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Abstract
In the paper we mainly deal with two well-known types of in�nite words: morphic

and uniformly recurrent (=almost periodic). We discuss the problem of �nding criterion
of uniform recurrence for morphic sequences and give e�ective polynomial-time such
criterion in two particular cases: pure morphic sequences and automatic sequences. We
also prove that factor complexity of arbitrary uniformly recurrent morphic sequence is
at most linear.

1 Introduction
Many problems of decidability in combinatorics on words are of great interest and di�culty.
Here we deal with two well-known types of symbolic in�nite sequences | morphic and
uniformly recurrent | and try to understand connections between them. Namely, we are
trying to �nd an algorithmic criterion which given a morphic sequence decides whether it is
uniformly recurrent.

Though the main problem still remains open, we propose polynomial-time algorithms
solving the problem in two important particular cases: for pure morphic sequences (Section 3)
and for automatic sequences (Section 4). In Section 6 we discuss the general problem and
give a curious result supporting the conjecture of decidability.

Some attempts to solve the problem were already done. In [5] A. Cobham gives a criterion
for automatic sequence to be uniformly recurrent. But even if his criterion gives some e�ective
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procedure solving the problem (which is not clear from his result), this procedure could not
be fast. We construct a polynomial-time algorithm solving the problem. In [13] A. Maes
deals with pure morphic sequences and �nds a criterion for them to belong to a slightly
di�erent class of generalized uniformly recurrent sequences (he calls them almost periodic).
And again, his algorithm does not seem to be polynomial-time. The problem of determining
ultimate periodicity for pure morphic sequences was solved independently in [10] and [17].

In addition, in Section 5 we deal with very natural and simple combinatorial characteristic
of words, namely factor complexity. We prove that factor complexity of a sequence that is
both morphic and uniformly recurrent, is at most linear.

2 Preliminaries
Denote the set of natural numbers {0; 1; 2; : : : } by N and the binary alphabet {0; 1} by B.
Let A be a �nite alphabet. We deal with sequences over this alphabet, i. e., mappings
x : N → A, and denote the set of these sequences by AN. Sequences are also called in�nite
words.

Denote by A∗ the set of all �nite words over A including the empty word �. If i 6 j are
natural, denote by [i; j] the segment of N with ends in i and j, i. e., the set {i; i+1; i+2; : : : ; j}.
Also denote by x[i; j] a subword x(i)x(i + 1) : : : x(j) of a sequence x. A segment [i; j] is an
occurrence of a word u ∈ A∗ in a sequence x if x[i; j] = u. We say that u 6= � is a factor of
x if u occurs in x. A word of the form x[0; i] for some i is called pre�x of x, and respectively
a sequence of the form x(i)x(i+ 1)x(i+ 2) : : : for some i is called su�x of x and is denoted
by x[i;∞). Denote by |u| the length of a word u. The occurrence u = x[i; j] in x is k-aligned
if k|i.

A sequence x is periodic if for some T we have x(i) = x(i + T ) for each i ∈ N. This T
is called a period of x. We denote by P the class of all periodic sequences. Let us consider
extensions of this class.

A sequence is called recurrent if every its factor occurs in this sequence in�nitely many
times.

A sequence x is called uniformly recurrent1 if for every factor u of x there exists a number l
such that every l-length factor of x contains at least one occurrence of u (and therefore u
occurs in x in�nitely many times). Obviously, to show uniform recurrence of a sequence it is
su�cient to check the mentioned condition only for all pre�xes but not for all factors (and
even for some increasing sequence of pre�xes only). Denote by UR the class of all uniformly
recurrent sequences.

Let A, B be �nite alphabets. A mapping � : A∗ → B∗ is called a morphism if �(uv) =
�(u)�(v) for all u; v ∈ A∗. A morphism is obviously determined by its values on single-letter
words. A morphism is non-erasing if |�(a)| > 1 for each a ∈ A. A morphism is k-uniform if
|�(a)| = k for each a ∈ A. A 1-uniform morphism is called coding. A morphism is growing if
|�(a)| > 2 for each a ∈ A. A morphism is called irreducible if for each a; b ∈ A there exists
n such that �n(a) contains b. A morphism is called primitive if there exists n such that for
each a; b ∈ A the word �n(a) contains b. Every primitive morphism is irreducible, but the
converse does not hold in general.

1It was called strongly or strictly almost periodic in [15, 18]; sometimes also called almost periodic [19, 20].
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For x ∈ AN denote
�(x) = �(x(0))�(x(1))�(x(2)) : : :

Further we mainly consider morphisms of the form A∗ → A∗ (but codings are of the form
A → B, that in fact does not matter, they can be also of the form A → A without loss
of generality). Let �(s) = su for some s ∈ A, u ∈ A∗. Then for all natural m < n the
word �n(s) begins with the word �m(s), so �∞(s) = limn→∞ �n(s) = su�(u)�2(u)�3(u) : : : is
well-de�ned. If ∀n �n(u) 6= �, then �∞(s) is in�nite. In this case we say that � is prolongable
on s. Sequences of the form h(�∞(s)) for a coding h : A→ B are called morphic, of the form
�∞(a) are called pure morphic.

