
The Möbius contest paper:
Braid group actions on triangulated categories

Alexander I. Efimov∗,
Department of Mechanics and Mathematics of Moscow State University;

Independent University of Moscow

Abstract. The main purpose of this paper is to investigate one special type of braid group actions on
triangulated categories. It is obtained from the general construction invented recently by R. Anno. It can be
also considered as a generalization of actions invented by Seidel and Thomas. The main result is faithfulness
under some assumptions.

1 Introduction

This paper is devoted to studying of braid group actions on triangulated categories. There are many
known and conjectural examples of such actions, e.g.

1. Actions generated by a chain of spherical objects [STh, HKh].

2. Actions on the derived categories of constructible sheaves of vector spaces on flag varieties [Ro1,
Ro2] and the related actions on Db(O0), where O0 is a regular block of the highest weight category
for sln, and on its subcategories [St].

3. Actions on categories of complexes of matrix factorizations [KR].

4. Actions on Fukaya-Floer categories of various symplectic manifolds [SS].

5. Affine braid group action on Db(T ∗Fl), where Fl is a full flag variety of n-dimensional C-vector
space [KhTh].

R. Anno [A] has recently invented the general construction of braid group actions using spherical
functors. In this construction the important difficulty is that cones are not functorial. To avoid this
difficulty one can work either with enhanced triangulated categories (see [BoK2]) or with algebraic
triangulated categories (following Keller). We choose the second way which is more convenient for us.

Recall that in [STh] there defined the notions of spherical object in triangulated category which gives
an exact autoequivalence (more precisely, they work not in arbitrary categories because they need some
cones to be functorial), and of (Am)-configuration of such objects which give action of braid group Bm+1

on the category by corresponding autoequivalences, i.e. satisfy braid relations. These spherical objects
correspond to spherical functors from the bounded derived category of finite-dimensional F-vector spaces
Db(F-V ectf.d.) to our triangulated category, and an (Am)-configuration of spherical objects correspond
to an (Am)-configuration of spherical functors.

∗e-mail: efimov@mccme.ru
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Certainly one can consider something more complicated then Db(F-V ect). For example, Khovanov
and Thomas [KhTh] in their construction of action of affine braid group on Db(T ∗Fl) in fact deal with
the spherical functors from Db(T ∗FLi) to Db(T ∗Fl), where Fli are partial flag varieties.

The construction in [STh] was motivated by occurence of braid group actions in symplectic geometry
(see [Khos, S]), and Kontsevich’s homological mirror symmetry conjecture. These actions are generated
by Dehn twists along Lagrangian spheres. As it is pointed out in [Ro1], where the notion of spherical
functor is defined, there should exist autoequivalences of the derived categories of Calabi-Yau varieties
with respect to spherical functors, which naturally correspond to symplectomorphisms associated to
Lagrangian submanifolds more complicated than spheres.

The main purpose of this paper is to study the case when the spherical functors are from Db(Vk)
to the given triangulated category T . Here Vk is the quiver with k vertices and without arrows. To
define such a functor is the same as to set a sequence of k objects in T satisfying some properties,
see subsection 4.2. We define the notion of (Ak

m)-configuration of such objects which corresponds to
(Am)-configuration of spherical functors. Hence, we have an action of Bm+1. Further, we prove the
faithfulness of this action under some assumptions (see subsection 4.3).

The paper is organized as follows. In section 2 we expose some general notions and facts including
(algebraic) triangulated categories, adjoint functor, Serre functors and some notions concerning quivers.

In section 3 we expose the construction by R. Anno in our setting of algebraic triangulated categories.
We illustrate this construction in the example of spherical objects studied by Seidel and Thomas.

The section 4 is the main one in this paper. First, in subsection 4.1 we show how to provide the
bounded derived category of rather general abelian category with a structure of an algebraic triangulated
category. Further, we work with such derived categories (although one can prove the same results for
sufficiently well algebraic triangulated categories). Then, in subsection 4.2 we give the definition of
multi-twist functors from given category to itself, with respect to a sequence of k objects in our category.
This corresponds to twist functors with respect to functors from Db(Vk) ∼= Db(Fk−mod) (not necessarily
spherical) to our category. We obtain the corresponding notion of n-spherical sequences of k objects.
Such sequences give autoequivalences. Further, in subsection 4.3 we construct Bm+1-actions generated
by multi-twist functors with respect to n-spherical sequence. The rest part of section 4 is devoted to
the proof of its faithfulness for n ≥ 2k. To do that, we path from our category to the derived category
of some dg-algebra and describe its cohomology algebra Ak

m,n (subsection 4.4). Then, in subsection 4.5,
we prove that this cohomology algebra is intrinsically formal for if n ≥ 2k (see definition there). This
allows us to work with D(Ak

m,n) (in sense of subsection 4.4) instead of the derived category of dg-
algebra. Finally, in subsection 4.6 we construct Bm+1-action on its subcategory D′(Ak

m,n) of modules
with bounded cohomology (in fact, it extends to D(Ak

m,n) but we do not need it), prove the faithfulness
of this action, and prove as a consequence the main result on faithfulness of the initial action.

In section 5 we make some general remarks and give some examples.
Acknowledgements. I would like to thank Alexei Bondal, Alexander Kuznetsov and Dmitry Orlov

for very useful discussions. I am also grateful to Alexander Kuznetsov for constant attention during the
preparation of this version of the paper, which is especially for Möbius contest.

2 Preliminaries.

2.1 Triangulated categories.

A triangulated category is an additive category T equipped with an autoequivalence T : T → T ,
A 7→ A[1], which is called ”the shift” and a collection of distinguished triangles

A1
f1−−−→ A2

f2−−−→ A3
f3−−−→ A1[1]
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of morphisms in T satisfying certain axioms, see [Ve]. We write A[i] instead of T i(A) and

Homi(A1, A2) = Hom(A1, A2[i]).

The main example of a triangulated category is the derived category D(A) (or D∗(A), where ∗ ∈
{+,−, b}) of an abelian category A. In this case the shift functor moves a complex to the left by one
and changes the sign of the differential, and distinguished triangles are triangles which are isomorphic to
the mapping cones of morphisms of complexes. For A1, A2 ∈ A we have Homi(A1, A2) = Exti(A1, A2).

Another important example which we will also consider is the derived category (and its bounded
variants) of a dg-algebra (see subsection 4.4). Other examples are provided by semiorthogonal decom-
position (see subsection 2.4)

Definition 2.1. Exact functor between triangulated categories T1, T2 is a pair (F, λ) which consists of
an additive functor F : T1 → T2 and an isomorphism of functors λ : F ◦ [1] → [1] ◦ F , such that for
each distinguished triangle

A1
f1−−−→ A2

f2−−−→ A3
f3−−−→ A1[1]

in T1 the triangle

F (A1)
F (f1)−−−→ F (A2)

F (f2)−−−→ F (A3)
λ(A1)◦F (f3)−−−−−−−→ F (A1)[1]

in T2 is also distinguished.

