm
p,q
∼= πp(Sm−q−1)⊕ πp+q+2−m(SO/SOm−p−1)⊕Km

p ⊕Km
q .

We study classification of embeddings Sp × Sq → Sm (knotted tori). This is a natural generalization of link theory.
In metastable dimension knotted tori up to isotopy were classified by Haefliger, Zeeman and A. Skopenkov. We give an

explicit criterion for the finiteness of this isotopy classes set in the 2-metastable dimension:

Theorem 2. Assume that p + 4
3
q + 2 ≤ m < p + 3

2
q + 2 and m ≥ 2p + q + 3. Then the set of smooth embeddings

Sp × Sq → Sm up to isotopy is infinite if and only if either q + 1 or p + q + 1 is divisible by 4.

Our approach is based on a reduction of the classification of links and knotted tori to the classification of link maps,
and on a suspension theorem for link maps. We obtain a new short proof of the classification of link maps due to Habegger

and Kaiser. Denote by LMm
p,q the group of link maps Sp t Sq → Sm up to link homotopy.

Theorem 3. Suppose that 1 ≤ p, q ≤ m− 3 and 2p + 2q ≤ 3m− 5; then LMm
p,q
∼= πS

p+q+1−m.

0. Introduction

This paper is devoted to the classification of embeddings of higher dimensional manifolds. This subject was
actively studied in the sixties [Zee62, Hud63, Hae66C] and there has been a renewed interest for it in the last years
[CRS04, CeRe05, Sko06”].

This problem generalizes the subject of classical knot theory. In contrast to the classical situation of simple closed
curves in R3, in higher dimensions a complete answer can sometimes be obtained. E. g., for knots Sq → Sm there is
known an explicit classification in some dimensions, and a complete rational classification in codimension at least 3:

The Haefliger Theorem. [Hae66A, Corollary 6.7] Assume that q + 3 ≤ m < 3
2q + 2. Then up to isotopy the set

of smooth embeddings Sq → Sm is infinite if and only if q + 1 is divisible by 4.

The classification of links Sp t Sq → Sm is the next natural problem after knots. Denote by Lm
p,q (respectively,

Km
p ) the set of smooth embeddings Sp t Sq → Sm (respectively, Sp → Sm) up to smooth isotopy. For p, q ≤ m− 3

this set of equivalence classes is a group with respect to ’componentwise connected sum’ operation [Hae66C].
Our first result is an explicit formula for the group Lm

p,q in terms of the groups Km
p in the 2-metastable (quadruple

point free) dimension:

Theorem 0.1. Suppose that 1 ≤ p ≤ q ≤ m− 3 and 2p + 2q ≤ 3m− 6; then

Lm
p,q

∼= πp(Sm−q−1)⊕ πp+q+2−m(VM+m−p−1,M )⊕Km
p ⊕Km

q .

Here VM+l,M is the Stiefel manifold of M -frames at the origin of RM+l, where M is large. Many of the groups
πn(VM+l,M ) are known [Pae56].

Theorem 0.1 is the most general explicit classification of links available. However, for arbitrary p, q ≤ m−3 there
is a famous exact sequence involving the groups Lm

p,q, certain homotopy groups and maps between them including
Whitehead products [Hae66C].

Theorem 0.1 was proved in [Hae66C, Theorems 10.7 and 2.4] under stronger restrictions p ≤ q and p+3q ≤ 3m−7.
Our inequality in Theorem 0.1 is sharp (see an example in §5). We not only improve the result of [Hae66C], but give
a simpler proof of this classical result. However, the Haefliger argument can be extended to cover our dimension
range (see §5).
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The main subject of this paper is the classification of knotted tori Sp×Sq → Sm. A link SqtSq → Sm is a specific
case of knotted torus (Figure 1a). The investigation of knotted tori is a natural next step (after link theory) towards
the classification of embeddings of arbitrary manifolds [Web67, Sko05], by the handle decomposition theorem.

Figure 1 approximately here
There was known an explicit formula for the set of knotted tori in the metastable dimension m ≥ p + 3

2q + 2,
p ≤ q [Hae62T, Zee62, Sko02] (Figure 2, range I). The knotting problem for any (p−1)-connected (p+q)-manifold is
easier in the metastable dimension, and this restriction is a natural limit for classical classification methods [Sko06”].
Little is known below the metastable dimension: all known explicit results concern knots, links (see above), knotted
tori in dimension m = p + 3

2q + 3
2 [Sko06’], 3-manifolds in R6 [Sko06] and 4-manifolds in R7 (A. Skopenkov).

Our main result is an explicit finiteness criterion for the set of knotted tori in the 2-metastable dimension (Figure 2,
range II):

Theorem 0.2. Assume that p + 4
3q + 2 ≤ m < p + 3

2q + 2 and m ≥ 2p + q + 3. Then the set of smooth embeddings
Sp × Sq → Sm up to isotopy is infinite if and only if either q + 1 or p + q + 1 is divisible by 4.

Example. The set of knotted tori S1 × S5 → S10 is finite. All the dimensions, in which the set of knotted tori is
infinite for p = 1, are shown in Figure 3 (obtained by combining Theorem 0.2 with the results of [Sko02, Sko06,
Sko06’]).

Figures 2 and 3 approximately here

Our approach to the classification of links and knotted tori is based on studying of almost embeddings (see §3.1)
and link maps, which is an interesting problem in itself [Sco68, Kos90, HaKa98].

A link map is a continuous map X t Y → Z such that fX ∩ fY = ∅. A link homotopy is a continuous family
of link maps ft : X t Y → Z. Denote by LMm

p,q the set of link maps Sp t Sq → Sm up to link homotopy. For
p, q ≤ m − 3 this group admits a natural commutative group structure with respect to ’componentwise connected
sum’ operation (see §1.1).

The third result of this paper is a new short proof of the following theorem:
Theorem 0.3. [HaKa98, Theorem I] Suppose that 1 ≤ p, q ≤ m− 3 and 2p + 2q ≤ 3m− 5; then

LMm
p,q

∼= πS
p+q−m+1.

The isomorphism is given by the α-invariant (defined in §2.3). The inequality is sharp [HaKa98, §6].
Theorem 0.3 is the most general known explicit classification of link maps in codimension at least 3. However,

under slightly weaker dimension restriction there is a powerful exact sequence involving the groups LMm
p,q and

certain bordism groups [Kos90].
Our approach to the classification is based on the suspension map. The suspension map Σ : LMm

p,q → LMm+1
p+1,q

is defined by suspending the p-component and including the q-component. It is not difficult to see that eventually
(after iterated suspension) the set LMm+M

p+M,q is in bijection with the group πS
p+q−m+1 [Kos88]. Thus Theorem 0.3

follows from the following assertion:
Theorem 0.3’ (Suspension theorem for link maps). [HaKa98] Suppose that 1 ≤ p, q ≤ m − 3; then the
suspension map Σ is bijective for 2p + 2q ≤ 3m− 5 and surjective for 2p + 2q ≤ 3m− 4.

This theorem has been known earlier only as a corollary of Theorem 0.3. In this paper we present a short and
direct proof of Theorem 0.3’ analogous to the proof of the Freudental suspension theorem and to Zeeman’s proof
of the higher-dimensional Poincaré conjecture. Our proof is almost self-contained, we use only ’concordance implies
isotopy in codimension at least 3’ theorem.

The paper is organized as follows. In §1 we prove Theorems 0.3’. In §2 we deduce Theorem 0.1 from Theorem 0.3’.
In §3 we deduce Theorem 0.2 from a lemma proved in §2. These 3 sections can be read independently in the sense
that if in one section we use a result proved in another section, then we do not use the proof but only the statement.
We assume piecewise linear category throughout §1 and §2 and smooth category throughout §3 except otherwise
indicated. In §4 we give some remarks not used in the rest of the paper. In Appendix we give an approach for an
alternative proof of our main results hopefully interesting in itself.

1. Classification of link maps

1.1. Preliminaries.
Let us introduce some notations and conventions.
An embedding f : X × I → Sm × I is a concordance if X × 0 = f−1(Sm × 0) and X × 1 = f−1(Sm × 1). We

tacitly use the facts that in codimension at least 3 concordance implies isotopy and any concordance or isotopy is
ambient [Hud69, Hud70].
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Define a link concordance to be a continuous map f : (X t Y )× I → Sm × I such that f(X × I)∩ f(Y × I) = ∅,
(X t Y ) × 0 = f−1(Sm × 0) and (X t Y ) × 1 = f−1(Sm × 1). In codimension at least 3 link concordance implies
link homotopy, which was announced in [KrTa97, Kos97, Mel00] and proved in [Mel, cf. BaTe99].

A consequence of these facts is the group structure on the sets Lm
p,q and LMm

p,q for p, q ≤ m− 3. More precisely,
these facts allow to construct the additive inverses in these semigroups [Sco68, p. 187, Kos88, Remark 2.4].

Recall some easy notions from piecewise linear topology. Let K be a simplicial complex and L a subcomplex.
Denote by (K ′, L′) the derived triangulation of (K, L), i. e., the barycentric subdivision of (K, L). The supplement
of L in K, denoted by K ÷L, is the subcomplex of K ′ spanned by all the vertices of K ′ −L′; i. e., a simplex of K ′

belongs to K ÷ L if and only if none of its vertices is in L′.
It is not difficult to check that each simplex of K ′ that is not a simplex of L′ or of K÷L, is the join of a simplex

of L′ with a simplex of K÷L, and if L contains the n-dimensional skeleton of K, then dim(K÷L) ≤ dim K−n−1
[BM52].

For a map f : X → Y denote S(f) = Cl{x ∈ X : |f−1fx| ≥ 2 }.
Let us introduce the main notion used in our proof of Theorem 0.3’ and state main lemma of the proof.

Definition of a standardized link map. (Figure 4) Denote by Sk = Dk
+ ∪ (Sk−1 × I) ∪ Dk

− the standard
decomposition of the sphere. Let pr : Sk−1 × I → Sk−1 × 0 be the obvious projection. We say that a link map
f : Sp t Sq → Sm is standardized if the following 3 conditions hold:
(i) fDp

+ ⊂ Dm
+ , fDp

− ⊂ Dm
− , f(Sp−1 × I) ⊂ Sm−1 × I;

(ii) fSq ⊂ Sm−1 × I;
(iii) pr f(Sp−1 × I) = f(Sp−1 × 0), i. e. f(Sp−1 × I) is ’straight’.

Figure 4 approximately here.

Lemma 1.1. Suppose that p ≤ q + 1 and 2p + 2q ≤ 3m − 5; then any generic link map f : Sp t Sq → Sm is link
homotopic to a standardized link map. Moreover, there exist homeomorphisms hp : Sp → Sp and hm : Sm → Sm

such that h−1
m ◦ f ◦ (hp t id) is standardized.

We are going first to check the surjectivity in Theorem 0.3’ in case p ≤ q, then the injectivity in case p ≤ q by a
similar argument, and finally we deduce case p > q of Theorem 0.3’ from case p ≤ q.