Note that there exist uniformly recurrent sequences that are not morphic (in fact, UR
has cardinality continuum (e. g., see [15]), while the set of morphic sequences is obviously
countable), as well as there exist morphic sequences that are not uniformly recurrent (you
will �nd examples later). Our main goal is to determine whether a morphic sequence is
uniformly recurrent or not given its constructive description.

First of all, observe the following

Proposition 2.1. A sequence �∞(s) is uniformly recurrent i� s occurs in this sequence
in�nitely many times with bounded distances.

Proof. In one direction the statement is obviously true by de�nition.
Suppose now that s occurs in �∞(s) in�nitely many times with bounded distances. Then

for every m the word �m(s) also occurs in �∞(s) in�nitely many times with bounded dis-
tances. But every word u occurring in �∞(s) occurs in some pre�x �m(s) and thus occurs
in�nitely many times with bounded distances.

For a morphism � : {1; : : : ; n} → {1; : : : ; n} we can de�ne an incidence matrix M�, such
that (M�)ij is a number of occurrences of symbol i into �(j). One can easily check that for
each l we have M l

� = M�l .
Clearly, a morphism � is primitive i� for some l all the entries of M l

� are positive. For
prolongable morphisms the notions of primitiveness and irreducibility coincide.

Let us construct an oriented incidence graph G� of a morphism �. Let its set of vertices
be A. In G� edges go from b ∈ A to all the symbols occurring in �(b).

For �∞(s) it can easily be found using G� which symbols from A really occur in this
sequence. Indeed, these symbols form the set of all vertices that can be reached from s.
So from now on without loss of generality we assume that all the symbols from A occur in
�∞(s).

It is not di�cult to formulate a criterion of recurrence for pure morphic sequences.

Proposition 2.2. Let A be an alphabet, s ∈ A, and let � : A∗ → A∗ be a morphism pro-
longable on s. The following four assertions are equivalent:
1) the pure morphic sequence �∞(s) is recurrent;
2) the letter s occurs in�nitely many times in �∞(s);
3) the letter s occurs at least twice in �∞(s);
4) the letter s occurs twice in �(s) or there exists a letter a 6= s occurring in �∞(s) such that
s occurs in �(a).
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Proof. Left to the reader.
The situation is not that easy in the case of uniform recurrence.
A morphism is irreducible if and only if its graph of incidence is strongly connected, i. e.,

there exists an oriented path between every two vertices. For prolongable morphisms this
is also a criterion of primitiveness. This reformulation of the primitiveness notion seems to
be more appropriate for computational needs. By Proposition 2.1 (and the observation that
codings preserve uniform recurrence) morphic sequences generated by primitive morphisms
are always uniformly recurrent. Moreover, in the case of growing morphisms this su�cient
condition is also necessary (and this is a polynomial-time algorithmic criterion in that case).
However when we generalize this case even on non-erasing morphisms, it is not enough
to consider only the incidence graph or even the incidence matrix (which contains more
information than the graph), as it can be seen from the following example.

Let �1 be as follows: 0 → 01, 1 → 120, 2 → 2, and �2 be as follows: 0 → 01, 1 → 210,
2 → 2. Then these two morphisms have identical matrices, but �∞1 (0) is uniformly recurrent,
while �∞2 (0) is not. Indeed, in �∞2 (0) there are arbitrary long segments like 222. . . 22, so
�∞2 (0) =∈ UR. There is no such problem in �∞1 (0). Since 0 occurs in both �1(0) and �1(1),
and 22 does not occur in �∞1 (0), it follows that 0 occurs in �∞1 (0) with bounded distances.
Thus �m1 (0) for every m > 0 occurs in �∞1 (0) with bounded distances, so �∞1 (0) ∈ UR.
See Theorem 3.1 for a general e�ective criterion of uniform recurrence in the case of pure
morphic sequences.

To introduce a bit the notion of uniform recurrence, let us formulate an interesting result
on this topic. It seems to be �rst proved in [5], but also follows from the results of [19]. For
x ∈ AN, y ∈ BN de�ne x× y ∈ (A×B)N such that (x× y)(i) = 〈x(i); y(i)〉.
Proposition 2.3. If x is uniformly recurrent and y is periodic, then x × y is uniformly
recurrent.
Proof. Prove the proposition for y of the form y = 012 : : : (m− 1)012 : : : (m− 1)01 : : : over
�m = {0; 1; 2; : : : ;m− 1}.

We say that u occurs in x modulo i, where i ∈ �m, if u× [i; i+ 1; : : : ;m−1; 0; 1; : : : ;m−
1; 0; : : : ; i + |u| − 1 (mod m)] occurs in x × y. Our aim is to prove that if u occurs in x
modulo i, then it happens in�nitely many times with bounded distances.