If for some additive F : T1 → T2 such λ exists then we will say that F is exact. For example, derived
functors between derived categories of abelian categories are exact.

2.2 Algebraic triangulated categories.

In this paper we will work with algebraic triangulated categories. They allow us to take cones of
morphisms of exact functors. Here we follow [Ro1], subsection 8.1.1, and [Ro2], subsection 2.1.1.

Definition 2.2. A Frobenius category is an exact category with enough injectives and projectives, and
such that the classes of projectives and injectives coincide.

It is well-known that the stable category of a Frobenius category (see [K4] for definition) is always
triangulated (see [H]).

Definition 2.3. A triangulated category is called algebraic if it is the stable category of some Frobenius
category

By Komacyc(E − proj) we denote the category of acyclic complexes of projective objects in E . It
is also a Frobenius category. By Frob we denote the 2-category of Frobenius categories. 1-arrows in
Frob are exact functors which send injectives to projectives, and 2-arrows are natural transformations
(i.e. morphisms in the usual sence) of functors. Similarly, we define the 2-category Tr of triangulated
categories. 1-arrows in Tr are exact functors and 2-arrows in Tr are morphisms between functors.

We have a 2-functor from Frob to Tr which sends E to its stable category Ē . This 2-functor factors
through the endo-2-functor E 7→ Komacyc(E − proj) .

The category of exact functors Komacyc(E − proj) → Komacyc(E ′ − proj), preserving projectives,
is a Frobenius category. Let AlgTr(E , E ′) be its stable category. For two exact functors F, G :
Komacyc(E − proj) → Komacyc(E ′ − proj) we have that HomAlgTr(E , E ′) is the image of Hom(F, G)
in HomFun(Ē,Ē ′)(F̄ , Ḡ).

This defines the 2-category AlgTr of algebraic triangulated categories. Note that its objects are
Frobenius categories. The natural 2-functor from AlgTr to Tr (which sends E to Ē) is 2-full and
2-faithful.
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For exact functors F, G : Komacyc(E − proj) → Komacyc(E ′ − proj) and for the morphism of
functors φ : F → G we have a naturally defined Cone(φ) and natural morphims G → Cone(φ) and
Cone(φ) → F [1]. This allows us to take cones of morphisms of exact functors between algebraic
triangulated categories.

2.3 Adjoint functors.

Let F : T1 → T2, G : T2 → T1 be two functors. We say that G is left adjoint to F , or F is right adjoint
to G if there exists a bifunctorial isomorphism

Hom(G(−), ?) ∼= Hom(−, F (?)).

If there exists a left (or right) adjoint to a given functor then it is unique up to an isomorphism. Clearly,
a left (right) adjoint to the composition of functors is the composition of left (right) adjoint to them.

Further, if F is left adjoint to G then there exist natural morphisms of functors η1 : G ◦ F → IdT1 ,
η2 : IdT2 → F ◦ G obtained by applying the adjunction isomorphism to the identity morphisms of F
and G respectively.

The [GM] for explanation of the statement of the following Lemma.

Lemma 2.4. Suppose that some morphisms of functors η1 : G ◦F → IdT1, η2 : IdT2 → F ◦G are given
and the compositions

F
η2(F )−−−→ F ◦G ◦ F

F (η1)−−−→ F,

G
G(η1)−−−→ G ◦ F ◦G

η2(G)−−−→ G

coincide with the identity morphisms of F and G respectively. Then the composition

Hom(G(−), ?)
F (−,?)−−−−→ Hom(FG(−), F (?)) −−−→ Hom(−, F (?))

is isomorphism. Here the last map is the composition with η2. In particular, G is left adjoint to F .

The next Proposition is proved in [BoK].

Proposition 2.5. Let F and G be adjoint additive functors between triangulated categories. If F is
exact, then G is also exact.

2.4 Semiorthogonal decompositions.

Let T be a triangulated category, S ⊂ T be its full triangulated subcategory. This means that S
is closed under taking cones of morphisms. By S⊥ (⊥S) we denote its right (resp. left) orthogonal
category, i.e. the full subcategory which consists of objects B ∈ T , such that Hom(A,B) = 0 (resp.
Hom(B,A) = 0) for each A ∈ S. From two standard long exact sequences of Hom’s it follows that S⊥
and ⊥S are also triangulated.

Definition 2.6. Let S ⊂ T be as above. Then S is called right (resp. left) admissible if for each X ∈ T
there exists a distinguished triangle A → X → B, where A ∈ S, B ∈ S⊥ (resp. C → X → A, where
C ∈⊥ S, A ∈ S). A subcategory S is called admissible if it is both left and right admissible.

The following Proposition is proved in [Bo].

Proposition 2.7. Let S ⊂ T be as above. The following conditions are equivalent:
a) S is right (resp. left) admissible,
b) the embedding functor S ↪→ T admits right (resp. left) adjoint,
c) T is generated by S and S⊥ (resp. ⊥S and S) as a triangulated category.
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Now we define the notion of semiorthogonal decomposition.

Definition 2.8. Let 〈S1, . . . ,Sm〉 be a collection of admissible subcategories in T . It is called semiorthog-
onal decomposition if Sj ⊂ S⊥i for i > j and S1, . . . , Sm generate T as a triangulated category.

The important example of semiorthogonal decomposition is the following. Suppose that T is F-linear
category with finite-dimensional Hom’s and such that for any A,B ∈ T we have Homk(A,B) = 0 for
almost all k ∈ Z.

Definition 2.9. An object E ∈ T is called exceptional if

Homk(E, E) =

{
1 if k = 0

0 otherwise.

The following Proposition is proved in [Bo].

Proposition 2.10. A subcategory generated (as triangulated subcategory) by an exceptional object is
equivalent to the bounded derived category of finite-dimensional vector F-spaces Db(F-V ectf.d.) and is
admissible.

Definition 2.11. A collection of exceptional objects E1, . . . , Ek is called exceptional if Homk(Ei, Ej) = 0
for i > j, k ∈ Z.

Clearly if T is generated by an exceptional collection then it admits a semiorthogonal decomposition
into subcategories derived which are equivalent to Db(F-V ectf.d.).

2.5 Serre functors.

The Serre-Grothendieck duality on a smooth projective variety was axiomatized by Bondal and Kapra-
nov [BoK] into the notion of Serre functor on a triangulated category. Let F be a field.