1.2 Proof of the surjectivity in Suspension theorem for link maps in case p ≤ q.

Proof of the surjectivity in Theorem 0.3’ for p ≤ q modulo Lemma 1.1. (Conical construction) Take an arbitrary
link map f : Sp+1 t Sq → Sm+1. Let us modify it to a suspension by a link homotopy.

By Lemma 1.1 we may assume that f is standardized. We may also assume that the disks Dp+1
+ and Dm+1

+ are
the upper half-spheres of Sp+1 and Sm+1 respectively.

Push the image of the q-component along the fibers of Sm×I until it lies in Sm−1×0 = ∂Dm+1
+ . Then transform

fDp+1
+ and f(Sp+1 −Dp+1

+ ) to the cones over f∂Dp+1
+ in Dm+1

+ and Sm+1 − Int Dm+1
+ respectively. (This is done

by a link homotopy, which is rectilinear inside both Dm+1
+ and Sm+1 − Int Dm+1

+ .) The link map obtained is the
suspension of a link map Sp t Sq → Sm. �

Now we proceed to the proof of Lemma 1.1. We are going first to give the construction of the required home-
omorphisms without any indication why all our steps are possible. Reading the next 4 paragraphs is sufficient to
understand main ideas of the proof. Then we present the technical details required to check the possibility of the
construction.

Construction of the homomorphism hp : Sp → Sp in Lemma 1.1 for p ≤ q. (Figure 5) It is in 2 steps:

(1) Construction of certain decomposition Sp = D̄p
+ ∪ (Sp−1 × I)∪ D̄p

−. (The Zeeman engulfing) Triangulate Sp,
Sq and Sm to make f = f1 t f2 : Sp t Sq → Sm a non-degenerate simplicial map. Let A+ be the skeleton of S(f1)
formed by the simplices of dimension not greater than 1

2 dim S(f1). Let A− = S(f1)÷A+ be the supplement of A+

in S(f1). Embed the cones over A+ and A− into Sp. Denote these cones by B+ and B− respectively. Generically
B+ ∩B− = ∅. Let D̄p

+ and D̄p
− be the second derived neighborhoods in Sp of B+ and B− respectively. Perform a

homeomorphism h′p : Sp → Sp taking the balls D̄p
+ and D̄p

− to the balls Dp
+ and Dp

− of the standard decomposition
Sp = Dp

+ ∪ (Sp−1 × I) ∪Dp
−.

(2) Straightening of S(f1) ∩ (Sp−1 × I). (The Alexander trick) It can be shown that S(f1) ∩ (Sp−1 × I) ∼=
(S(f1)∩(Sp−1×0))×I. Perform a homeomorphism h′′p : Sp → Sp making pr S(f1)∩(Sp−1×I) = S(f1)∩(Sp−1×0).
The homeomorphism hp = h′′p ◦ h′p is the required.

Figure 5 approximately here.

Construction of the homomorphism hm : Sm → Sm in Lemma 1.1. We again do 2 steps similar to the above:

(3) Construction of certain decomposition Sm = D̄m
+ ∪ (Sm−1 × I) ∪ D̄m

− for p ≤ q. Embed the cones over fB+

and fB− into Sm. Denote these cones by C+ and C− respectively. Generically by the assumption 2p+2q ≤ 3m− 5
we have C+ ∩ fSq = ∅, C− ∩ fSq = ∅ and C+ ∩ C− = ∅. Let D̄m

+ and D̄m
− be the second derived neighborhoods
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of C+ and C− respectively in Sm − fSq. Perform a homeomorphism h′m : Sm → Sm taking the balls D̄m
+ and D̄m

−
to the balls of the standard decomposition Sm = Dm

+ ∪ (Sm−1 × I) ∪Dm
− .

(4) Straightening of fSp ∩ (Sm−1 × I). It can be shown that fSp ∩ (Sm−1 × I) ∼= (fSp ∩ (Sm−1 × 0)) × I.
Perform a homeomorphism h′′m : Sm → Sm making pr fSp ∩ (Sm−1 × I) ∼= fSp ∩ (Sm−1 × 0). The homeomorphism
hm = h′′m ◦ h′m is the required.

Details of the proof of Lemma 1.1. Let us check that all steps of the above construction are indeed possible.

(1) Construction of the decomposition Sp = D̄p
+ ∪ (Sp−1 × I) ∪ D̄p

− for p ≤ q. We need to check that the
inclusions A± ↪→ Sp extend to embeddings B± ↪→ Sp, and that B+ ∩ B− = ∅. We are going to show also that
B± ∩ S(f1) = A±, which is required for step (2).

Generically dim S(f1) ≤ 2p−m, thus dim A± ≤ p−bm+1
2 c. So a generic extension g : CA+ → Sp of the inclusion

A+ ↪→ Sp is an embedding, because dim S(g) ≤ 2(p − bm+1
2 c + 1) − p < 0 by the assumption p ≤ m − 3. Put

B+ = g(CA+), define B− analogously. Then dim(B+ ∩ B−) ≤ 2(p − bm+1
2 c + 1) − p < 0, thus B+ ∩ B− = ∅.

Further, (B+−A+)∩S(f1) has dimension (p−bm+1
2 c+1)+ (2p−m)− p ≤ 1

2 (2q +2p− 3m+4) < 0, which follows
from the assumptions p ≤ q + 1 and 2p + 2q ≤ 3m− 5. So B+ ∩ S(f1) = A+ and similarly B− ∩ S(f1) = A−.

(2) Construction of the homeomorphism h′′p : Sp → Sp. We need to check that S(f1) ∩ (Sp−1 × I) ∼= (S(f1) ∩
(Sp−1 × 0))× I and that there exists a homeomorphism h′′p : Sp → Sp as required.

Take the derived triangulation of the triangulation from step (1). Then each simplex σ ⊂ S(f1) such that
σ 6⊂ A+ ∪ A− is the join of a simplex σ+ ⊂ A+ and a simplex σ− ⊂ A−. Since B± ∩ S(f1) = A±, it follows that
σ ∩ D̄p

± are the second derived neighborhoods of σ± in σ. So there is a natural homeomorphism σ ∩ (Sp−1 × I) →
σ+ × σ− × I. Combining such homeomorphisms for all simplices σ ⊂ S(f1) such that σ 6⊂ A+ ∪ A−, we get
S(f1) ∩ (Sp−1 × I) ∼= (S(f1) ∩ (Sp−1 × 0))× I.

The latter homeomorphism can be thought as a concordance between two embeddings of the polyhedron S(f1)∩
(Sp−1×0) into Sp−1×0 and Sp−1×1 respectively. Since any concordance in codimension at least 3 is ambient isotopic
to an isotopy, by a homeomorphism of Sp one can transform the concordance (S(f1)∩(Sp−1×0))×I → Sp−1×I to an
isotopy. Since any isotopy in codimension at least 3 extends to an ambient isotopy, the constructed isotopy extends
to a homeomorphism Sp−1 × I → Sp−1 × I. Extend arbitrarily the latter homeomorphism to a homeomorphism
h′′p : Sp → Sp. The obtained homeomorphism is the required.

(3) Construction of the decomposition Sm = D̄m
+ ∪(Sm−1×I)∪D̄m

− for p ≤ q. The construction of the embeddings
C± ↪→ Sm and checking the property C+ ∩ C− = ∅ are analogous to step (1). To satisfy the properties (i) and (ii)
of Definition of a standardized link map from §2 it remains to check that C± ∩ fSq = ∅ and f−1C± = B±.

Generically dim(C+ ∩ fSq) ≤ (p − bm+1
2 c + 2) + q − m < 0, which is equivalent to the assumption 2p + 2q ≤

3m− 5. (This is the only place in the proof where the restriction 2p + 2q ≤ 3m− 5 is sharp.) Further, generically
dim(C+−fB+)∩fSp ≤ (p−bm+1

2 c+2)+p−m < 0, which follows from the assumptions p ≤ q and 2p+2q ≤ 3m−5.

(4) Construction of the homeomorphism h′′m : Sm → Sm. We need to check that fSp ∩ (Sm−1 × I) ∼= (fSp ∩
(Sm−1 × 0))× I and that there exist a homeomorphism h′′m : Sm → Sm as required. This is sufficient to satisfy the
property (iii) from §2.

In step (2) we constructed a homeomorphism S(f1)∩ (Sp−1× I) → (S(f1)∩ (Sp−1×0))× I and its extension to a
homeomorphism h : Sp−1× I → Sp−1× I. Taking the quotient of the homeomorphism h we get fSp∩ (Sm−1× I) ∼=
(fSp ∩ (Sm−1 × 0)) × I. The construction of the homeomorphism h′′m : Sm → Sm is completely analogous to step
(2).

(5) Modifications necessary in case S(f1) = ∅. In this case we take hp = id, take arbitrary decomposition
Sm = D̄m

+ ∪ Cm ∪ D̄m
− satisfying the properties (i),(ii) from §2, and then argue as in step (4) above.

(6) Modifications necessary in case p = q + 1. (The Irwin trick) In this case the set f−1(C+ − fB+) may be
nonempty. If this set is nonempty, then by step (3) above it consists of finitely many isolated points, not belonging
to S(f1). Join each of these points with B+ by a general position arc in Sp. Let B′

+ be the union of these arcs
and the cone B+. Adding appropriate cones over f(B′

+ − B+) to C+, we get a subcomplex C ′
+ ⊂ Sm such that

dim(C ′
+−C+) ≤ 2. Now by general position f−1(C ′

+− fB′
+) = ∅. We define D̄p

+ and D̄m
+ to be the second derived

neighborhoods of B′
+ in Sp and of C ′

+ in Sm − fSq respectively. The balls D̄p
− and D̄m

− are defined analogously.
The rest is similar to steps (2) and (4) above. �

Remark. In fact we have proved the surjectivity in Theorem 0.3’ in case p ≤ q without the assumption q ≤ m−3.

1.3 Completion of the proof of suspension theorem for link maps.

The proof of the injectivity in Theorem 0.3’ is based on the following relative version of Lemma 1.1:

Lemma 1.1’. Suppose that p ≤ q + 1 and 2p + 2q ≤ 3m− 5; then any generic link map f : Dp tDq → Dm, whose
restriction to the boundary is a suspension, is link homotopic relatively the boundary to a standardized link map.

We omit the obvious, but rather long and technical definition of a standardized link map f : Dp tDq → Dm.



CLASSIFICATION OF EMBEDDINGS IN THE 2-METASTABLE DIMENSION ... 5

Proof of the injectivity in Theorem 0.3’ for p ≤ q modulo Lemma 1.1’. We need to prove that if the suspension
of a link map f0 : Sp t Sq → Sm is null homotopic then the link map f0 is null homotopic. Take an arbitrary null
homotopy f : Dp+2 tDq+1 → Dm+2 of Σf0. By Lemma 1.1’ we may assume that the link map f : Dp+2 tDq+1 →
Dm+2 is standardized.