Let A ⊆ �m be the set of all i such that u occurs in x modulo i at least once, and let
w = x[0; k] be a pre�x of x such that for each i ∈ A there exists an occurrence of u modulo
i in w. Let x[p; q] be an occurrence of w in x. Then for each i ∈ A the word u occurs in
x[p; q] modulo i + p (mod m). Thus B = {i + p (mod m) : i ∈ A} ⊆ A by de�nition of A,
but |B| = |A|, hence B = A.

Thus u occurs modulo i in each occurrence of w in x. But x ∈ UR, and w occurs in x
in�nitely many times with bounded distances.

3 Pure Morphic Sequences
Here we consider morphic sequence of the form �∞(s). We present an algorithm that de-
termines whether a morphic sequence �∞(s) is uniformly recurrent given an alphabet A, a
morphism � and a symbol s ∈ A.
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The following de�nitions are due to Pansiot [16]. A word w ∈ A∗ is called �-bounded
if the sequence (w; �(w); �2(w); �3(w); : : : ) is eventually periodic. A word w ∈ A∗ is called
�-growing if |�n(w)| → ∞ as n → ∞. Obviously, every word from A∗ is either �-bounded
or �-growing. A word w ∈ A∗ is �-eventually-erased if �n(w) = � for some n.

The following theorem gives criterion for pure morphic sequences to be uniformly recur-
rent.
Theorem 3.1. Let A be an alphabet, s ∈ A, and let � : A∗ → A∗ be a morphism prolongable
on s. The pure morphic sequence �∞(s) is uniformly recurrent i� it satis�es the following
two properties:
1) for every �-growing letter a occurring in �∞(s), there exists an integer n ∈ N such that s
occurs in �n(a), and
2) only �nitely many �-bounded words are factors of �∞(s).
Proof. ⇒. Assume that �∞(s) is uniformly recurrent. Then there exists a positive integer l
such that s occurs in every l-length factor of �∞(s).

1) Let a be a �-growing letter occurring in �∞(s). For every n ∈ N, �n(a) is a factor of
�∞(s), and if n is large enough, then �n(a) has length > l. Hence, s occurs in �n(a) for all
n large enough.

2) Since letter s is �-growing, s cannot occur in any �-bounded factor of �∞(s). Hence,
all �-bounded factors of �∞(s) have lengths smaller than l.

⇐. Assume that both properties 1) and 2) hold. Property 1) implies that there exists a
positive integer n such that for every �-growing letter a occurring in �∞(s), s occurs in �n(a).
According to Property 2), there exists a positive integer M such that every �-bounded factor
of �∞(s) has length smaller than M . Let K denote the maximum length of �n(a) over all
a ∈ A.

Let w be a factor of �∞(s) with length (K + 1)M . There exists an M -length factor v
of �∞(s) such that �n(v) is a factor of w. Since v is longer than every �-bounded factor of
�∞(s), some �-growing letter a occurs in v. Hence, s occurs in �n(a), �n(a) is a factor of
�n(v), and �n(v) is a factor of w. It follows that s occurs w.

We have thus shown that s occurs in every factor of �∞(s) with length (K + 1)M , and
thus �∞(s) is uniformly recurrent according to Proposition 2.1.

Now we explain how to get a polynomial-time criterion. First in Proposition 3.2 we give
di�erent reformulations of Property 2) from Theorem 3.1. Then we reformulate the uniform
recurrence criterion such that it can easily be checked in polynomial time.
Proposition 3.2 (Ehrenfeucht, Rozenberg [8]). Let A be an alphabet, s ∈ A, and let
� : A∗ → A∗ be a morphism prolongable on s. The following three properties are equivalent:
1) in�nitely many �-bounded words are factors of �∞(s);
2) there exist a natural n, a letter a occurring in �∞(s) and two words u, v ∈ A∗ satisfying
conditions:

(i) u is not �-eventually-erased,
(ii) u is �-bounded, and
(iii) either �n(a) = uav or �n(a) = vau.

3) there exists a non-empty �-bounded word w such that wn is a factor of �∞(s) for every
n ∈ N.
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Proof. 3) ⇒ 1) is straightforward. 1) ⇒ 2) was proved in [8]. 2) ⇒ 3) is easy.

Suppose we have A, �, and s ∈ A, such that |A| = n, maxb∈A |�(b)| = k, s begins �(s).
Remember that we suppose that all the symbols from A appear in �∞(s).

Divide A into two parts. Let I� be the set of all �-growing (or �-increasing) symbols,
and let B� be the set of all �-bounded symbols. De�ne also E� ⊆ B� to be the set of all
�-eventually-erased symbols.

Lemma 3.3. One can �nd I�, B�, and E� in poly(n; k)-time.