Definition 2.12. Let T be an F-linear category with finite-dimensional Hom’s. An additive functor
S : T → T , commuting with the shift, is called Serre functor if it is an equivalence, and there exist
bifunctorial isomorphisms

ϕA,B : Hom(A,B) → Hom(B, S(A))

for any A,B ∈ T .

Clearly, if a Serre functor exists then it is unique up to isomorphism of functors. The following three
Propositions are proved in [BoK]:

Proposition 2.13. Any Serre functor is exact.

Proposition 2.14. A triangulated category T admits a Serre functor iff all contravariant functors
Hom(X,−)∨ and covariant functors Hom(−, X)∨ are representable.

Proposition 2.15. Let 〈S1, . . . ,Sm〉 be a semiorthogonal decomposition in T . Then T admits a Serre
functor iff each of Si does.

In particular, if T is generated by an exceptional collection of objects and for any A,B ∈ T we have
Homk(A,B) = 0 for almost all k ∈ Z then T admits a Serre functor.
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2.6 Quivers.

A quiver Q = (Q0, Q1) is a finite oriented graph with the set of vertices Q0 and the set of arrows Q1.
For ϕ ∈ Q1 denote by t(ϕ) and h(ϕ) its tail and its head respectively. An (oriented) path in Q is a
sequence ρ = (ρ1, . . . , ρl) of arrows satisfying t(ρi+1) = h(ρi), 1 ≤ i ≤ l− 1 (l can be equal to zero). We
write t(ρ) and h(ρ) for t(ρ1) and h(ρl) respectively. Each vertex i ∈ Q0 can be considered as a path of
length zero. We denote this path by (i). Let F be a field. By F[Q] we denote the path algebra of Q.
As F-vector space it is freely generated by all paths ρ ∈ Q. The multiplication is given by

ρ · γ =

{
ργ if t(γ) = h(ρ)

0 otherwise.

Let I ∈ F[Q] be a two-sided ideal in F[Q]. A representation of (Q, I) is the collection of F-vector spaces
Mi, i ∈ Q0, and homomorphisms Mα : Mt(α) → Mh(α), α ∈ Q1, satisfying the relations in I. This means
that

∑
i1,...,il

ci1,...,ilMαil
. . .Mαi1

= 0 if
∑

i1,...,il

ci1,...,ilαi1 . . . αil ∈ I. A morphism of two representations N

and M of (Q, I) is a family of linear maps fi : Ni → Mi, i ∈ Q0, satisfying fh(α)Nα = Mαft(α). It is
well-known that the category Rep(Q, I) of finite-dimensional representations of (Q, I) is equivalent to
the category mod− (k[Q]/I) of finite-dimensional right F[Q]/I-modules. We write D∗(Q, I) instead of
D∗(Rep(Q, I)).

Suppose that the quiver Q has not oriented cycles. Denote by Si the simple representation of (Q, I)
in the i-th vertex. It has (Si)j = Fδij for j ∈ Q0 and (Si)α = 0 for each α ∈ Q1. Further, denote by
Pi the projective representation in the i-th vertex. As a right F[Q]/I-module, it equals to (i)F[Q]/I.
Analogously, Ii is an injective representation in the i-th vertex.

3 General spherical functors and braid group actions.

In this section we expose the results of R. Anno [A] working with algebraic triangulated categories.

3.1 Spherical functors.

Here we define the notion of a spherical functor between two triangulated categories and associate
autoequivalences to such functors. Let Φ∗ : S → T be an exact functor between triangulated categories.
Suppose that it admits a right adjoint functor Φ! : T → S. Then we give the following

Definition 3.1. In the above notation, the twist functor TΦ∗ : T → T corresponding to Φ∗ is defined
as follows:

TΦ∗ = Cone(Φ∗Φ! → IdT )

The functor TΦ∗ is always exact. The proof of the following Proposition is left to the reader.

Proposition 3.2. Let Φ∗ : S → T be an exact functor and let Ψ : S ′ → S be an exact equivalence of
triangulated categories. Then the functors TΦ∗ and TΦ∗◦Ψ are naturally isomorphic.

Now suppose that Φ∗ also admits a left adjoint functor Φ∗ : T → S.

Definition 3.3. In the above notation we define the dual twist functor T ′
Φ∗ as follows:

T ′
Φ∗ = Cone(IdT → Φ∗Φ∗)[−1]
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We want to know when TΦ∗ and T ′
Φ∗ are quasi-inverse autoequivalences. Define ΓΦ∗ , Γ′Φ∗ : S → S

as follows:
ΓΦ∗ = Cone(IdS → Φ!Φ∗), Γ′ = Cone(Φ∗Φ∗ → IdS).

Note that we have the following natural morphisms of functors:

Φ! → ΓΦ∗Φ
∗, Γ′Φ∗Φ

! → Φ∗.

Now we define the notion of spherical functor.

Definition 3.4. An exact functor Φ∗ : S → T is called spherical if the following conditions hold:
(GS1) Φ∗ admits left and right adjoint functors

Φ∗ : T → S, Φ! : T → S
respectively;

(GS2) the functor ΓΦ∗ : S → S is an equivalence;
(GS3) the natural morphism Φ! → ΓΦ∗Φ

∗ is an isomorphism.

Proposition 3.5. If the functor Φ∗ : S → T is spherical then the corresponding twist functor TΦ∗ :
T → T is an equivalence.

Proof. This is essentially Proposition 8.1 in [Ro1] or Proposition 2.1 in [Ro2].

Note that if Φ∗ is spherical then T ′
Φ∗ is also right adjoint to TΦ∗ .

3.2 Braid group actions

Let Φ1∗ : S1 → T , Φ2∗ : S2 → T be two spherical functors. We are going to give some sufficient
conditions for TΦ1∗ , TΦ2∗ to commute and to braid with each other.

Proposition 3.6. Let Φ1∗, Φ2∗ : S → T be spherical. Suppose that at least one of the compositions
Φ!

1Φ2∗ and Φ!
2Φ1∗ is isomorphic to zero. Then the corresponding twist functors commute (up to an

isomorphism), i.e.
TΦ1∗TΦ2∗

∼= TΦ2∗TΦ1∗

Proof. First show that if one of the compositions mentioned above is isomorphic to zero then the other is
zero as well. Let, for example, Φ!

1Φ2∗ ∼= 0. Then Φ∗
2Φ1∗ is left adjoint to the functor which is isomorphic

to zero and hence is also isomorphic to zero. Further, Φ!
2Φ1∗ ∼= ΓΦ2∗Φ

∗
2Φ1∗ ∼= 0.

Now prove the statement of Proposition. We have that TΦ1∗TΦ2∗ is the following convolution:




Φ1∗Φ!
1Φ2∗Φ!