Push the (q + 1)-component along the fibers of Dm+1 × I toward ∂Dm+2
+ until it lies in ∂Dm+2

+ − ∂Dm+2. Let
f ′ : Dp+2 t Dq+1 → Dm+2 be the obtained null homotopy. The restriction f ′ : (∂Dp+2

+ − ∂Dp+2) t Dq+1 →
∂Dm+2

+ − ∂Dm+2 is a null link concordance of the link map f0. Since link concordance implies link homotopy in
codimension at least 3, it follows that f0 is null homotopic. �

Although the statement of Lemma 1.1’ is analogous to Lemma 1.1, the proof is not completely analogous (be-
cause there is no appropriate relative version of the supplement to a subcomplex). Let us present the necessary
modifications.

Modifications necessary in the proof of Lemma 1.1 to prove Lemma 1.1’. Attach the cylinders ∂Dk×I to the balls
Dk for k = p, q and m, along ∂Dk × 0. Denote by D̂p, D̂q and D̂m the obtained balls and by f̂ : D̂p t D̂q → D̂m

the obvious extension of the link map f : Dp tDq → Dm. Clearly, it suffices to make the link map f̂ standardized.
Denote by Dp−1

± the upper and downer half-spheres of ∂Dp, and by Dm−1
± the upper and downer half-spheres of

∂Dm. Denote by f0 : Sp−2 t Sq−1 → Sm−2 be the restriction of f to the equators.
(1) Construction of certain decomposition Dp = D̄p

+ ∪ (Dp−1 × I)∪ D̄p
− for p ≤ q. Let A+ be the union of S(f0)

and the skeleton of S(f1) formed by the simplices of dimension not greater than 1
2 dim S(f1). Put A− = S(f)÷A+.

Take a general position homotopy gt : A+ → Dp constant on A+∩∂Dp and such that g0 : A+ → Dp is the inclusion,
g1A+ ⊂ ∂Dp. Let B+ ⊂ Dp be the trace of the homotopy. Denote by D̄p

+ the second derived neighborhood of
B+ ∪ ((B+ ∩Dp−1

+ )× I) ∪ (Dp−1
+ × 1) relatively ∂Dp−1

+ in D̂p. Define D̄p
− analogously.

(2) Construction of certain decomposition Dm = D̄m
+ ∪ (Dm−1 × I) ∪ D̄m

− for p ≤ q. Take a general position
homotopy gt : fB+ → Dm constant on fB+ ∩ ∂Dm such that g0 : fB+ → Dm is the inclusion, and g1fB+ ⊂ ∂Dm.
Let C+ ⊂ Dm be the trace of the homotopy. Define D̄m

+ to be the second derived neighborhood of C+ ∪ ((C+ ∩
Dm−1

+ )× I) ∪ (Dm−1
+ × 1) relatively ∂Dm−1

+ in D̂m. Define D̄m
− analogously.

Completion of the constructions of the homeomorphisms hp : Dp → Dp and hm : Dm → Dm, and modifications
in case p = q + 1 are completely analogous to steps (2), (4) and (6) from the proof of Lemma 1.1.�

Proof of Theorem 0.3’. In the above we have proved Theorem 0.3’ in case p ≤ q. Now assume p > q. For example,
let us prove the surjectivity. First suspend the second component (q-component) many times until its dimension
becomes equal to p. By the case p ≤ q of Theorem 0.3’ this iterated suspension is surjective. Now suspend once the
first component. Since the dimensions of the components are now equal, one can apply Theorem 0.3’ and conclude
that this single suspension is surjective. Finally, desuspend backwards the second component p − q times using
that the corresponding suspension maps are bijective by case p ≤ q of Theorem 0.3’. The composition of all the
considered suspensions and desuspensions is a single suspension of the first component. We have shown that it is
surjective. The injectivity is proved analogously. �

2. Classification of links

2.1 Reduction to the classification of disc link maps.

Let us introduce some notation.
Let L̂m

p,q be the group of piecewise linear embeddings Sp t Sq → Sm up to piecewise linear isotopy.
An almost link is a link map f : Sp t Sq → Sm whose restriction to Sq is an embedding. An almost isotopy is

a link homotopy ft : Sp t Sq → Sm whose restriction to Sq is an isotopy. Let L
m

p,q be the set of almost links up
to almost isotopy. For p, q ≤ m − 3 this set admits a natural commutative group structure defined analogously to
those of Lm

p,q and LMm
p,q.

It is not difficult to see that L
m

p,q
∼= πp(Sm−q−1) (cf. definition of the isomorphism λ : L

m

p,q → πp(Sm−q−1) in
§2.3). Notice that the obvious map L̂m

p,q → L
m

p,q can be identified with the iterated suspension map L̂m
p,q → L̂m+M

p,q+M

for M large.
A disc link map [cf. Hae66A, Ne84] is a proper link map Dp t Dq → Dm whose restriction to ∂Sp t Sq is an

embedding. A disc link homotopy is a homotopy through disc link maps, whose restriction to ∂SptSq is an isotopy.
Let D̂M

m

p,q be the set of disc link maps up to disc link homotopy. For p, q ≤ m − 3 it admits a natural group
structure, defined analogously to the above.

Theorem 2.1 (Geometric EHP sequence for links). (A. Skopenkov, cf. [Ne84], see Figure 6) For p, q ≤ m− 3
there is an exact sequence:

. . . −−−−→ L̂m
p,q

e−−−−→ L
m

p,q
h−−−−→ D̂M

m

p,q
p−−−−→ L̂m−1

p−1,q−1 −−−−→ . . .

Figure 6 approximately here
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The easy proof is presented below. We are going to use tacitly that concordance implies isotopy, link concordance
implies link homotopy, almost concordance implies almost isotopy, and any concordance or isotopy is ambient [Hud69,
Hud70, Mel00, Mel].

Proof of Theorem 2.1. Construction of the homomorphisms. Let e be the obvious map. Let p be the ’restriction
to the boundary’ map. The map h is the ’cutting’ homomorphism defined as follows. Take an almost link f :
Sp t Sq → Sm. By an almost isotopy of f we may assume that there are points x ∈ Sp and y ∈ Sq such that
the restrictions of f onto their neighborhoods Bp

x and Bq
y are standard embeddings. Since p, q ≤ m − 3, we can

take a path l from fx to fy intersecting f(Sp t Sq) only at ∂l. Set h(f) to be the restriction of f to a map
(Sp − Int Bp) t (Sq − Int Bq) → Sm − Int Bm, where Bm is a neighborhood of l.

Proof of the exactness. We have Im p = Ker e because a link f : Sp t Sq → Sm extends to a disc link map
Dp+1 tDq+1 → Dm+1 if and only if it is null almost isotopic.

We have Im h = Ker p because a disc link map f : Dp tDq → Dm extends without adding new self-intersections
to an almost link Sp t Sq → Sm if and only if the restriction of f to the boundary is isotopic to the standard link.

To prove Im e ⊂ Kerh, take f ∈ D̂M
m

p,q which is an embedding. Take a pair of points x ∈ Dp and y ∈ Dq.
Join fx and fy by an arc l intersecting f(Dp t Dq) only at ∂l. Denote by Bp, Bq and Bm small neighborhoods
of these fx, fy and l respectively. Clearly, the restriction f : Bp t Bq → Bm is trivial. The restriction f :
(Dp−Bp)t (Dq−Bq) → (Dm−Bm) can be thought as a concordance between the restriction of f to the boundary
and the trivial embedding. Since a concordance is ambient isotopic to an isotopy in codimension at least 3, we may
assume that this restriction is level-preserving. Then it is obvious that the embedding f is ambient isotopic to the
restriction f : Bp tBq → Bm. Hence f = 0 and h ◦ e = 0.

To prove Kerh ⊂ Im e, take f ∈ L
m

p,q such that h(f) = 0. Then, by definition, there exist a disc link homotopy
ht between h(f) and the trivial embedded disc link map. By the isotopy extension theorem [Hud70] the restriction
of ht to the boundary extends to an ambient isotopy of Sm −Dm. So ht can be extended to an almost isotopy link
homotopy of f without adding new self-intersections. The latter is a homotopy between f and a link f ′ ∈ L̂m

p,q.
Hence f = e(f ′). �

Corollary 2.1’. For p ≤ q ≤ m− 3 we have Lm
p,q

∼= Km
p ⊕Km

q ⊕ πp(Sm−q−1)⊕ D̂M
m+1

p+1,q+1.

Proof. By [Hae66C, Theorem 2.4] we have Lm
p,q

∼= L̂m
p,q ⊕ Km

p ⊕ Km
q . So it suffices to show that for p ≤ q the

homomorphism e : L̂m
p,q → L

m

p,q in Theorem 2.1 has a right inverse e′ : L
m

p,q → L̂m
p,q. The required right inverse

e′ : πp(Sm−q−1) → L̂m
p,q takes the class of a map φ : Sp → Sm−q−1 to a link f : SptSq → Dp+1×Sm−q−1tDp+1×0 ⊂

Sm given by the formula f(x t y) = (x, φx) t (y, 0) (see the details in [Hae66C, Zeeman Theorem 10.1]). �

2.2 Simplification of the group of disc link maps.

Define DM
m

p,q to be the group of proper link maps f : Dp tDq → Dm whose restriction to ∂Dp is an embedding
(up to link homotopy whose restriction to ∂Dp is an isotopy).

Lemma 2.2. The natural map D̂M
m

p,q → DM
m

p,q is bijective for 2p+2q ≤ 3m−5 and surjective for 2p+2q ≤ 3m−4.

Proof of the surjectivity. Take any general position link map f ∈ DM
m

p,q. Let us check that the pair (Dm −
fDp, ∂Dm − f∂Dp) is (2m − 2p − 3)-connected. Indeed, in codimension at least 3 the pair (Dm − fDp, ∂) is 1-
connected. Identify Dm with the upper half-sphere of Sm. By the homology excision theorem Hi(Dm − fDp, ∂) ∼=
Hi(Sm − fDp). By the Alexander duality Hi(Sm − fDp) ∼= Hm−i−1(fDp). It is not difficult to see that fDp

is homotopy equivalent to the mapping cone of the restriction f : S(f) → fS(f). (Indeed, both of these spaces
are obtained from Cyl(S(f) → fS(f)) ∪S(f)⊂Dp Dp by appropriate contractions.) Generically the dimension of the
mapping cone is at most 2p−m+1. So Hm−i−1(fDp) = 0 for i ≤ 2m−2p−3. Thus the pair (Dm−fDp, ∂Dm−f∂Dp)
is (2m− 2p− 3)-connected by the Hurewicz theorem.

By the condition 2p + 2q ≤ 3m − 4 and the embedding theorem moving the boundary [Hud70] the restriction
f |Dq : (Dq, ∂Dq) → (Dm − fDp, ∂Dm − f∂Dp) is homotopic to an embedding. So f belongs to the image of the
natural map D̂M

m

p,q → DM
m

p,q.

Proof of the injectivity. Take a general position link homotopy f : (Dp tDq)× I → Dm × I, whose restriction to
(∂DptDq)×∂I ∪∂Dp× I is an embedding. It suffices to remove the self-intersections of Dq× I by a link homotopy
fixed on (Dp tDq)× ∂I.