Proof. First, consider an equivalence relation \≡" on vertices of G�: a ≡ b i� a can be
reached from b, and vice versa. Obviously, if a ≡ b, then |�m(a)| = �(|�m(b)|) as m → ∞.
Construct a new graph H� with vertices being equivalence classes of \≡". An edge goes
from A to B in H�, if ∃a ∈ A ∃b ∈ B such that �(a) contains b. De�ne for each vertex A in
H� the number �A = max{the number of occurrences of symbols from A in �(a) : a ∈ A}.
De�ne Si = {B in H� : max{�A : A can be reached from B} = i}. Obviously, H�, all �A
and Si can be computed in polynomial time.

It it not di�cult to see that ∀i > 2 ∀A ∈ Si ∀a ∈ A |�m(a)| → ∞ as m→∞, and thus
a ∈ I�. Also, ∀A ∈ S0 ∀a ∈ A |�m(a)| → 0 as m → ∞, and thus a ∈ E�. In fact, every
A ∈ S0 is a singleton.

Now consider the subgraph induced by S1. We have S1 = UtV , where U = {A : �A = 0},
V = {A : �A = 1}. Further, we have V = XtY , where X = {A ∈ V : some other B ∈ V can
be reached from A}, Y = V \X. It is not di�cult to see that ⋃

A∈X A ⊆ I�, ⋃
A∈Y A ⊆ B�.

Further, if some B ∈ X can be reached from A ∈ U , then A ⊆ I�, otherwise A ⊆ B�.
Clearly, ∀A ∈ S1 ∀a ∈ A a =∈ E�.

Obviously, everything here can be checked in polynomial time.

A word is �-eventually-erased i� it consists of �-eventually-erased symbols. Thus one
can easily check whether a given word is �-eventually-erased.

Construct a labeled pre�x graph L�. Its set of vertices is I�. From each vertex b exactly
one edge goes o�. To construct this edge, �nd a representation �(b) = ucv, where c ∈ I�, u is
the maximal pre�x of �(b) containing only symbols from B�. It follows from the de�nitions
of I� and B� that u does not coincide with �(b), that is why this representation is correct.
Then construct in L� an edge from b to c and write u on it.

Analogously we construct a su�x graph R�. (In this case we �nd representation �(b) =
vcu where u ∈ B∗

�, c ∈ I�, and write u on the edge.)
Now we formulate a constructive version of the criterion given in Theorem 3.1.

Theorem 3.4. A sequence �∞(s) is uniformly recurrent i� it satis�es the following two
properties:
1) G� restricted to I� is strongly connected, and
2) in both graphs L� and R�, on each edge of each cycle, �-eventually-erased word is written.

Proof. Property 1) of this theorem is obviously equivalent to Property 1) of Theorem 3.1.
Proposition 3.2 explains why the same is true with Properties 2).
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Let us consider examples with �1 and �2 from the end of Section 2. In both cases
I� = {0; 1}, B� = {2}. On every edge of R� in both cases � is written. Almost the same
is true for L�: the only di�erence is about the edge going from 1 to 1. In the case of �1 an
empty word is written on this edge, while in the case of �2 a word 2 is written. The word 2
is not eventually erased since its image is 2. That is why �∞1 (0) is uniformly recurrent, while
�∞2 (0) is not.

Corollary 3.5. For a growing morphism � a sequence �∞(s) is uniformly recurrent i� � is
primitive.

Corollary 3.6. There exists a poly(n; k)-algorithm that says whether �∞(s) is uniformly
recurrent.

Proof. Conditions from Theorem 3.4 can easily be checked in polynomial time.

It also seems useful to formulate an explicit version of the criterion for the binary case.

Corollary 3.7. For � : B → B that is prolongable on 0, a sequence �∞(0) is uniformly
recurrent i� one of the following conditions holds:
1) �(0) contains only 0s;
2) �(1) contains 0;
3) �(1) = �;
4) �(1) = 1 and �(0) = 0u0 for some word u.

4 Uniform Morphisms
Now we deal with morphic sequences obtained by uniform morphisms. In Subsection 4.1 we
present a polynomial-time criterion of uniform recurrence in this case. Final version of the
criterion is in Theorem 4.7. Corollary 4.8 is to explain why the criterion from Theorem 4.7
is polynomial-time. In Subsection 4.2 we are discussing recurrence criterion as a related
problem.

Suppose we have an alphabet A, a morphism � : A∗ → A∗, a coding h : A → B, and
s ∈ A, such that |A| = n, |B| 6 n, ∀b ∈ A |�(b)| = k, s begins �(s). We are interested
in whether h(�∞(s)) is uniformly recurrent. Note that the class of sequences of the form
h(�∞(s)) with � being k-uniform coincides with the class of so-called k-automatic sequences
(see [1]).