2 −−−→ Φ2∗Φ!
2y

y
Φ1∗Φ!

1 −−−→ IdT





Here IdT is in degree 0. From our assumptions we have that the functor in the top left corner is
isomorphic to zero. Thus, we may replace it by zero:





0 −−−→ Φ2∗Φ!
2y

y
Φ1∗Φ!

1 −−−→ IdT





Analogously, we obtain that TΦ2∗TΦ1∗(F ) is the same convolution. This concludes the proof.
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Lemma 3.7. Let Φ1∗ and Φ2∗ be spherical. Then the functor TΦ2∗ ◦ Φ1∗ is also spherical and TΦ2∗TΦ1∗
is naturally isomorphic to T(TΦ2∗◦Φ1∗)TΦ2∗.

Proof. The first statement follows from Proposition 3.2. As in the previous Proposition, we have that
TΦ2∗TΦ1∗ is

Cone(TΦ2∗Φ1∗Φ!
1 → TΦ2∗).

Clearly, the right adjoint functor to TΦ2∗ ◦Φ1∗ is Φ!
1 ◦T ′

Φ2∗ . We have the following commutative diagram
of morphisms of functors:

TΦ2∗Φ1∗Φ!
1T

′
Φ2∗TΦ2∗ −−−→ TΦ2∗y

y
TΦ2∗Φ1∗Φ!

1 −−−→ TΦ2∗ .

Here the upper horizontal arrow is the natural morphism from G∗G∗ to Id, applied to the functor TΦ2∗ ,
where G∗ = Φ!

1T
′
Φ2∗ and G∗ = TΦ2∗Φ1∗ is an adjoint pair. The left vertical arrow is the result of applying

the functor TΦ2∗Φ1∗Φ!
1 to the natural morphism T ′

Φ2∗TΦ2∗ → Id. From Proposition 3.5 it follows that
the left vertical arrow is an isomorphism. Taking cones of horizontal arrows we obtain the natural
morphism

T(TΦ2∗◦Φ1∗)TΦ2∗(F ) → TΦ2∗TΦ1∗

which is again an isomorphism.

Now we give a sufficient condition for Φ1∗, Φ2∗ to give autoequivalences which braid with each other.

Proposition 3.8. Suppose that Φ1∗ : S1 → T , Φ2∗ : S2 → T are spherical functors such that there
exists an exact equivalence Ψ : S1 → S2 and an isomorphism of functors

TΦ2∗ ◦ Φ1∗ ∼= T ′
Φ1∗ ◦ Φ2∗ ◦Ψ.

Then there exists the following natural isomorphism:

TΦ1∗TΦ2∗TΦ1∗
∼= TΦ2∗TΦ1∗TΦ2∗

Proof. From Proposition 3.2, Proposition 3.5 and Lemma 3.7 we obtain the following chain of isomor-
phisms:

TΦ1∗TΦ2∗TΦ1∗
∼= TΦ1∗TTΦ2∗◦Φ1∗TΦ2∗

∼= TΦ1∗TT ′Φ1∗◦Φ2∗TΦ2∗
∼= TΦ2∗TΦ1∗TΦ2∗

It is useful to note the following special case.

Proposition 3.9. If one of the functors Φ!
1Φ2∗, Φ!

1Φ2∗, Φ!
1Φ2∗, Φ!

1Φ2∗ is an equivalence then

TΦ1∗TΦ2∗TΦ1∗
∼= TΦ2∗TΦ1∗TΦ2∗ .

Proof. Analogously to the proof of Proposition 3.6 we see that if one of these four composition is
equivalence that all the other are equivalences as well. In particular, Φ!

2Φ1∗ and Φ∗
1Φ2∗ are quasi-inverse

equivalences. Further, we have

TΦ2∗Φ1∗ = Cone(Φ2∗Φ!
2Φ1∗ → Φ1∗) ∼= Cone(Φ2∗ → Φ1∗Φ∗

1Φ2∗)Φ!
2Φ1∗ ∼= T ′

Φ1∗Φ2∗ ◦ Φ!
2Φ1∗[1].

Thus, the condition of the Proposition 3.8 is satisfied and this completes the proof.

Propositions 3.6 and 3.9 lead us to the following
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Definition 3.10. A collection of spherical functors Φ1∗, . . . , Φm∗ : S → T is called an (Am)-configuration
if the following conditions hold:

(A1) If 1 ≤ i, j ≤ m and |i− j| > 1 then Φ!
iΦj∗ ∼= 0;

(A2) If 1 ≤ i ≤ m− 1 then Φ!
iΦ(i+1)∗ is an autoequivalence of S

Theorem 3.11. Let Φ1∗, . . . , Φm∗ : S → T be an (Am)-configuration of spherical functors. Then the
twist functors are exact autoequivalences and satisfy the relations of the braid group Bm+1 (up to an
isomorphism). Hence, they generate a homomorphism ρ : Bm+1 → Aut(T ).

Example: spherical objects. Recall that an object E ∈ T in F-linear triangulated category T is
called n-spherical if Hom∗(E, E) is two-dimensional, is concentrated in degrees 0 and n and for each
F ∈ T the composition Hom(E, F ) × Homn(F, E) → Homn(E, E) ∼= F is a perfect pairing. Let
S = Db(F-V ectf.d.)-the derived category of finite-dimensional vector spaces. One can check that the
spherical functors Φ∗ : S → T with ΓΦ∗

∼= [n] are in one-to-one correspondence with n-spherical objcets
in T and (Am)-configuration of such spherical functors correspond to (Am)-configurations of spherical
objects in sense of [STh].

In the next section we investigate the case when S = Db(Vk) where Vk is aquiver with k vertices
without arrows, in details.

4 One type of braid group actions and faithfullness.

4.1 Notation and assumptions.

Let F be a field. In this paragraph we consider only F-linear categories. Let A be a category. By
Kom(A), K(A), D(A) we denote the category of cochain complexes in A, the homotopy category
and the derived category respectively. Their bounded variants are denoted by Kom+(A), Kom−(A),
Komb(A), etc.

If · · · → Ck−1 → Ck → Ck+1 → . . . is a finite complex of objects in the category Kom(A) (which is
again abelian) then we write {· · · → Ck−1 → Ck → Ck+1 → . . . } for the total complex of this bicomplex
in A. For example, {C−1 → C0} corresponds to a cone of this map in the triangulated category D(A)
(or K(A)). If Ci are bicomplexes in A then we apply for them the same notation.

For C,D ∈ Kom(A), by RHom(C,D) we denote the complex of F-vector spaces with RHom(C,D)i =∏
k∈Z

Hom(Ck, Dk+i) and di
RHom(C,D)(ϕ) = dDϕ− (−1)iϕdC . Clearly, H∗RHom(C, D) = Hom∗

K(A)(C,D).