Analogously to the proof of the surjectivity one can check that the pair (Dm×I−f(Dp×I), ∂Dm×I−f(∂Dp×I))
is (2m− 2p− 3)-connected. So the self-intersections of Dq × I can be removed by the following embedding theorem
proved analogously to [Hud70] �.

Embedding theorem moving a part of the boundary. Let M be a compact (m + 1)-dimensional manifold, B
a codimension zero submanifold of ∂M , A a codimension zero submanifold of ∂Dp. Let f : (Dq+1, A) → (M,B) be
a proper map such that f |∂Dq+1−A is an embedding. If m ≥ q + 3 and (M ;B) is (2q −m + 2)-connected, then f is
properly link homotopic rel ∂Dq+1 −A to an embedding.
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2.3 Classification of disc link maps.
Theorem 0.1 follows from Theorem 0.3’, Corollary 2.1’, Lemma 2.2, 5-lemma and the following result:

Theorem 2.3 (Geometric EHP sequence for almost links). (A. Skopenkov) For 3p + q ≤ 3m− 5 there is the
following diagram with exact lines, commutative up to sign:

L
m

q,p
e−−−−→ LMm

p,q
h−−−−→ DM

m

p,q
p−−−−→ L

m−1

q−1,p−1 −−−−→ . . .yλ

yα

yβ

yλ

πq(Sm−p−1) E−−−−→ πS
p+q+1−m

H−−−−→ πp+q+1−m(VM+m−p−1,M ) P−−−−→ πq−1(Sm−p−1) −−−−→ . . .

The top line in Theorem 2.3 is defined analogously to Theorem 2.1 (with similar proof of the exactness). The
bottom line is the stable James EHP sequence [Jam54, KoSa77], which is exact for 3p + q ≤ 3m − 5. The linking
number λ = λ12 and the map α are defined in [Hae66C] and [Kos90, §1] respectively. The map β can be defined
analogously to the β-invariant LMm

p,q → πp+q+1−m(VM+m−p−1,M ) of [Kos90, §1]. The new part of Theorem 2.3 is
the (anti)commutativity of the right-hand square, the (anti)commutativity of the other squares is known [Ker59,
Lemma 5.1, Kos88, Theorem 4.8].

In the rest of §2 we work in smooth category. Clearly, the group L
m

q,p is isomorphic to the group of link maps
Sp t Sq → Sm, whose restriction to Sp is an unknotted smooth embedding (up to link homotopy whose restriction
to Sp is a smooth isotopy). Analogously, DM

m

p,q is isomorphic to the group of proper link maps Dp t Dq → Dm

whose restriction to ∂Dp is an unknotted smooth embedding (up to proper link homotopy whose restriction to ∂Dp

is a smooth isotopy).
Let us give geometric definitions of all the maps from the diagram.
Construction of the EHP sequence. [KoSa77, §1 and §4, cf. Szu76, Ecc80] Denote n = p + q + 1−m. Let Embq

n

and Immq
n be the groups of framed embeddings and immersions, respectively, of closed n-manifolds into Sq (up to

framed cobordism).
A proper immersion is a proper framed immersion of an n-manifold into Dq, whose restriction to the boundary

is an embedding. A proper cobordism is a proper framed immersion c : Nn+1 → Dq × I, whose restriction to
c−1(Sq−1 × I) is an embedding. Let PImq

n be the group of proper immersions up to proper cobordism.
Let E : Embq

n → Immn
q and P : PImq

n → Embq−1
n−1 be the obvious maps. Let the map H : Immq

n → PImq
n be

cutting a small neighborhood of a nonsingular point belonging to a given immersed n-manifold.
By a beautiful result [KoSa77, Main Theorem and Proposition 4.1] for 3p + q ≤ 3m− 5 the bottom line in The-

orem 2.3 is isomorphic up to sign to the exact sequence

Embq
n

E−−−−→ Immq
n

H−−−−→ PImq
n

P−−−−→ Embq−1
n−1 . (∗)

Further replace the bottom line in Theorem 2.3 by its geometric form (∗). This form of the theorem in some
sense reflects duality between link maps and immersions: link maps (resp., immersions) are not embeddings because
they have self-intersections of ’close’ (resp., ’distant’) points.

Construction of the vertical homomorphisms. Remove a point from Sm and identify the result with Rm. For a
link map f : X t Y → Rm define the map f̃ : X × Y → Sm−1 by the formula

f̃(x, y) =
fx− fy

|fx− fy|
.

Denote also by pr : X × Y → Y the obvious projection.
Definition of α. Let f : Sp t Sq → Rm be a general position smooth link map. Take a regular value v ∈ Sm−1 of

the map f̃ . Then f̃−1v is a framed manifold, and the map pr induces a framed immersion f̃−1v → Sq. Let α(f) be
the class of this framed immersion in Immq

p+q+1−m.
Definition of λ. Take a link map f : Sp t Sq → Rm, whose restriction to Sp is an unknotted embedding. Since

fSp is unknotted, it follows that the complement Sm − fSp retracts to a small sphere Sm−p−1 bounding a normal
disc to fSp. Thus by an appropriate link homotopy rel Sp one can put the image fSq into the sphere Sm−p−1.
Perform an ambient isotopy to make the sphere Sm−p−1 standard. We may assume that after this isotopy fSp is
in general position. Take a regular value v ∈ Sm−p−1 of the map f̃ . Then the map pr induces a framed embedding
of f̃−1v to Sq. Let λ(f) be the class of this framed embedding in Embq

p+q+1−m.
Definition of β. Take a proper disc link map f : Dp tDq → Rm

+ , where Rm
+ is the upper semispace. By a proper

link homotopy, restricting to an isotopy of ∂Dp, one can put the image f∂Dq into the standard sphere Sm−p−1.
Assume that fDq is in general position. Take a regular value v ∈ Sm−p−1 of f̃ . Then the map pr induces a proper
immersion of f̃−1v to Dq. Let β(f) be the class of this proper immersion in PImq

p+q+1−m.
The commutativity up to sign in Theorem 2.3 in its geometric form is checked directly. The proof of Theorem 0.1

is completed.
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Let us conclude §2 by a corollary of Theorem 2.3, which will be used later. Denote by DMm
p,q the group of proper

link maps Dp t Dq → Dm whose restriction to ∂Dp is a smooth embedding (possibly knotted), up to proper link
homotopy whose restriction to ∂Dp is a smooth isotopy.
Corollary 2.3’. For 3p + 4q ≤ 3m− 5 we have DMm

p+q,q
∼= πp+2q+1−m(VM+m−p−q−1,M )⊕Km−1

q−1 .

Proof. By [Hae66C, Theorem 2.4] it follows that DMm
p+q,q

∼= D̂M
m

p+q,q ⊕ Km−1
q−1 . By Lemma 2.2, Theorem 2.3

and 5-lemma we have D̂M
m

p+q,q
∼= πp+2q+1−m(VM+m−p−q−1,M ). �

Remark. Notice that link maps in the 2-metastable dimension were originally classified using the Haefliger
classification of links, so the results of §2 without §1 do not give a shorter proof of Theorem 0.1.

3. Classification of knotted tori

3.1. Preliminaries.
Our approach to the classification of embeddings is based on an exact sequence (Theorem 3.1 below) reducing

this problem to an easier classification of almost embeddings.
Informally, an almost embedding is a map admitting only ’local’ self-intersections (see Figure 7). To give a formal

definition, fix a codimension 0 ball B in a manifold M , where B ∩ ∂M = ∅, if M has boundary (see Figure 1b). A
smooth map F : M → N into a manifold N is an almost embedding, if the following two conditions hold:
(i) F is a smooth embedding outside B; and
(ii) FB ∩ F (M −B) = ∅.
An almost isotopy is defined analogously, only the ball B is replaced by B × I.

Figure 7 is approximately here
Denote by KTm

p,q the set of all smooth embeddings Sp × Sq → Sm up to smooth isotopy. Denote by KT
m

p,q the
set of all almost embeddings Sp ×Sq → Sm up to almost isotopy. By [Sko06] for m ≥ 2p + q + 3 the ’Sp-parametric
connected sum’ operation gives a natural group structure on the sets KTm

p,q and KT
m

p,q (see Figure 8).
Figure 8 approximately here

Now let us state the main theoretical result of §3.

Theorem 3.1. [cf. Kos88, Theorem A, HaKa98, Theorem IV] For every p + 4
3q + 2 ≤ m < p + 3

2q + 2 and
m ≥ 2p + q + 3 there is an exact sequence

KTm
p,q → KT

m

p,q → πp+2q−m+1(VM+m−p−q−1,M )⊕Km−1
p+q−1 → KTm−1

p,q−1 → KT
m−1

p,q−1 → . . .

We are going first to prove Theorem 3.1 using the classification of proper almost embeddings (= disc link maps)
Dp+q t Dq → Dm from §2, Corollary 2.3’, and then to deduce Theorem 0.2 from Theorem 3.1 using classification
of almost embeddings Sp × Sq → Sm.

3.2 Relation between embeddings and almost embeddings.
Theorem 3.1 follows from Corollary 2.3’ above and Lemmas 3.2 and 3.3, which we are going to state now.
A smooth map f : M → N is proper, if f−1∂M = ∂N and fM is transversal to ∂N . Denote by PT

m

p,q the group
of proper almost embeddings Sp ×Dq → Dm up to proper almost isotopy (see Figure 9). Fix a codimension 0 ball
B ⊂ Dp+q and denote by DMm

p+q,q the group of proper almost embeddings Dp+q tDq → Dm up to proper almost
isotopy.

Figure 9 approximately here

Lemma 3.2. (cf. Theorem 2.1 and Figure 6 above) For m ≥ 2p + q + 3 there is an exact sequence

KTm
p,q

e→ KT
m

p,q
h→ PT

m

p,q
p→ KTm−1

p,q−1 → . . .

Lemma 3.3. For m ≥ 2p + q + 3 we have PT
m

p,q
∼= DMm

p+q,q.

The proofs of both Lemmas 3.2 and 3.3 are based on the following notion.

Definition of the web Dp+1. Mark a point ∗ ∈ Sq. A web of an almost embedding f : Sp ×Sq → Sm is a framed
disc Dp+1 ⊂ Sm satisfying the following 3 conditions:
(i) ∂Dp+1 = f(Sp × ∗);
(ii) Int Dp+1 ∩ Im f = ∅; and
(iii) the first q vector fields of the framing of ∂Dp+1 form the standard framing of f(Sp × ∗) in f(Sp × Sq).
A web of an almost isotopy ft : Sp × Sq → Sm and of a proper almost embedding f : Sp × Dq → Dm is defined
analogously.
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Proposition 3.4. (A. Skopenkov) If m ≥ 2p + q + 2 then for any almost embedding f : Sp × Sq → Sm there exist
a web. If m ≥ 2p + q + 3, then for any almost isotopy ft : Sp × Sq → Sm there exists a web extending given webs of
f0 and f1.