4.1 Uniform Recurrence Criterion
For each l ∈ N de�ne an equivalence relation on A: b ∼l c i� h(�l(b)) = h(�l(b)). We
can easily continue this relation on A∗: u ∼l v i� h(�l(u)) = h(�l(v)). In fact, this means
|u| = |v| and u(i) ∼l v(i) for all i, 1 6 i 6 |u|.

Let Bm be the Bell number, i. e., the number of all possible equivalence relations on a
�nite set with exactly m elements, see [23]. As it follows from this article, we can estimate Bm
in the following way.

Lemma 4.1. 2m 6 Bm 6 2Cm logm for some constant C.

7



Thus the number of all possible relations ∼l is not greater than Bn = 2O(n logn). Moreover,
the following lemma gives a simple description for the behavior of these relations as l tends
to in�nity.

Lemma 4.2. If ∼r equals ∼s, then ∼r+p equals ∼s+p for all p.

Proof. Indeed, suppose ∼r equals ∼s. Then b ∼r+1 c i� �(b) ∼r �(c) i� �(b) ∼s �(c) i�
b ∼s+1 c. So if ∼r equals ∼s, then ∼r+1 equals ∼s+1, which implies the lemma statement.

This lemma means that the sequence (∼l)l∈N turns out to be ultimately periodic with a
period and a preperiod both not greater than Bn. Thus we obtain the following

Lemma 4.3. For some p; q 6 Bn we have for all i and all t > p that ∼t equals ∼t+iq.

Now let us try to get a criterion which we could check in polynomial time. Notice that
the situation is much more di�cult than in the pure case because of a coding allowed. In
particular, the analogue of Proposition 2.1 for non-pure case does not hold in general.

We move step by step to the appropriate version of the criterion reformulating it several
times.

This proposition is quite obvious and follows directly from the de�nition of uniform
recurrence since all h(�m(a)) are the pre�xes of h(�∞(a)).

Proposition 4.4. A sequence h(�∞(s)) is uniformly recurrent i� for all m the word h(�m(s))
occurs in h(�∞(s)) in�nitely often with bounded distances.

And now a bit more complicated version.

Proposition 4.5. A sequence h(�∞(s)) is uniformly recurrent i� for all m the symbols that
are ∼m-equivalent to s occur in �∞(s) in�nitely often with bounded distances.

Proof. ⇐. If the distance between two consecutive occurrences in �∞(s) of symbols that
are ∼m-equivalent to s is not greater than t, then the distance between two consecutive
occurrences of h(�m(s)) in h(�∞(s)) is not greater than tkm.

⇒. Suppose h(�∞(s)) is uniformly recurrent. Let ym = 012 : : : (km−2)(km−1)01 : : : (km−
1)0 : : : be a periodic sequence with a period km. Then by Proposition 2.3 a sequence
h(�∞(s)) × ym is uniformly recurrent, which means that the distances between consecu-
tive km-aligned occurrences of h(�m(s)) in h(�∞(s)) are bounded. It only remains to notice
that if h(�∞(s))[ikm; (i+ 1)km − 1] = h(�m(s)), then �∞(s)(i) ∼m s.

Let Ym be the following statement: symbols that are ∼m-equivalent to s occur in �∞(s)
in�nitely often with bounded distances.

Suppose for some T that YT is true. This implies that h(�T (s)) occurs in h(�∞(s))
with bounded distances. Therefore for all m 6 T a word h(�m(s)) occurs in h(�∞(s)) with
bounded distances since h(�m(s)) is a pre�x of h(�T (s)). Thus we do not need to check the
statements Ym for all m, but only for all m > T for some T .

Furthermore, it follows from Lemma 4.3 that we are su�cient to check the only one such
statement as in the following

8



Proposition 4.6. For all r > Bn: a sequence h(�∞(s)) is uniformly recurrent i� the symbols
that are ∼r-equivalent to s occur in �∞(s) in�nitely often with bounded distances.

And now the �nal version of our criterion.

Theorem 4.7. For all r > Bn: a sequence h(�∞(s)) is uniformly recurrent i� there exists
m such that for all b ∈ A some symbol that is ∼r-equivalent to s occurs in �m(b).

Indeed, if the symbols of some set occur with bounded distances, then they occur on each
km-aligned segment for some su�ciently large m.

Now we explain how to check a condition from Theorem 4.7 in polynomial time.

Corollary 4.8. There exists polynomial-time algorithm checking whether given automatic
sequence is uniformly recurrent.

Proof. We need to show two things: �rst, how to choose some r > Bn and to �nd in
polynomial time the set of all symbols that are ∼r-equivalent to s (and this is a complicated
thing keeping in mind that Bn is exponential), and second, how to check whether for some
m the symbols from this set for all b ∈ A occur in �m(b).