Moreover, if D is a bounded below complex of injectives or C is a bounded above complex of projectives
then H∗RHom(C,D) = Hom∗

D(A)(C, D).
Now suppose thatA admits infinite direct sums and products. Then for any objects b ∈ Kom(F-V ect),

where F-V ect) is the category of all F-vector spaces, and for C ∈ Kom(A) we can define their tensor
product b ⊗ C and the complex of linear maps RHomF(b, C) which are both objects of Kom(A). The
precise definition of RHomF(b, C) can be found in [STh] (it is denoted there by lin(b, C)). Clearly, if b
is finite-dimensional then we do not need A to admit infinite direct sums and products. Further, there
are the following natural morphisms in Kom(F-V ect) and Kom(A):

b⊗ RHom(C, D) → RHom(C, b⊗D),

RHom(C,D)⊗ b → RHom(RHomF(b, C), D),

RHom(B, RHomF(b, C))⊗D → RHomF(b, RHom(B,C)⊗D).

b⊗ RHomF(RHom(B,C), D) → RHomF(RHom(b⊗B, C), D),
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where b ∈ Kom(F-V ect), B, C, D ∈ Kom(A). These morphisms are isomorphisms if b is finite-
dimensional and quasi-isomorphisms if H∗(b) is finite-dimensional.

From this moment we suppose that one of the following holds:
I. A contains either enough injectives or enough projectives, all Hom’s between objects in A are finite-
dimensional and A has finite homological dimension.
II. A ⊂ A′ is a full abelian subcategory and A,A′ satisfy the following conditions:

(C1) any subobject and any quotient of any object in A lies again in A. Moreover, A is closed under
extensions. In other words, A is a Serre subcategory of A′;

(C2) A′ admits infinite direct sums and products;
(C3) A′ contains enough injectives and any direct sum of injectives is again injective.
(C4) for any epimorphism f : A′ → A with A′ ∈ A′, A ∈ A there exists B ∈ A and a morphism

g : B → A′ such that fg is epimorphism.

Proposition 4.1. Let X be a Noetherian scheme over F and A′ = Coh(X), A′ = Qcoh(X) be the
categories of coherent and quasi-coherent sheaves on X respectively. Then conditions (C1)-(C4) are
satisfied.

Proof. This is Lemma 2.1 in [STh].

Definition 4.2. In the case 1, if A has enough injectives then T ⊂ K+(A) is a full subcategory which
consists of bounded below complexes of injectives with bounded cohomology;
if A has enough projectives, then T ⊂ K−(A) is a full subcategory which consists of bounded above
complexes of projectives with bounded cohomology;
in the case 2, the category T ∈ K+(A′) consists of bounded below complexes C with bounded cohomology
and such that H i(C) lies in A.

Note that T is a triangulated subcategory of K+(A) (resp. K−(A), K+(A′)).

Proposition 4.3. In both cases, the categories T and Db(A) are equivalent as triangulated categories.

Proof. In the case I this is well-known, see, for example, [GM]. In the case II, this is Proposition 2.4 in
[STh].

Further, note that the category T is always algebraic triangulated category. Indeed, the correspond-
ing Frobenius category has the same objects, its morphisms are usual morphisms of complexes. A
morphism is infaltion (resp. conflation) iff it induces an injection (resp. surjection) in each term. The
class of injective-projective objects is just the class of acyclic complexes (see [K4] for explanation).

4.2 Multi-twist functors and spherical sequences.

Let Vk be a quiver with k vertices and without any arrows between them. Let S = Db(Vk) be the
derived category of finite-dimensional F-linear representations of this quiver. Recall that its simple
representation in the i-th vertex by Si. For convenience we put Si+k = Si. Let Γl1,...,lk : S → S be the
autoequivalence which sends Si to Si+1[−li] for 1 ≤ i ≤ k. In this section we describe the twist functors
TΦ∗ : T → T , where Φ∗ : S → T , for which Γl1,...,lk

∼= Cone(IdS → Φ!Φ∗)[−1] = ΓΦ∗ , construct the
corresponding braid group actions and prove their faithfulness under some assumptions.

Let E1, . . . , Ek ∈ T be a sequence of objects and Φ∗ : Db(Vk) → T be an exact functor which sends
Si to Ei. Suppose that E1, . . . , Ek satisfy the following conditions:

(K1) Ei has a finite injective resolution,
(K2) For each F ∈ T the graded vector spaces Hom∗(Ei, F ) and Hom∗(F, Ei) are finite-dimensional

over F.
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Then the functor Φ∗ admits right adjoint Φ!(F ) =
k⊕

j=1

Hom∗(Ej, F ) ⊗ Si and left adjoint Φ∗(F ) =

k⊕
j=1

Hom∗(F,Ej)∨ ⊗ Si. We denote the corresponding twist functor TΦ∗ by T(E) and the dual twist

functor T ′
Φ∗ by T ′

(E). We will also call T(E) a multi-twist functor and T ′
(E) a dual multi-twist functor.

The precise expression for T(E) is the following:

T(E)(F ) = {ev :
k⊕

j=1

RHom(Ej, F )⊗ Ej → F}. (1)

Here ev is evaluation map on each summand and F is placed in degree zero. Further, the precise
expression for T ′

(E) is

T
′
(E)(F ) = {ev′ : F →

k⊕
j=1

RHomF(RHom(F,Ej), Ej).} (2)

Here the projection of ev′ to each summand is coevaluation map; F is placed in degree zero.

Proposition 4.4. If (E ′) is another sequence obtained by reordering and shifting of objects Ei then
the multi-twist functor T(E′) is isomorphic to T(E). If (E1

1 , . . . , E
k
1 ) and (E1

1 , . . . , E
k
1 ) are 2 sequences of

objects in T and Ei
1
∼= Ei

2 for 1 ≤ i ≤ k. Then the functors T(E1) and T(E2) are isomorphic.

Proof. Follows from Proposition 3.2.

Now we are interested in those sequences (E) of objects for which Γl1,...,lk = {IdT → Φ!Φ∗}. From
this moment we put Ei+k := Ei. Moreover if i and j are indices for terms of the sequence (E) then we
write i = j instead of i ≡ j (mod k).

Definition 4.5. Assume that k ≥ 2. The sequence E1, . . . , Ek of objects in T satisfying (K1), (K2) is

called n-spherical for some n ∈ Z if there exist numbers l1, . . . , lk ∈ Z with
k∑

i=1

li = n such that

(K3) dimFHomp(Ei, Ej) =

{
1 if p = 0, i = j or p = lj, i = j + 1

0 otherwise

(K4) For each 1 ≤ i ≤ k and for each F ∈ T the composition Homli(F,Ei) × Hom(Ei+1, F ) →
Homli(Ei+1, Ei) ∼= F is a perfect pairing.