Proof. (A. Skopenkov) The bundle ν(f)|Sp×∗ is stably trivial and m− p− q ≥ p, hence this bundle is trivial. Take
a (m− p− q)-framing ξ of this bundle.

Take the section formed by the first vectors of ξ. Since m ≥ 2p+q+2 ≥ 2p+2, it follows that f |Sp×∗ is unknotted
in Sm. So there is an embedding f̄ : Dp+1 ⊂ Sm satisfying property (i) from the Definition of the web above. Since
m ≥ 2p + q + 2, by general position we may assume also property (ii).

By deleting the first vector from ξ we obtain a (m − p − q − 1)-framing ξ1 on f̄(∂Dp+1) normal to f̄(Dp+1).
Denote by η the standard normal q-framing of f(Sp×∗) in f(Sp×Sq). Then (ξ1, η) is a normal (m−p−1)-framing
on f̄(∂Dp+1) normal to f̄(Dp+1). Since p < m−p−q−1, the map πp(SOm−p−q−1) → πp(SOm−p−1) is epimorphic.
Hence we can change ξ1 (and thus ξ) so that (ξ1, η) extends to a normal framing on f̄(Dp+1). By construction it
satisfies property (iii).

The second assertion is proved analogously [cf. Sko06, Proof of Standardization Lemma 2.1 in §3] �

An important consequence of this proposition is the group structure on the set of knotted tori [Sko06’]. This also
allows us to prove Lemma 3.2 analogously to Theorem 2.1. We need the following proposition.

Proposition 3.5. For each m ≥ 2p + q + 3 all proper embeddings Sp × Dq → Dm are properly ambient isotopic,
and all proper almost embeddings Sp ×Dq → Dm are properly almost isotopic.

Proof. Take a proper embedding f : Sp × Dq → Dm. Let ∗ ∈ IntDq be the marked point. Take a web Dp+1

of f . Let D̄m be the tubular neighborhood of Dp+1. Clearly, the restriction f : f−1D̄m → D̄m is isotopic to
standard embedding Sp × Dq → Dm. The restriction f : (Sp × Dq − f−1D̄m) → (Dm − D̄m) can be thought as
a concordance between the restriction of f to the boundary and the standard embedding. Since a concordance is
ambient isotopic to an isotopy in codimension at least 3, we may assume that this restriction is level-preserving.
Then by the Alexander trick the embedding f is ambient isotopic to the trivial embedding.

The second assertion is similarly deduced from almost concordance implies almost isotopy in codimesion at least
3 (proved similarly to [Mel]). �

Proof of Lemma 3.2. (cf. Proof of Theorem 2.1 in §2) (1) Construction of the homomorphisms. Let e be the obvious
map. Let p be the ’restriction to the boundary’ map. The homomorphism h is the ’cutting’ map defined as follows.
Take an almost embedding f : Sp × Sq → Sm. By Proposition 3.4 there exist a web Dp+1 ⊂ Sm. Let D̄m be a
tubular neighborhood of Dp+1. Set h(f) to be the restriction of f to a map (Sp×Sq−f−1 IntDm) → Sm− IntDm.

(2) Exactness at KTm
p,q. The sequence is exact at KTm

p,q because an embedding f : Sp × Sq → Sm extends to
a proper almost embedding Sp ×Dq+1 → Dm+1 if and only if f is almost isotopic to the standard embedding (cf.
Proposition 3.5).

(3) Exactness at PT
m

p,q. The sequence is exact at PT
m

p,q because a proper almost embedding f : Sp ×Dq → Dm

extends without adding new self-intersections to an almost embedding Sp × Sq → Sm if and only if the restriction
of f to the boundary is isotopic to the standard embedding (by Proposition 3.5).

(4) Exactness at KT
m

p,q. The inclusion Im e ⊂ Kerh follows from Proposition 3.5. To prove Kerh ⊂ Im e, take
f ∈ KT

m

p,q such that h(f) = 0. Then, by definition, there exist a proper almost isotopy ht between h(f) and
the standard proper embedding. By the isotopy extension theorem [Hud69] the restriction of ht to the boundary
extends to an ambient isotopy of Sm −Dm. So ht can be extended to an almost isotopy of f without adding new
self-intersections. The latter is an almost isotopy between f and an embedding f ′ ∈ KTm

p,q. Hence f = e(f ′). �

Now we proceed to the proof of Lemma 3.3. The proof is based on surgery over the torus Sp × Sq along the
meridian. To make our approach more clear, let us first give an easier example of using this surgery.
Proposition 3.6. For m ≥ 2p + q + 3 the natural map Km

p+q → KTm
p,q is injective.

In fact this proposition implies case ’p + q + 1 divisible by 4’ of Theorem 0.2, by Haefliger Theorem in §0. The
restriction m ≥ 2p + q + 3 is essential, e. g., Proposition 3.6 is not true for the natural action K6

3 → KT 6
1,2 [Sko06].

Proof of Proposition 3.6. Let us define the natural map ξ : Km
p+q → KTm

p,q. To a knot f : Sp+q → Sm assign
the connected sum of f and the standard embedding Sp × Sq → Sm. (The connected sum is made along an arc l
joining the images of f and the standard embedding). To prove the proposition it suffices to construct a left inverse
ξ′ : KTm

p,q → Km
p+q of ξ.

The map ξ′ : KTm
p,q → Km

p+q is defined as follows. Take an embedding f : Sp × Sq → Sm. By Proposition 3.4 it
admits a web Dp+1 ⊂ Sm. The boundary sphere of this web is endowed with the standard framing in f(Sp×Sq) by
property (iii) from Definition of the web. Perform an embedded surgery along this framed sphere inside a tubular
neighborhood of the web. Let ξ′(f) : Sp+q → Sm be the map obtained by the surgery.

The element ξ′(f) is well-defined by the second assertion of Proposition 3.4. Indeed, assume that f0 : Sp×Sq and
f1 : Sp×Sq → Sm are concordant and two webs Dp+1

0 and Dp+1
1 are chosen. Take the web Dp+2 of the concordance
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ft given by Proposition 3.4. Surgery along ∂Dp+2 transforms the concordance ft a concordance between ξ′(f0) and
ξ′(f1).

To prove ξ′ ◦ ξ = id, notice that generically the web Dp+1 misses the arc l. Then there is an obvious ambient
isotopy joining f and ξ′ ◦ ξ(f) (cf. Proposition 3.7 below). �

Lemma 3.3 is proved by certain relative version of this surgery. The crucial point of the above argument is the
existence of an ambient isotopy between f and ξ′ ◦ ξ(f). Further instead of an explicit construction of required
ambient isotopies we are going to use the following easy general result. We say that a ball D̄k ⊂ Dk is admissible,
if D̄k ∩ ∂Dk is a (k − 1)-ball and ∂D̄k − ∂Dk is transversal to ∂Dk (thus D̄k is a smooth manifold with corners).

Proposition 3.7. Let D̄k ⊂ Dk be an admissible ball and Dk−1 = D̄k ∩ ∂Dk. If m ≥ n + 3, then any two
proper embeddings f, g : (D̄n, Dn−1) → (D̄m, Dm−1), which coincide on ∂D̄n−Dn−1, are ambient isotopic relatively
∂D̄n −Dn−1.

Proof. The map f : D̄n → D̄m can be considered as a concordance relatively the boundary between the two
embeddings f : Dn−1 → Dm−1 and f : D̄n − Dn−1 → D̄m − Dm−1. Since concordance implies ambient isotopy
in codimension at least 3, it follows that f ’extends’ to an ambient isotopy hf : D̄m → D̄m fixed on D̄m −Dm−1.
Define analogously an ambient isotopy hg : D̄m → D̄m. Then g = hgh

−1
f f . �

Proof of Lemma 3.3. To prove this lemma, we construct two mutually inverse homomorphisms h1 : PT
m

p,q →
DMm

p+q,q and h2 : DMm
p+q,q → PT

m

p,q. Fix a point ∗ ∈ Sp.
(1) Construction of a homomorphism h1 : PT

m

p,q → DMm
p+q,q. Take an arbitrary map f ∈ PT

m

p,q. Take a nonzero
vector field on ∗ × Dq normal to f(Sp × Dq). Moving the disc ∗ × Dq toward this vector field, we get a proper
embedding f1 : Dq → Dm missing f(Sp ×Dq).

By Proposition 3.4 the restriction of f to the boundary admits a web f̄ : Dp → ∂Dm, i. e. there is a framed
embedding f̄ : Dp → ∂Dm satisfying properties (i)–(iii) from Definition of the web. Generically for m ≥ 2p + q + 3
this web misses f1(∂Dq). Perform an embedded surgery of the map f : Sp×Dq → Dm along the sphere f̄∂Dp inside
a tubular neighborhood of f̄Dp. Let f2 : Dp+q → Dm be the proper map obtained by the surgery. By definition,
put h1(f) = f1 t f2 ∈ DMm

p+q,q.
(2) Construction of a homomorphism h2 : DMm

p+q,q → PT
m

p,q. Take an arbitrary map f ∈ DMm
p+q,q. Extend

the restriction f : Dq → Dm to a torus f1 : Sp ×Dq → Dm with the image inside a tubular neighborhood of fDq.
Join a point x ∈ f∂Dp+q with a point y ∈ f1(Sp × ∂Dq) by an arc l ⊂ ∂Dm missing the images of ∂Dp+q − {x}
and Sp × ∂Dq − {y}. Perform an embedded surgery of f : Dp+q → Dm and f1 : Sp × Dq → Dm along the
0-sphere ∂l inside a tubular neighborhood of l (i. e., make a connected sum of fDp+q and f1(Sp ×Dq)). Denote by
h2(f) ∈ PT

m

p,q the map obtained by the surgery.
The homomorphisms h1 and h2 are well-defined by the second assertion of Proposition 3.4.
(3) Proof that h1 ◦ h2 = id. Let us prove that any map f ∈ DMm

p+q,q is ambient isotopic to h1 ◦ h2(f). It suffices
to construct 2 admissible balls D̄p+q ⊂ Dp+q and D̄m ⊂ Dm satisfying the following 2 properties:
(i) f−1D̄m = h1 ◦ h2(f)−1D̄m = D̄p+q;
(ii) f = h1 ◦ h2(f) outside D̄p+q.

Then one can combine f and h1 ◦ h2(f) on Dp+q by the ambient isotopy given by Proposition 3.7. Moving
h1 ◦ h2(f)Dq backwards along the vector field constructed in step (1), we combine the maps f and h1 ◦ h2(f).

Construction of the balls D̄p and D̄m. We may assume that the web f̄Dp of the restriction of h1(f) to the
boundary is contained in a tubular neighborhood of fDq. The required ball D̄m is obtained from the union of
tubular neighborhoods of fDq and the arc l constructed in step (2) by cutting off a tubular neighborhood of the
web f̄Dp. Put D̄p+q = f−1D̄m. By the construction D̄p+q ⊂ Dp+q and D̄m ⊂ Dm are admissible balls satisfying (i)
and (ii).