Let us start from the second. Suppose we have found the set H of all the symbols that
are ∼r-equivalent to s. For m ∈ N let us denote by P (b)

m the set of all the symbols that occur
in �m(b). Our aim is to check whether exists m such that for all b we have P (b)

m ∩ H 6= ∅.
First of all, notice that if ∀b P (b)

m ∩H 6= ∅, then ∀b P (b)
l ∩H 6= ∅ for all l > m. Second, notice

that the sequence of tuples of sets ((P (b)
m )b∈A)∞m=0 is ultimately periodic. Indeed, the sequence

(P (b)
m )∞m=0 is obviously ultimately periodic with both period and preperiod not greater than 2n

(recall that n is the size of the alphabet A). Thus the period of ((P (b)
m )b∈A)∞m=0 is not greater

than the least common divisor of that for (P (b)
m )∞m=0, b ∈ A, and the preperiod is not greater

than the maximal that of (P (b)
m )∞m=0. So the period is not greater than (2n)n = 2n2 and the

preperiod is not greater than 2n. Third, notice that there is a polynomial-time-procedure
that given a graph corresponding to some morphism  (see Section 2 to recall what is the
graph corresponding to a morphism) outputs a graph corresponding to morphism  2. Thus
after repeating this procedure n2 + 1 times we obtain a graph by which we can easily �nd
(P (b)

2n2+2n)b∈A, since 2n2+1 > 2n2 + 2n.
Similar arguments, even described with more details, are used in deciding our next prob-

lem. Here we present a polynomial-time algorithm that �nds the set of all symbols that are
∼r-equivalent to s for some r > Bn.

We recursively construct a series of graphs Ti. Let its common set of vertices be the set
of all unordered pairs (b; c) such that b; c ∈ A and b 6= c. Thus the number of vertices is
n(n−1)

2 . The set of all vertices connected with (b; c) in the graph Ti we denote by Vi(b; c).
De�ne a graph T0. Let V0(b; c) be the set {(�(b)(j); �(c)(j)) | j = 1; : : : ; k; �(b)(j) 6=

�(c)(j)}. In other words, b ∼l+1 c if and only if x ∼l y for all (x; y) ∈ V0(b; c).
Thus b ∼2 c if and only if for all (x; y) ∈ V0(b; c) for all (z; t) ∈ V0(x; y) we have z ∼0 t.

For the graph T1 let V1(b; c) be the set of all (x; y) such that there is a path of length 2
from (b; c) to (x; y) in T0. The graph T1 has the following property: b ∼2 c if and only if
x ∼0 y for all (x; y) ∈ V1(b; c). And even more generally: b ∼l+2 c if and only if x ∼l y for
all (x; y) ∈ V1(b; c).
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Now we can repeat operation made with T0 to obtain T1. Namely, in T2 let V2(b; c) be
the set of all (x; y) such that there is a path of length 2 from (b; c) to (x; y) in T1. Then we
obtain: b ∼l+4 c if and only if x ∼l y for all (x; y) ∈ V2(b; c).

It follows from Lemma 4.1 that log2Bn 6 Cn log n. Thus after we repeat our procedure
r = [Cn log n] times, we will obtain the graph Tl such that b ∼2r c if and only if x ∼0 y for
all (x; y) ∈ V2(b; c). Recall that x ∼0 y means h(x) = h(y), so now we can easily compute
the set of symbols that are ∼2r -equivalent to s.

4.2 Recurrence Criterion
Here we are discussing recurrence criterion for automatic sequences.

It is not di�cult to see that all the arguments of Subsection 4.1 can be applied to the
recurrence case with appropriate changes. The only note is that while proving analogue of
Proposition 4.5 we should use the following statement instead of Proposition 2.3:

Proposition 4.9. If x is recurrent and y is periodic, then x× y is recurrent.

The proof of Proposition 4.9 is absolutely analogous to the proof of Proposition 2.3 and
is left to the reader.

Now we can formulate the recurrence criterion for morphic sequences, analogously to
Proposition 4.6:

Proposition 4.10. For all r > Bn: a sequence h(�∞(s)) is recurrent i� the symbols that
are ∼r-equivalent to s occur in �∞(s) in�nitely many times.

The symbols that are ∼r-equivalent to s occur in �∞(s) in�nitely often if and only if
some symbol that is ∼r-equivalent to s occurs in�nitely often. It is not di�cult to see that
for each a ∈ A we can check in polynomial time analyzing graph G�, whether a occurs in
�∞(s) in�nitely many times. Thus we obtain the following

Corollary 4.11. There exists polynomial-time algorithm checking whether given automatic
sequence is recurrent.

5 Factor Complexity
Factor complexity is a natural combinatorial characteristic of �nite or in�nite words. Factor
complexity of x ∈ A∞ is a function px : N → N where px(n) is the number of all n-length
factors occurring in x. For a survey on factor complexity see, e. g., [9]. Denote by F (x) the
set of all factors of a sequence x, by Fn(x) the set of all n-length factors of a sequence x.