One can easily check that if (E1, . . . , Ek) is n-spherical sequence than sequences (E2, . . . , Ek, E1)
and (E1[n1], . . . , E

k[nk]) are also n-spherical for each n1, . . . , nk ∈ Z but maybe with another values of
integers l1, . . . , lk from the above definition.

Proposition 4.6. In the notation of Definition 4.5 we have Γl1,...,lk = {IdT → Φ!Φ∗}
Proof. Evident.

Proposition 4.7. If (E1, . . . , Ek) is an n-spherical sequence of objects in T then T(E) is an autoeqiva-
lence.

Proof. As we know from Proposition 4.6, {IdT → Φ!Φ∗} = Γl1,...,lk and hence is an autoequivalence.
Thus, to apply Theorem 3.5, we just need to check that the natural map Φ!(F ) → ΓΦ∗(F ) is an
isomorphism for each F ∈ T . We have that

Φ!(F ) ∼=
k⊕

j=1

Hom∗(Ej, F )⊗ Sj, Γl1,...,lkΦ
∗(F ) ∼=

k⊕
j=1

Hom∗(F,Ej−1)∨[−lj−1]⊗ Sj.
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The map Φ!(F ) → ΓΦ∗(F ) at the j-th vertex and in degree d is given by the pairing

Homd(Ej, F )× Homlj−1−d(F, Ej−1) → Homlj−1(Ej, Ej−1) ∼= F,

which is perfect by the condition (K4) from Definition 4.5. Thus, this map is an isomorphism.

4.3 The construction of braid group actions.

The next two propositions will lead us to construction of braid group actions.

Proposition 4.8. Let (E1), (E2) be sequences as in Lemma 2.10. Suppose that Hom∗(Ei
2, E

j
1) = 0 for

1 ≤ i, j ≤ k. Then T(E2)T(E1)
∼= T(E1)T(E2)

Proof. By Proposition ?? we have that

Φ!
1Φ2∗(Sj) =

k⊕
i=1

Hom∗(Ei
1, E

j
2)⊗ Si = 0.

Thus, the statement follows from Proposition 3.6.

Proposition 4.9. Let (E1
1 , . . . E

k
1 ), (E1

2 , . . . , E
k
2 ) be n-spherical sequences. Suppose that

k∑
j=1

dimFHom∗(E1
2 , E

j
1) = 1.

Then
T(E1)T(E2)T(E1)

∼= T(E2)T(E1)T(E2).

Proof. Since cyclic permutations in sequence do not change the multi-twist functor, we may assume
that dimFHom∗(E1

2 , E
1
1) = 1. Note that Hom∗(E1

2 , E
j
1) = 0 for 2 ≤ j ≤ k. From the definition of

n-spherical sequences we see that for 1 ≤ i, j ≤ k there is a natural isomorphism Homd(Ei+1
1 , Ei

2)
∼=

Homli−d(Ei
2, E

i
1)
∨. Thus, we have

dimFHom∗(Ei
2, E

i
1) = 1 for 1 ≤ i ≤ k;

dimFHom∗(Ei+1
1 , Ei

2) = 1 for 1 ≤ i ≤ k;
dimFHom∗(Ej

1, E
i
2) = 0 for j − i 6= 1;

dimFHom∗(Ej
2, E

i
1) = 0 for i 6= j.

Also, making shifts, we may assume that Hom∗(Ei
2, E

i
1) is concentrated in degree zero. Then we have

that
Φ!

2Φ1∗(Si) ∼= Si

and hence is Φ!
2Φ1∗ is an equivalence. Hence, from Proposition 3.9 we obtain the needed isomorphism.

Now we will spell out the definition of n-spherical sequences of objects in the category Db(A).

Definition 4.10. A sequence of objects E1, . . . , Ek in the category Db(A) is called n-spherical if it

satisfies the following conditions for some integers l1, . . . , lk such that
k∑

i=1

li = n. The first two of them

are only for the case II:
(S1) Ei has a finite resolution by A′-injectives, for each 1 ≤ i ≤ k;
(S2) For each F ∈ Db(A) and for each 1 ≤ i ≤ k graded vector spaces Hom∗(Ei, F ) and Hom∗(F, Ei)

are finite-dimensional over F;
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(S3) Homp(Ei, Ej) =

{
F if p = 0, i = j or p = lj, i = j + 1

0 otherwise
;

(S4) For each 1 ≤ i ≤ k and for each F ∈ Db(A) the composition Homli(F, Ei)× Hom(Ei+1, F ) →
Homli(Ei+1, Ei) ∼= F is a perfect pairing.

Clearly, if the sequence (E1, . . . , Ek) ∈ Db(A) (resp. Db(A′)) is n-spherical then each sequence
formed by resolutions of its objects in T is also n-spherical (in sense of Definition 4.5). Thus, by
Proposition 4.7, the multi-twist functor with respect to these resolutions is equivalence. Moreover, it
does not depend on these resolutions (up to an isomorphism), by Proposition 4.4. Using the equivalence
Db(A) ∼= T we obtain the multi-twist functor T(E) from Db(A) to itself. This functor is an exact
equivalence.

Definition 4.11. An (Ak
m)-configuration of n-spherical k-sequences in Db(A) is a collection

(E1
1 , . . . , E

k
1 ), . . . , (E1

m, . . . , Ek
m) of sequences such that there exist numbers k1, . . . , km−1 ∈ Z such that

for i1 6= i2 the following holds:

dimFHom∗(Ej1
i1

, Ej2
i2

) =

{
1 if i2 = i1 + 1, j2 = j1 + ki1 or i2 = i1 − 1, j2 = j1 + ki1 − 1

0 otherwise.

The following Lemma is very simple and is left to the reader:

Lemma 4.12. Let (E1
1 , . . . , E

k
1 ), . . . , (E1

m, . . . , Ek
m) be a collection of n-spherical sequences. Then it is

(Ak
m)-configuration iff for some indices j1, . . . , jm−1 ∈ {1, 2, . . . , k} and for each 1 ≤ i ≤ m− 1 we have

k∑
j=1

dimFHom∗(Eji

i , Ej
i+1) = 1.

From Propositions 4.8 and 4.9 we obtain the following result:

Theorem 4.13. Let (E1
1 , . . . , E

k
1 ), . . . , (E1

m, . . . , Ek
m) be an (Ak

m)-configuration of n-spherical sequences.
Then the multi-twist functors T(E1), . . . , T(Em) satisfy the relations of the braid group Bm+1. Thus, they
generate a homomorphism ρ : Bm+1 → Aut(Db(A)).