(4) Proof that h2 ◦ h1 = id. Let us show that any map f ∈ PT
m

p,q is ambient isotopic to h2 ◦ h1(f). Again
it suffices to construct 2 admissible balls D̄p+q ⊂ Dp+q and D̄m ⊂ Dm satisfying the properties (i) and (ii) from
step (3).

Construction of the balls D̄p and D̄m. Let U be a tubular neighborhood of f(∗ ×Dq). We may assume that the
arc l constructed in step (2) is contained in U . Let z ∈ Dq be the point such that ∂l ∩ f(Sp × Dq) = f(∗ × z).
Modify h2 ◦ h1(f) by an ambient isotopy inside U to make h2 ◦ h1(f) = f in some tubular neighborhood V of the
wedge ∗ × Dq ∪ Sp × z. Now the maps f and h2 ◦ h1(f) coinside outside the union of Cl(U − V ) and a tubular
neighborhood W of the web f̄Dp. The balls D̄m = Cl(U − V ) ∪W and D̄p+q = f−1D̄m are the required. �

3.3 Classification of almost embeddings.

To prove Theorem 0.2 we need the classification of almost embeddings Sp × Sq → Sm. Denote by FKm
p,q the

set of smooth embeddings Dp × Sq → Sm up to smooth isotopy. This set admits a natural commutative group
structure analogous to KTm

p,q. The classification of almost embeddings is given by the following result.
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Theorem 3.8. For m ≥ 2p + q + 3 there exist exact sequences
(i) πp+q(Sm−q−1) → KT

m

p,q → FKm
p,q → πp+q−1(Sm−q−1) → . . .

(ii) πq(Vm−q,p) → FKm
p,q → Km

q → πq−1(Vm−q,p) → . . .

Theorem 3.8 (ii) is proved by direct checking analogously to [Hae66A, Corollary 5.9]. Theorem 3.8 (i) is due to
A. Skopenkov [cf. Sko06, Restriction Lemma 5.2]. Our proof of assertion (i) consist of several steps similar to the
proof of Theorem 3.1.

Proof of assertion (i) in 3.8. (1) Definition of the groups FKm
p,q and PTm

p,q. A smooth map is Sp × Sq → Sm said
to be a weak almost embedding, if it is a smooth embedding outside B ⊂ Sp × Sq. A weak almost isotopy is defined
analogously. Identify FKm

p,q with the group of weak almost embeddings up to weak almost isotopy (clearly, these
groups are isomorphic for m ≥ 2p + q + 3).

Fix a (p+ q)-ball B ⊂ Sp×Dq meeting the boundary transversely by a (p+ q−1)-ball. A proper piecewise linear
map f : Sp ×Dq → Dm is said to be a proper weak almost embedding, if the following two conditions hold:
(i) f is a smooth embedding outside B ⊂ Sp ×Dq; and
(ii) f(Sp × ∂Dq ∩B) ∩ F (Sp × ∂Dq −B) = ∅.
A proper weak almost isotopy is defined analogously. Denote by PTm

p,q the group of proper weak almost embeddings
up to proper weak almost isotopy.

(2) For every m ≥ 2p + q + 3 there exist an exact sequence:

KT
m

p,q
e→ FKm

p,q
h→ PTm

p,q
p→ KT

m−1

p,q−1 → . . .

Here e, h and p are the obvious forgetful, cutting and restriction homomorphisms respectively. This assertion is
proved completely analogously to Lemma 3.2.

(3) Definition of the homomorphism λ : PTm
p,q → πp+q−1(Sm−q−1). Take a proper weak almost embedding

f : Sp ×Dq → Dm. By definition f∂B ∩ f(∗ ×Dq) = ∅. Notice that Dm − f(∗ ×Dq) ' Sm−q−1. Let λ(f) be the
homotopy class of the restriction f : ∂B → Dm − f(∗ ×Dq).

(4) λ is injective. Take a proper weak almost embedding f : Sp × Dq → Dm such that λ(f) = 0. Then f |∂B

extends to a smooth map g : B → Dm missing f(∗×Dq). Generically for m ≥ 2p+q+3 the map g misses f(Sp×0).
Thus we may assume that g misses f(Sp ×Dq −B). Perform a proper weak almost isotopy which replaces f |B by
g. Thus we get a map Sp×Dq → Dm which is a proper almost isotopy. Then by Proposition 3.5 f is properly weak
almost isotopic to the standard proper embedding Sp ×Dq → Dm.

(5) λ is surjective. Take an element x ∈ πp+q−1(Sm−q−1). Take the standard proper embedding f : Sp ×Dq →
Dm. Realize the element x by a smooth map g : Sp+q−1 → ∂Dm − f(∗ × Dq). Without loss of generality for
m ≥ 2p+q+3 we may assume that g misses f(Sp×∂Dq−B). Extend the map g to a smooth map g′ : Dp+q → Dm.
Let µ(x) be the connected sum (relatively the boundary) of g′ and f |Sp×Dq−B . Clearly, λ(µ(x)) = x. This completes
the proof of assertion (i). �

3.4 Rational classification of knotted tori.

In order to prove Theorem 0.2 we need to know which groups from Theorems 3.1 and 3.8 are finite.

Theorem 3.9. Assume that p + 4
3q + 2 ≤ m < p + 3

2q + 2, m ≥ 2p + q + 3 and m ≥ n + 3. Then
(i) Km

n is infinite if and only if 2m ≤ 3n + 3, n + 1 is divisible by 4.
(ii) πp+q(Sm−q−1) is infinite if and only if m = p

2 + 3
2q + 3

2 , p + q + 1 is divisible by 4.
(iii) πq(Vm−q,p) is infinite if and only if p ≥ 1, 3

2q + 3
2 ≤ m ≤ p + 3

2q + 1
2 and q + 1 is divisible by 4.

(iv) πp+2q−m+2(VM+m−p−q−1,M ) is infinite if and only if m = p + 3
2q + 3

2 and q + 1 is divisible by 4.

Theorem 3.9 can be easily reduced to known results. Assertion (i) is the Haefliger theorem [Hae66A, Corollary 6.7].
Assertion (ii) of is a specific case of well-known Serre theorem. Assertions (iii) and (iv) are proved using the exact
homotopy sequence of the ’forgetting the last vector’ bundle Sm−p−q → Vm−q,p → Vm−q,p−1:

Proof of assertion (iii) in Theorem 3.9. The assumptions m ≥ 2p + q + 3 and m < p + 3
2q + 2 together imply that

m ≤ 2q. We are going to prove assertion (iii) by induction over p under the only assumption m ≤ 2q.
(1) Case q + 1 not divisible by 4. Since m ≤ 2q, it follows that πq(Vm−q,1) ∼= πq(Sm−q−1) is finite. Using the

homotopy exact sequence of the ’forgetting the last vector’ bundle Sm−p−q → Vm−q,p → Vm−q,p−1 tensored by Q,
we get inductively that πq(Vm−q,p) is finite.

(2) Case q + 1 divisible by 4, and either m < 3
2q + 3

2 or m > p + 3
2q + 1

2 . In this case the groups πq(Sm−q−i) are
still finite for each i = 1, 2, . . . , p. Similarly to the above we get πq(Vm−q,p) finite.

(3) Case q + 1 divisible by 4, and 3
2q + 3

2 ≤ m ≤ p + 3
2q + 1

2 . Take i such that m = i + 3
2q + 1

2 . Consider the
above exact homotopy sequence for p = i. Analogously to the above it can be shown that for q + 1 divisible by 4
and m ≤ 2q the group πq+1(Vm−q,i−1) is finite. Thus the group πq(Vm−q,i) is infinite. By induction πq(Vm−q,p) is
also infinite. �
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Proof of the assertion (iv) in Theorem 3.9. Denote by s = 2p+3q−2m+3 and l = m−p−q−1. Then the group in
question is πs+l(VM+l,M ). Our restriction p+ 4

3q +2 ≤ m < p + 3
2q +2 is equivalent to the restriction 0 ≤ s ≤ l− 2.

(1) Case s = 0. By [Pae56] the group πl(VM+l,M ) is infinite if and only if l + 1 is divisible by 2. Together with
condition s = 0 this is equivalent to the conditions m = p + 3

2q + 3
2 and q + 1 divisible by 4.

(2) Case s ≥ 1. Let us prove by induction over s that the group πs+l(VM+l,M ) is finite in this case provided
that s ≤ l − 2. Indeed, for s = 1 this is proved in [Pae56]. For s > 1 consider the homotopy exact sequence of the
’forgetting the last vector’ bundle Sl → VM+l,M → VM+l,M−1 tensored by Q. In this sequence πs+l(Sl) is finite
because 1 ≤ s ≤ l− 2. By inductive hypothesis the group πl+s(VM+l,M−1) ∼= πs−1+l+1(VM+l+1,M ) is also finite. So
is the group πs+l(VM+l,M ). �

The dimension restrictions in Theorem 3.9 are assumed to simplify both the statement and the proof. Similarly,
the upper bound for the dimension m in Theorem 0.2 is not essential, it is assumed by ethtetic reasons (to simplify
the statement).

To prove Theorem 0.2 consider the following 5 cases:
(1) p + q + 1 is divisible by 4;
(2) q + 1 is divisible by 4, m ≤ 3

2q + 3
2 , p ≥ 1;

(3) q + 1 is divisible by 4, 3
2q + 3

2 ≤ m ≤ p + 3
2q + 1

2 , p ≥ 1;
(4) q + 1 is divisible by 4, m = p + 3

2q + 3
2 , p ≥ 1; and

(5) q + 1, p + q + 1 are not divisible by 4.
Here case (1) is easy, it follows directly from Proposition 3.6. Cases (2) and (3) are also not hard, they can be

treated using Theorem 3.8(ii) only. Cases (4) and (5) are more difficult, they require both Theorems 3.1 and 3.8.
Case (4) was treated in [Sko06’] by different methods.

Proof of Theorem 0.2. (1) Case p + q + 1 is divisible by 4. This follows directly from Proposition 3.6.
(2) Case q + 1 divisible by 4, m ≤ 3

2q + 3
2 . It suffices to construct a knotted torus H : Sp × Sq → Sm having an

infinite order in KTm
p,q.

Construction of the Haefliger torus H. The group Km
q is infinite in this case. Take an infinite order element x.

The obstruction to existence of a (p + 1)-frame on the knot x belongs to the finite group πq−1(Vm−q,p+1). So for
some N ∈ N the embedding Nx extends to the desired smooth embedding H : Sp × Sq → Sm. Clearly, H has an
infinite order.

(3) Case q + 1 divisible by 4, 3
2q + 3

2 ≤ m ≤ p + 3
2q + 1

2 , p ≥ 1. It suffices to construct a knotted torus
T : Sp × Sq → Sm having an infinite order in KTm

p,q.
Construction of the torus T . The group πq(Vm−q,p) is infinite in this case. Take an infinite order element x of

this group. Consider the map τ : πq(Vm−q,p) → FKm
p,q from 3.8(ii). This map takes the element x to the canonical

p-frame Dp × Sq → Sm of the standard sphere Sq ⊂ Sm. The complete obstruction to extension of this p-frame to
a (p + 1)-frame belongs to πq−1(Sm−p−q−1). The latter group is finite in our case. So for some N ∈ N the element
Nτ(x) can be extended to a smooth embedding Sp × Sq → Sm, which is the desired torus T .