A result from Pansiot [16] states that the factor complexity of arbitrary pure morphic
sequence adopts one of the �ve following asymptotic behaviors: O(1), �(n), �(n log log n),
�(n log n) or �(n2). In fact, factor complexity of ultimately periodic sequences is O(1),
while for non-periodic sequences it is always 
(n) according to [14].

However, for uniformly recurrent morphic sequences the situation is much easier.

Theorem 5.1. If x is an uniformly recurrent morphic sequence, then px(n) = O(n).

10



The proof of the theorem is in following several lemmas. Probably, the keynote lemma
containing a funny trick is Lemma 5.7.

Lemma 5.2 (essentially, from Pansiot [16]). If x is a pure morphic sequence generated
by a primitive morphism, then px(n) = O(n).

Lemma 5.3 (Cassaigne, Nicolas [3]). Let A, B be two alphabets, let f : A∗ → B∗ be
a non-erasing morphism, and let M be the maximal length of f(a) over all a ∈ A. Then
pf(x)(n) 6 Mpx(n) for every in�nite word x ∈ AN and n ∈ N.

Proof. For each v ∈ Fn(f(x)) there exists a representation f(t) = uvw, where t ∈ Fn(x),
u;w ∈ B∗, and u is chosen with the minimal possible length; clearly, |u| 6 M . Thus
the cardinality of Fn(f(x)) is not greater than the number of all pairs (|u|; t) from such
representations, i. e., not greater than M · |Fn(x)| = Mpx(n).

Lemma 5.4 (Pansiot [16]). Let A be an alphabet, s ∈ A, and let � : A∗ → A∗ be a
morphism prolongable on s. Assume that the set of all �-bounded factors of �∞(s) is �nite.
Then �∞(s) can be written as the image under a non-erasing morphism of a pure morphic
sequence generated by a growing morphism.

Lemma 5.5. For every two in�nite words x and y, if x is uniformly recurrent and F (y) ⊆
F (x), then F (y) = F (x).

Lemma 5.5 is a well-known minimality property of uniformly recurrent sequences, e. g.,
see [12].

Lemma 5.6. Let B be an alphabet and let � : B∗ → B∗ be a growing morphism. There exist
a natural n and a letter t ∈ B such that �n is prolongable on t.

Proof. Let b be an element of B. Since B is �nite, there exist i; j with i < j such that �i(b)
and �j(b) start with the same letter, say t. Hence �j−i(t) begins with t. Since � is growing,
�j−i is growing too. Thus �j−i is prolongable on t.

Lemma 5.7. For every pure morphic sequence x generated by a growing morphism, there
exists a pure morphic sequence y generated by a primitive morphism such that F (y) ⊆ F (x).

Proof. Suppose x = �∞(s) where � is growing. Let B be a strongly connected component in
the incidence graph G� with no outgoing edges. Then � restricted to B induces a growing
irreducible morphism from B∗ to B∗. According to Lemma 5.6, there exist t ∈ B and n such
that �n is prolongable on t. If �n is primitive, then we are done and (�n)∞(t) is a suitable
choice for y, since t and therefore all its morphic powers occur in x.

Suppose �n is not primitive. It means that B is a proper subgraph of G�, because other-
wise �n is both prolongable and irreducible, and thus primitive. Now repeat the procedure:
consider G�n (which is B in fact), �nd some its strongly connected component with no out-
going edges, consider an appropriate power of �n which is prolongable on some letter, and
so on.

Thus on each step of this argument we either �nd a suitable y, or decrease the size of the
current subgraph. So we are done by induction.
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Now we are ready to prove the main theorem of this section. Recall that it establishes the
factor complexity of arbitrary uniformly recurrent morphic sequence to be at most linear.

Proof of Theorem 5.1. Suppose x = h(�∞(s)) is an uniformly recurrent morphic sequence
with � : A∗ → A∗, h : A→ B. There are two possibilities.

1) There exist in�nitely many �-bounded factors in �∞(s). Then by Proposition 3.2 there
exists a non-empty w ∈ A∗ such that wn occurs in x for each n. Therefore (h(w))n occurs
in x for each n, and hence x is periodic, which means that its complexity is O(1).

2) There are only �nitely many �-bounded factors in �∞(s). Then by Lemma 5.4 �∞(s)
can be represented as �∞(s) = g( ∞(t)) for some  : C∗ → C∗, g : C∗ → D∗ with  
growing and g non-erasing. By Lemma 5.7 there exists pure morphic sequence y generated
by a primitive morphism such that F (y) ⊆ F ( ∞(t)). Hence F (h(g(y))) ⊆ F (x), but x is
uniformly recurrent, therefore by Lemma 5.5 we have F (h(g(y))) = F (x). Thus for some
constant M

px(n) = ph(g(y))(n) 6 Mpy(n) = O(n);
where the second inequality holds by Lemma 5.3 and the last equality holds by Lemma 5.2.