In the rest part of this section we prove the following Theorem on faithfullness:

Theorem 4.14. Suppose that n ≥ 2k. Then the actionof the braid group Bm+1 described in Theo-
rem 4.13 is faihfull. Moreover, even if ρ(g)(Eji

i ) ∼= Eji

i for each 1 ≤ i ≤ m and for some j1, . . . , jm ∈
{1, 2, . . . , k} then g is the identity of Bm+1.

Remark. It would be interesting to consider cases when S is the derived category of more complicated
quivers, construct the corresponding braid group actions and prove an analogue of this result.

4.4 Dg-algebras, dg-modules and graded algebras Ak
m,n.

We refer to [K1], [K2], [K3] for the general theory of dg-algebras and modules.
First of all, we fix notation and assumptions. Let R = Fmk be the semisimple F-algebra with

generators ej
i , where 1 ≤ i ≤ m, 1 ≤ j ≤ k, and with relations

ej1
i1

ej2
i2

=

{
ej1

i1
if i1 = i2, j1 = j2

0 otherwise

In this section, by a graded algebra we mean a Z-graded algebra equipped with a unital homomor-
phism of algebras ιA : R → A0. All morphisms A → B of graded algebras are required to be unital and
commute with ιA, ιB. Note that each graded algebra is an R-bimodule; for a ∈ A we write ej

ia and aej
i

instead of ιA(ej
i )a and aιA(ej

i ) respectively.
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Definition 4.15. A differential graded algebra (= dg-algebra) A is a graded algebra A equipped with
a differential dA : A → A (i.e. a homogeneous homomorphism of graded F-spaces of degree 1 which
satisfies d2

A = 0) which is also a derivation of A and satisfies dAιA = 0.
By H(A) we denote the cohomology of A considered as a graded algebra.
A morphism of dg-algebras A = (A, dA) and B = (B, dB) is a morphism f : A → B of graded

algebras such that fdA = dBf . Morphism f is called quasi-isomorphism if it induces isomorphism in
cohomology. Dg-algebras A and B are called quasi-isomorphic if there exists a chain of dg-algebras and
quasi-isomorphisms A ← C1 → · · · ← Ck → B.

In fact, A and B are quasi-isomorphic iff there exists a dg-algebra C and quasi-isomorphisms C → A,
C → B (see [K2]).

By a graded module over a graded algebra we always mean a right module. Each such module M
is obviously a right R-module and for m ∈ M we write mej

i instead of mιA(ej
i ).

Definition 4.16. A differential graded module (=dg-module) over a dg-algebra A = (A, dA) is a pair
(M) = (M, dM) which consists of a graded A-module M and a differential dM : M → M such that
dM(xa) = dM(x)a + (−1)deg(x)xdA(a) for all homogeneous x ∈ M , a ∈ A.

A morphism of dg-modules is a morphism of graded modules which is also a morphism of complexes.

We denote the category of dg-modules over a dg-algebra A by Dgm(A). The homotopy category
(which has the same objects and whose morphisms are homotopy classes of morphisms of dg-modules)
is denoted by K(A). It has an obvious structure of a triangulated category. The derived category D(A)
is, by definition, the localization of K(A) by quasi-isomorphisms. It is also triangulated. Moreover, the
category D(A) is always algebraic (see [K1] for explanation).

One can easily define the convolution of finite complexes · · · → Ci → Ci+1 → . . . of objects in
Dgm(A), we denote the result by {· · · → Ci → Ci+1 → . . . }. As usually, {C−1 → C0} corresponds to a
cone in K(A) (and in D(A)).

Further, for each morphism f : A → B of dg-algebras we have obvious functor f ∗ : Dgm(B) →
Dgm(A), which is the restriction of scalars. It is easy to see that it descends to exact functors K(B) →
K(A) and further D(B) → D(A). These functors will be also denoted by f ∗. The following Proposition
is proved in [BeL].

Proposition 4.17. If f : A → B is quasi-isomorphism, then f ∗ : D(B) → D(A) is an equivalense.

Now we spell out the definition of the standard multi-twist functors ti which generalize standard
twist functors defined in [STh]. We denote dg-modules ej

iA by Pj
i .

Definition 4.18. The standard multi-twist functors ti : Dgm(A) → Dgm(B) are defined as follows:

ti(M) = {
k⊕

j=1

Mej
i ⊗ (P )j

i → (M)}

Here the map is the multiplication map on each component.

One can see that ti is isomorphic to TP1
i ,...,Pk

i
in sence of formula (1), because Mej

i is isomorphic to

RHom(Pj
i ,M), but in general P1

i , . . . ,Pk
i do not satisfy thecondition analogous to (K2).

The following Lemma is left to the reader and is analogous to Lemma 4.2 in [STh].

Lemma 4.19. Let f : A → B be a quasi-isomorphism of dg-algebras. Then the following diagram
commutes (up to isomorphism):

D(B)
ti−−−→ D(B)

f∗
y f∗

y
D(A)

ti−−−→ D(A)
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Now let T be the category defined in subsection 4.1. Let Ej
i , where 1 ≤ i ≤ m, 1 ≤ j ≤ k, be

objects in T . Put E =
⊕

1≤i≤m,1≤j≤k

Ej
i . Then the complex of vector spaces

REnd(E) = RHom(E, E) =
⊕

1≤i1,i2≤m,1≤j1,j2≤k

RHom(Ej1
i1

, Ej2
i2

)

has natural structure of a dg-algebra. The definition of the composition is obvious, and ιend(E)(e
j
i ) =

IdEj
i
∈ RHom(Ej

i , E
j
i ) for 1 ≤ i ≤ m, 1 ≤ j ≤ k. In particular, Pj

i = RHom(E, Ej
i ). Further, we

have that RHom(E, F ) is a dg-module over REnd(E) for each F ∈ T and we obtain an exact functor
ΨE : RHom(E,−) : T → D(REnd(E)). The following Lemma is left to the reader and is analogous to
Lemma 4.3 in [STh].

Lemma 4.20. Suppose that the objects Ej
i , where 1 ≤ i ≤ m, 1 ≤ j ≤ k satisfy conditions (K1), (K2)

of Definition 2.4. Then the following diagram commutes (up to an isomorphism)

T T(Ei)−−−→ T
ΨE

y ΨE

y
D(REnd(E))

ti−−−→ D(REnd(E))

From now on we assume that (E1
1 , . . . , E

k
1 ), . . . , (E1

m, . . . , Ek
m) is an (Ak

m)-configuration of n-spherical
sequences in the category T . We want to describe the cohomology algebra of REnd(E). To do that,
it is convenient first to shift and make cyclic permutations of objects in these sequences (recall that if
(E1, . . . , Ek) is n-spherical sequence then sequences (E2, . . . , Ek, E1) and (E1[n1], . . . , E

k[nk]) are also
n-spherical).