Proof that T has an infinite order. It suffices to prove that the element τ(x) ∈ FKm
p,q, which is the restriction of T

to Dp×Sq, has an infinite order. Assume the converse. Then Nτ(x) = 0 for some N ∈ N. So by Theorem 3.8(ii) Nx
belongs to the image of the map Km+1

q+1 → πq(Vm−q,p). But the group Km+1
q+1 is finite in our case. This contradiction

proves that T has infinite order.
(4) Case q + 1 divisible by 4, m = p + 3

2q + 3
2 .

Construction of the Whitehead torus W . The group πp+2q−m+2(VM+m−p−q−1,M ) is infinite in this case. Take
an infinite order element x of this group. Take the smooth embedding ω(x, 0) : Sp × Sq → Sm, where ω :
πp+2q−m+2(VM+m−p−q−1,M )⊕Km

p+q → KTm
p,q is the map from Theorem 3.1.

Proof that W has an infinite order. By Theorem 3.1 it suffices to prove that KT
m+1

p,q+1 is finite in our case.
Since q +1 is divisible by 4 it follows that πq+1(Vm−q,p) and Km+1

q+1 are finite. The group πp+q+1(Sm−q−1) is also

finite in our case. So by Theorem 3.8 it follows that KT
m+1

p,q+1 is finite.
(5) Case q + 1, p + q + 1 not divisible by 4. Recall that if X → Y → Z is an exact sequence with finite X and

Z, then Y is also finite. Applying this 2 times to the first 3 columns of Theorem 3.8 starting from the bottom, and
then to the sequence from Theorem 3.1, we are done, because the groups in the first column of 3.8 and the groups
πp+2q−m+2(VM+m−p−q−1,M ), Km

q and Km
p+q are finite for q + 1, p + q + 1 not divisible by 4. �

4. Concluding remarks

(i) The argument of [Hae66C] can be extended to cover at least the dimension range 2p1 + 2p2 ≤ 3m− 7 (we use
the notation of [Hae66C] in this paragraph). Indeed, this restriction is sufficient in all steps of the Haefliger proof
except [Hae66C, Proposition 10.2]. The groups Λ(q)

(p1)
and Π(q)

m−2 in the proof of [Hae66C, Proposition 10.2] may

have now a larger number of generators. But these generators can be written explicitly: the group Λ(q)
p1 is generated
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by all θk(i1, i2) for all integers k ≥ 0 such that kp1 + p2 ≥ (k + 1)(m − 2), and the group Π(q)
m−2 is generated by

[[i2, i1], i2] and all θk+1(i1, i2) for the same k. Thus the proof of [Hae66C, Proposition 10.2] can be completed by
the initial argument. A possible reason why Haefliger did not notice this improvement was that in contrast to
3p1 + p2 ≤ 3m− 7 the restriction 2p1 + 2p2 ≤ 3m− 7 did not appear in his theory.

(ii) The dimension restriction 2p+2q ≤ 3m−6 in Theorem 0.1 is best possible, the formula fails for 2p+2q = 3m−5.
For example, take m = p+4 = 4k− 1, k ≥ 5, q = 2k +2. Then the group LMm+1

p+1,q+1 is infinite [Kos90, p. 755-756].

By Theorem 2.3 the rank of the group DM
m+1

p+1,q+1 is greater than the rank of the group πp+q+2−m(VM+m−p−1,M ).

By Lemma 2.2 the natural homomorphism D̂M
m+1

p+1,q+1 → DM
m+1

p+1,q+1 is still surjective. So the rank of the group
DMm+1

p+1,q+1 is also greater than the rank of the group πp+q+2−m(VM+m−p−1,M ). Thus by Corollary 2.1’ the rank
of left-hand side in the formula of Theorem 0.1 is greater than the rank of right-hand side.

(iii) A natural question is to describe the kernel of the suspension map Σ : LMm
p,q → LMm+1

p+1,q at the boundary
range 2p + 2q = 3m− 4. This may help to determine which groups LMm

p,q are finite in codimension 3.
(iv) It is interesting to weaken the dimension restrictions in the Theorem 0.2. As we have remarked before,

the restriction m < p + 3
2q + 2 in Theorem 0.2 is only ethtetic. The 2-metastable restriction m ≥ p + 4

3q + 2 is
essential, but our methods provide much information outside this dimension range. Indeed, we have a collection of
exact sequences in some sense reducing the classification of knotted tori to the classification of links and knots (see
Lemmas 3.1 and 3.2, Theorems 2.1 and 3.8). Besides, the ’group structure’ restriction m ≥ 2p+q+3 in Theorem 0.2
is a natural limit for our approach. Probably it can be eliminated in piecewise linear category. For example, we
conjecture that the set of piecewise linear embeddings Sp×Sq → Sm up to piecewise linear isotopy admits a natural
group structure in codimension at least 3.

Appendix. Surgery over the self-intersection manifold

Here we do surgery on the self-intersection manifold, which provides an alternative proof of our main results and
hopefully is interesting in itself. Roughly speaking, this alternative argument replaces engulfing from §1 by surgery.
None of the results proved here are used in the rest of the paper.

Let us state our particular problem and the results. Let f : Dq → Mm be a general position proper immer-
sion whose restriction to the boundary is an embedding. The Embedding Theorem relatively boundary [Hud69,
Theorem 10.2] allows to remove the self-intersection of f by a homotopy rel ∂Dq under certain conditions. In the
dimension range where the embedding theorem is not true, we give an approach to simplify the self-intersection in
some sense.

Consider the diagram

∆̃(f) ĩ−−−−→ Dq

2:1

y f

y
∆(f) i−−−−→ Mm

Here ∆̃(f) = Cl{ (x, y) ∈ Dq × Dq |x 6= y, fx = fy } and ∆(f) = ∆̃(f)/Z2 are the double point manifolds. The
immersions ĩ : ∆̃(f) → Dq and i : ∆(f) → Mm are given by the formulas ĩ(x, y) = x and i{x, y} = fx. Denote
by λ(f) the line bundle associated with the double covering ∆̃(f) → ∆(f). Denote by λ̄(f) : ∆(f) → P∞ the map
classifying the line bundle λ(f).

The main results of Appendix are the following surgery theorems due to M. Cencelj and D. Repovs:

Theorem 5.1. [cf. HaKa98, Theorem 4.5] Let Mm be an (s + 1)-connected manifold. Let f : Dq → Mm be a
proper self-transverse immersion such that f |∂Dq is an embedding. Suppose that 2s ≤ 2q−m−2 and s ≤ m− q−3.
Then by a regular homotopy of f rel ∂Dq the classifying map ∆ → P∞ can be made (s + 1)-connected.

Corollary 5.2. [cf. HaKa98, Corollary 4.4] Assume that m ≥ p + 4
3q + 2. Then any proper almost embedding F is

properly almost isotopic to a proper almost embedding F ′ such that

πq(Dm − F ′Dp+q, ∂) ∼= Ωm
p,q.

This isomorphism is given by the formula G 7→ β(F ′, G).

Here F is a proper almost embedding F : Dp+q t Dq → Dm (see §3), Ωm
p,q

∼= πp+2q−m+1(VM+m−p−q−1,M ) and
the element β(F ′, G) is the β-invariant of the proper link map F ′ |Dp+q tG : Dp+q tDq → Dm.

First let us give an alternative proof of Corollary 2.3’ modulo these results (our arguments in §§2–3 show that
this corollary implies Theorems 0.1 and 0.2), then we prove Theorem 5.1 and Corollary 5.2 themselves.

An alternative proof of Corollary 2.3’ modulo Corollary 5.2. It suffices to prove that β : DM
m

p+q,q → Ωm
p,q is

bijective.
The injectivity of β. Take f ∈ DM

m

p+q,q such that β(f) = 0. By Corollary 5.2 one can assume that f |Dq is
null-homotopic outside fDp+q. Perform the following 2-step link homotopy:
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(i) Modify f |Dq to an embedding into ∂Dm.
(ii) (Conic construction) Replace f |Dp+q by the ’conic’ homeomorphism onto C(f∂Dp+q). This is done via a
’rectilinear’ link homotopy.
So f becomes a piecewise linear embedding. Thus it represents 0 in DM

m

p,q (by §2, proof that Im e ⊂ Kerh in
Theorem 3.1).

The surjectivity of β. Take any v ∈ πp+2q+1−m(VM+m−p−q−1,M ). Start with any f ∈ DM
m

p+q,q. By Corollary 5.2
there exist a proper link map f ′ : Dp+q t Dq → Dm and a proper map g : Dq → Dm − f ′Dp+q such that
β(f ′ |Dp+q t g) = v. Thus β is surjective. �

5.1. The complement to an immersed disc.
In this subsection we prove Corollary 5.2 modulo Theorem 5.1. We shall use the following notions.
Denote by {X, Y } the set of stable homotopy classes of maps X → Y . The stabilization of the target group

Σ∞πq(Dm − Im f, ∂) is isomorphic to {Sq, Sm − Im f}, because any pair (X, Y ) is stably equivalent to the space
X ∪ CY . Hereafter fix the decomposition Sm = Dm ∪ CSm−1.

Denote by T (λ) the mapping cone of the covering ∆̃ → ∆. Take a map ī : C∆̃ → Dp+q extending the above map
ĩ : ∆̃ → Dp+q. Define f̄ : T (λ) → Sm to be the quotient map of the composition f ī.

The following proposition shows an alternative way of getting the β-invariant:

Proposition 5.3. [cf. HaKa98, Proposition 3.2] Under the composition

πp(Dm − fDp+q, ∂) Σ→ {Sq, Sm − fDp+q} SWD→
SWD→ {fDp+q, Sm−p−q−1} f̄∗→ {T (λ), Sm−p−q−1} PT→ πp+2q+1−m(VM+m−p−q−1,M )

the class of a map g : Dq → (Dm − fDp+q, ∂) is sent to β(f t g).

Here the first arrow is the suspension map. The second map is the Spanier-Whitehead duality. The third arrow
is induced by the map f̄ defined above. The fourth map is given by the Pontryagin-Thom construction (see [Kos88’]
for details). This proposition is proved by a direct checking analogously to [HaKa98, Proposition 3.2].

By this assertion it is useful to know the homotopy type of fDp+q. It is given by:

Proposition 5.4. Let C be the mapping cone of the restriction f : ĩ∆̃ → i∆, then fDq ' C.

To prove this proposition note that both of these spaces are obtained from Cyl(̃i∆̃ → i∆) ∪ĩ∆̃⊂Dp+q Dp+q by
appropriate contractions. Let us begin the study the homotopy type of the pair (Dm − fDp+q, ∂) with:

Proposition 5.5. [cf. HaKa98, Lemma 4.2] The pair (Dm − fDp+q, ∂) is (2m− 2p− 2q − 3)-connected.