Interestingly, almost nothing is known about factor complexity of arbitrary morphic
sequences. Probably, the only progress is done in [4]. It is shown there that for morphic
sequences there exist at least in�nitely many complexity classes of the form �(n1+ 1

k ) for
k ∈ N. However, recently two conjectures were made [7].

Conjecture 5.8 (Rostislav Devyatov). The factor complexity of arbitrary morphic se-
quence is either of the form �(n1+ 1

k ) for some k ∈ N, or of the form O(n log n).

Conjecture 5.8 seems to be proved by its author but the proof is extremely di�cult and
has to be additionally rechecked several times. That is why it is formulated as a conjecture
here.

To the contrary, the status of the following conjecture is much weaker, and no proof is
known so far.

Conjecture 5.9 (Rostislav Devyatov). The factor complexity of arbitrary morphic se-
quence adopts one of the following asymptotic behaviors: O(1), �(n), �(n log log n), �(n log n),
�(n2) or �(n1+ 1

k ) for some k ∈ N.

6 Arbitrary Morphic Sequences
It is not still known whether the problem of determining uniform recurrence of arbitrary
morphic sequence is decidable, though we believe that it is true.

Conjecture 6.1. It is decidable given arbitrary morphic sequence, whether this sequence is
uniformly recurrent or not.
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Proposition 6.2 given below somehow supports Conjecture 6.1 (but in fact even does not
follow from it!).

A very natural characteristic of uniformly recurrent sequence is uniform recurrence reg-
ulator. An uniform recurrence regulator of an uniformly recurrent sequence x is a function
f : N→ N such that every n-length factor u of x occurs in each f(n)-length factor of x, and
f(n) is chosen to be minimal satisfying this condition. So an uniform recurrence regulator
somehow regulates how (uniformly) recurrent a sequence is.
Proposition 6.2. If x is both morphic and uniformly recurrent, then its uniform recurrence
regulator is computable.
Proof. First, notice that the set of factors of morphic sequence is decidable. In other words,
there exists an algorithm that given a morphic sequence and a word, says whether this word
occurs in the sequence.

Second, if an uniformly recurrent sequence is computable and its set of factors is decidable,
then the uniform recurrence regulator of this sequence is computable. Indeed, suppose we
want to check whether l > f(n). For that we �nd all n-length factors and all l-length factors,
we can do it due to decidability of the set of factors. Then we check whether each of l-length
factors contains all n-length factors. If so, then l > f(n). Thus to �nd precise value of f(n),
we can check all natural numbers starting from n until some of them works.

Proposition 6.2 can easily be made uniform: there exists an algorithm that given a mor-
phic sequence computes its uniform recurrence regulator whenever this sequence is uniformly
recurrent.

However, Proposition 6.2 does not imply the decidability of uniform recurrence for mor-
phic sequences. In fact, this decidability also does not imply Proposition 6.2. By the way,
Proposition 6.2 allows us to hope that this algorithm of decidability exists.

Monadic theory of morphic sequence is decidable, e. g., see [2]. In fact, it also follows from
the result from [6] that �nite transduction of a morphic sequence is morphic, see also [1].

The property of recurrence for x ∈ �N can be written as
(for each pre�x u of x) (there are in�nitely many occurrences of u in x).

The property \there are in�nitely many occurrences of u in x" for morphic x can be al-
gorithmically checked, since it can be written in monadic language. Thus the problem of
determining recurrence for morphic sequences is in the class �0

1 of Kleene hierarchy.
It is not di�cult to see that the problem of determining uniform recurrence for morphic

sequences is in �0
2, since it can be written as

(for each pre�x u of x) (there exists l) such that (u occurs on each l-length segment of x),
where the last property can be algorithmically checked for morphic sequences again by
monadic logic reasons.

However, it turns out that this problem lies in �0
1. Indeed, by Lemma 5.7 and all the

proof of Theorem 5.1, for a morphic x we can �nd morphic y such that x ∈ UR whenever
F (x) = F (y), and thus uniform recurrence of x can be expressed by \∀ ∃"-formula.

Finally, notice that Theorem 7.5.1 from [1] allows us to represent an arbitrary morphic
sequence as h(�∞(s)) with � non-erasing. So it is su�cient to solve our main problem for
morphic sequences generated by non-erasing morphisms.
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7 Conclusion
We have described two polynomial-time algorithms, but without any precise bound for their
working time. Of course, it can be done after deep analyzing of all the previous, but is
probably not so interesting.

The problem of �nding an e�ective periodicity criterion in the case of arbitrary morphic
sequences is also of great interest, as well as criteria for variations with periodicity and
uniform recurrence: ultimate periodicity, generalized uniform recurrence (called generalized
almost periodicity in [19]), ultimate uniform recurrence, etc. If one notion is a particular case
of another, it does not mean that corresponding criterion for the �rst case is more di�cult
(or less di�cult) than for the second.

Of course, to continue investigations about factor complexity is also the problem of great
interest. In particular, one can try to investigate factor complexity for morphic sequences of
some special types.
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