Proof. Generically in codimension at least 3 the pair (Dm − fDp+q, ∂) is 1-connected. By the homology excision
theorem Hi(Dm − fDp+q, ∂) ∼= Hi(Sm − fDp+q). By the Alexander duality Hi(Sm − fDp+q) ∼= Hm−i−1(fDp+q).
By Proposition 5.4 Hm−i−1(fDp+q) = 0 for i ≤ 2m − 2p − 2q − 3, because generically dimC = 2p + 2q − m + 1.
Thus Proposition 5.5 follows from the Hurewicz theorem. �

Proof of Corollary 5.2 modulo Theorem 5.1. By Theorem 5.1 we may assume that the classifying map ∆(f) → P∞

is (s + 1)-connected. Let us show that under this assumption all maps in Proposition 5.3 are bijective.
(1) The first map is bijective by Proposition 5.5 and the suspension theorem, because the assumption 3p + 4q ≤

3m− 6 implies q/2 ≤ 2m− 2p− 2q − 3.
(2) The second map is bijective by Spanier-Whitehead duality.
(3) The third map is bijective. By Proposition 5.4 {Im f, Sm−p−q−1} ∼= {C,Sm−p−q−1}, it remains to check

that {C,Sm−p−q−1} ∼= {T (λ), Sm−p−q−1}. Denote by λT the restriction of λ to the triple points, by CT the
image of T (λT ) under the map T (λ) → C, and by R the mapping cone of the map T (λT ) → CT . Then R is a
deformation retract of the mapping cone of the map T (λ) → C. Consider the Puppe exact sequence of the pair
(Cyl(T (λ) → C), T (λ)):

{R,Sm−p−q−1} → {C,Sm−p−q−1} → {T (λ), Sm−p−q−1} → {R,Sm−p−q}.

Since R has dimension ≤ 2p + 3q − 2m + 2, by the assumption 3p + 4q ≤ 3m− 6 it follows that {C,Sm−p−q−1} ∼=
{T (λ), Sm−p−q−1}.

(4) The fourth map is bijective, if the classifying map λ̄ : ∆ → P∞ is (s + 1)-connected. This is proved
by the standard tools of bordism theory. Indeed, by the Thom-Pontryagin construction {T (λ), Sm−p−q−1} ∼=
Ωs(∆, (m− p− q− 1)λ). By homotopy lifting the induced map Ωs(∆, (m− p− q− 1)λ) → Ωs(P∞, (m− p− q− 1)λ)
is an isomorphism. Finally, Ωs(P∞, (m− p− q− 1)λ) ∼= πp+2q+1−m(VM+m−p−q−1,M ). (The definition of the groups
Ωs(∆, lλ), Ωs(P∞, lλ) and the details can be found in [Kos88’] or [HaKa98,§3]). �

5.2 Surgery on the double point manifold.
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Sketch of the proof of Theorem 5.1. Hereafter omit f from the notation of ∆(f), ∆̃(f), λ(f) and λ̄(f). Making the
map λ̄ : ∆ → P∞ (s + 1)-connected proceeds in 2 steps:
Step 1. Making ∆ connected and π1(∆) → π1(P∞) surjective (i. e. ∆̃ connected).
Step 2. Killing the elements of Ker(πi(∆) → πi(P∞)) for 1 ≤ i ≤ s.
These steps are sufficient because the map πi(∆) → πi(P∞) is automatically surjective for i > 0.

In both steps 1 and 2 we make the following Whitney-Haefliger trick, performing surgery on ∆.
Let us begin with Step 2. Take a map g : Si → ∆ representing an element of the kernel of πi(∆) → πi(P∞).

Generically for 2s ≤ 2q − m − 2 and s ≤ m − q − 3 it is an embedding missing the triple points of f . Since the
composition λ̄ ◦ g : Si → P∞ is trivial, it follows that g(Si) is trivially covered in ∆̃. Denote by Si

+ and Si
− the

two copies of Si in ∆̃. Span these spheres by two disjoint balls Di+1
+ and Di+1

− in Dq with the interiors missing ∆̃.
Extend the embedding of Si+1 = Di+1

+ ∪ Di+1
− to an embedding of Di+2 into Mm with the interior missing fDq.

Pushing one of the two caps Di+1
± across a neighborhood of Di+2 performs a surgery on ∆ killing the element g.

In Step 1 we have a choice of the spheres S0
±, because they are disconnected. After an appropriate choice our

surgery will connect distinct components of ∆̃, because dim ∆ = 2q −m ≥ 2s + 2 ≥ 2.

To make this argument precise we need to construct the standard model for doing the surgery and to define all
the framings required to embed this standard model into Mm.

Proof of Theorem 5.1. Standard model for doing surgery. [HaKa98] We will make use of the model manifold Rm =
R×Ri+1×R2q−m−i×Rm−q−1×Rm−q−1 and of two embeddings g+ and g− of Rq = Ri+1×R2q−m−i×R2q−m−1 into Rm

intersecting transversally along 0×Si×R2q−m−i×0×0. For example, one may take g−(x, y, z) = (|x|2−1, x, y, 0, z)
and g+(x, y, z) = (1−|x|2, x, y, z, 0). The sphere Si bounds a ball Di+1 ⊂ Ri+1 ⊂ Rq. Denote by Di+1

± = g±(Di+1).
The sphere Si+1 = Di+1

+ ∪ Di+1
− bounds a ball Di+2 ⊂ R × Ri+1 ⊂ Rm with corners along Si. Pushing one of

the two ’caps’ Di+1
± across Di+2 performs the surgery. More precisely, the double points of the resulting regular

homotopy are the trace of this surgery.
Step 2 (killing the elements of the kernel of πi(∆) → πi(P∞)). Assume that g : Si → ∆ represents an element of

the kernel of the map πi(∆) → πi(P∞), 1 ≤ i ≤ s. Since 2i ≤ dim ∆− 1 (because 2s ≤ 2q−m− 2), we may assume
that g is an embedding. By general position the triple point set has dimension ≤ 3q − 2m. Since s ≤ m − q − 3,
it follows that i + 3q − 2m ≤ dim ∆ − 1, so generically Im g does not contain triple points. Since the composition
λ̄(f) ◦ g : Si → P∞ is trivial, it follows that g(Si) is trivially covered in ∆̃. Denote by Si

+ and Si
− the two copies of

Si in ∆̃.
Let us construct trivializations of the normal bundles N(∆̃, Dq) and N(Si,∆). Take vector fields {ek}m−q

k=1 forming
a trivialization of N(Dq,Mm). Denote by ek

x the vector of the k-th field at the point x ∈ Dq. Then the projections
of the vectors ek

y at the point (x, y) ∈ ∆̃ to the normal bundle N(∆̃, Dq) form a trivialization of this bundle.
Further, for each point {x, y} ∈ ∆ we have a decomposition N(∆,Mm){x,y} ∼= N(∆̃, Dq)(x,y) ⊕ N(∆̃, Dq)(y,x).

Thus the vectors {ek
x, ek

y} form a ’skew framing’ of ∆: interchanging of the points x and y implies interchanging
of the vectors ek

x and ek
y . Thus N(∆,Mm) can be decomposed into the sum of all line bundles 〈ek

x + ek
y〉 ∼= ε and

〈ek
x − ek

y〉 ∼= λ. This gives an isomorphism N(∆,Mm) ∼= (m− q)λ⊕ εm−q. Since Si → P∞ is trivial, it follows that
(m− q)λ |Si is trivial. Thus the restriction N(∆,Mm) |Si is trivial. Since Mm is (s + 1)-connected, it follows that
T (Mm) |Si is also trivial. Thus N(Si,∆) is stably trivial and hence trivial. Denote this trivial bundle by η.

Surgery on Si. First let us span the spheres Si
+ and Si

− by two disjoint balls Di+1
+ and Di+1

− in Dq. To do it push
Si

+ and Si
− along the first vector field of the trivialized bundle N(∆̃, Dq) and then extend to embeddings of the

discs missing the image of ∆̃. This is possible provided that i+1+dim ∆ ≤ q−1 and 2(i+1) ≤ q−1, which follows
from s ≤ m− q − 3 and 3s ≤ q − 5. Here the second dimension restriction is obtained by summing s ≤ m− q − 3
and 2s ≤ 2q −m− 2.

Now take a natural decomposition N(Di+1
+ , Dq)

∣∣∣Si
+

= η⊕ εm−q−1 (recall that η = N(Si,∆)). We wish to extend

this partial (m − q − 1)-framing over Di+1
+ . The complete obstruction lies in πi(Vq−i−1,m−q−1) = 0, provided that

2i ≤ 2q−m−1, which follows from 2s ≤ 2q−m−2. Thus we obtain a decomposition N(Di+1
+ , Dq) = η+⊕ εm−q−1,

where η+ is the complementary extension of η over Di+1
+ . Define the bundle η− analogously.

Next we extend the embedding of Si+1 = Di+1
+ ∪Di+1

− to an embedding of Di+2 into Mm. To do it push Di+1
+

and Di+1
− along the first vector field of the trivialized bundle N(Dq,Mm). Thus we obtain an embedding of a collar

neighborhood of the sphere Si+1 into Mm. It can be extended to an embedding of the disc Di+2, provided that
i + 2 + q ≤ m− 1 and 2(i + 2) ≤ m− 1 (which follows from q + s + 3 ≤ m, because s ≤ m− 1).

Finally, consider the following partial (m − q − 1)-framing of the sphere Si+1. On the disc Di+1
+ take the

(m − q − 1)-framing complementary to η+. On the disc Di+1
− take the (m − q − 1)-framing obtained from the

trivialization of N(Dq,Mm) by forgetting the first vector field. By the above construction it follows that these two
partial framings coincide on Si. Thus we obtain a (m − q − 1)-framing of Si+1. Let us extend it to Di+2. The
complete obstruction lies in πi+1(Vm−i−2,m−q−1), so it vanishes for 2i + 2 ≤ q − 1 (this condition is satisfied, see
above). Now set η′ to be the complementary bundle to the obtained (m − q − 1)-framing over Di+2. On Di+1

− we
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have the splitting η′ = η− ⊕ εm−q−1. Pushing the remaining (m − q − 1)-framing across Di+2 yields a splitting
N(Di+2,Mm) = η′′ ⊕ εm−q−1 ⊕ εm−q−1 for some bundle η′′.

Thus the relevant framing information along Di+2 agrees with that of the standard model, so there is a homeo-
morphism of a neighborhood of Di+2 and the standard model. So one can perform our surgery and kill the spheroid
g : Si → ∆.

Step 1 (making ∆ and ∆̃ connected). If ∆ = ∅, then first create a self-intersection (for example, by a ’finger
Whitney trick’). Take a pair of points (a, b), (c, d) belonging to distinct components of ∆̃. One can assume that
they are outside the triple point set. Consider the spheres S0 = {{a, b}, {c, d}}, S0

+ = {(a, b), (c, d)}, and S0
− =

{(b, a), (d, c)}, and let η be the trivial normal bundle N(S0,∆). The surgery on S0 (see Step2 above) will connect
the components of ∆̃, because dim ∆ ≥ 2. �
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