Put

di =

[
in

2k

]
−

[
(i− 1)n

2k

]
, i ∈ N.

Using cyclic permutations and shifting we may assume that for 1 ≤ i ≤ m− 1, 1 ≤ j ≤ k

dimFHomd2j+i−2(Ej
i+1, E

j
i ) = dimFHomd2j+i−1(Ej+1

i , Ej
i+1) = 1. (3)

Let Γk
m,n be the graded quiver shown in Figure 1. It has mk vertices which we denote by (ij), where

1 ≤ i ≤ m, 1 ≤ j ≤ k. For convenience, we put ij = ij+k. Further, for each 1 ≤ i ≤ m− 1, 1 ≤ j ≤ k
there is one arrow from (ij) to ((i + 1)j) of degree d2j+i−2, and one arrow from ((i + 1)j) to (ij+1) of

degree d2j+i−1. The path starting at ij00 , pathing through ij11 , ij22 , . . . , i
js−1

s−1 and stopping at ijs
s , is denoted

by (ij00 |ij11 | . . . |ijs
s ). Let F[Γk

m,n] be the path algebra of Γk
m,n. Put ιF[Γk

m,n](e
j
i ) = (ij). Note that F[Γk

m,n] is
a graded algebra as defined above.

11 - 21 - 31q q q q q q q q(m− 1)1
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Figure 1.

For k = 1, Γ1
m,n is a graded quiver defined in [STh]. It is shown in Figure 2. Here

qi =

{
n
2

for n even
n+(−1)i

2
for n odd.
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Figure 2.

Consider the two-sided ideal Jk
m,n ⊂ F[Γk

m,n] generated by the elements (ij|(i + 1)j|ij+1) − (ij|(i −
1)j|ij+1), ((i− 1)j|ij|(i + 1)j), ((i + 1)j−1|ij|(i− 1)j+1), where 2 ≤ i ≤ m− 1, 1 ≤ j ≤ k, for m ≥ 3, and
is generated by the elements (1j|2j|1j+1|2j+1), (2j−1|1j|2j|1j+1), where 1 ≤ j ≤ k, for m = 2.

Definition 4.21. In the above notation we define Ak
m,n = F[Γk

m,n]/Jk
m,n.

Further, for k = 1, the algebra A1
m,n is defined similarly and coincides with the algebra Am,n defined

in [STh].
Since Jk

m,n is homogeneous, Ak
m,n is a graded algebra. Moreover, it is finite-dimensional over F of

dimension (4m− 2)k. Here is its (homogeneous) basis:




(ij), 1 ≤ i ≤ m, 1 ≤ j ≤ k,

(ij|(i + 1)j), 1 ≤ i ≤ m− 1, 1 ≤ j ≤ k,

((i + 1)j|ij), 1 ≤ i ≤ m− 1, 1 ≤ j ≤ k,

(1j|2j|1j+1), (2j|3j|2j+1) = (2j|1j+1|2j+1), . . . , ((m− 1)j|mj|(m− 1)j+1) =

= (m− 1)j|(m− 2)j|(m− 1)j+1, (mj|(m− 1)j+1|mj+1), 1 ≤ j ≤ k.

Note that we use the same notation for paths in F[Γk
m,n] and their classes in Ak

m,n. The following Lemma
is left to the reader and is analogous to Lemma 4.10 in [STh].

Lemma 4.22. Suppose that our (Ak
m)-configuration satisfies (3). Then H(end(E)) ∼= Ak

m,n.

Such a complicated choice of grading on Ak
m,n will be very useful in the next subsection.

4.5 Intrinsic formality of Ak
m,n

This subsection motivates our dealing with H(end(E)). Note that each graded algebra A can be
considered as a dg-algebra with zero differential. Further, if a dg-algebra A is quasi-isomorphic to
H(A) then A is called formal.

Definition 4.23. Graded algebra A is called intrinsically formal if each dg-algebra B with H(B) ∼= A
is formal.

In this subsection we prove the following Lemma:

Lemma 4.24. Algebra Ak
m,n is intrinsically formal for m ≥ 2, n ≥ 2k.

First of all, we need to say few words about Hochschild cohomology. An augmented graded algebra
is a graded algebra A equipped with a homomorphism εA : A → R of graded algebras (grading on R
is trivial) such that εAιA = IdR. Its kernel A+ is called the augmentation ideal. Let M be a graded
bimodule over A. The Hochschild cohomology HH∗(A,M) is the cohomology of the cochain complex
Cq(A, M) = HomR−R((A+)⊗Rq,M) with the differential

dq(ϕ)(a1, . . . , aq+1) = (−1)εa1ϕ(a2, . . . , aq+1)+

+

q∑
i=1

(−1)εiϕ(a1, . . . , aiai+1, . . . , aq+1)− (−1)εqϕ(a1, . . . , aq)aq+1,
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where ε = qdeg(a1), εi = deg(a1) + · · · + deg(ai) − i. Further, if M is an A-bimodule then M〈s〉 is its
shift by s in the usual sense, and the bimodule structure on M〈s〉 is defined as follows: m · a = ma,
a ·m = (−1)sdeg(a)am.

Now we state a sufficient condition for intrinsic formality of graded algebra.

Theorem 4.25. Let A be a graded algebra. If HHq(A,A〈2 − q〈) = 0 for each q > 2 then A is
intrinsically formal.

Proof. This is Theorem 4.7 in [STh].

Note that Ak
m,n has an obvious augmentation which sends (ij) to ej

i and is zero on all other basis
elements. If n ≥ 2k then the image of ιAk

m,n
coincides with (Ak

m,n)0 there are no other augmenta-

tions. (Ak
m,n)+ consists of elements of positive degree. Our proof of Lemma 4.24 is by straightforward

computation of Hochschild cohomology.

Proof of Lemma 4.24. For convenience, we put A = Ak
m,n. First we make some basic remarks. We have

that the degree of a path in Γk
m,n depends only on its vertex of beginning and on its length. If it begins

in the vertex (ij) and has length l then its degree equals to
l−1∑
p=0

d2j+i+p−2 = [ (2j+i+l−3)n
2k

] − [ (2j+i−3)n
2k

].

Since [a + b] ≥ [a] + [b] for a, b ∈ R, we have that the degree of each path of length l is ≥ [ nl
2k

]. Further,
note that path of length l > 2 is zero in Ak

m,n. Thus, A〈2− q〉 is concentrated in degrees ≤ dn
k
e+ q− 2,

because [a]− [b] ≤ da− be.
The vector F-space (A+)⊗Rq is generated by the elements of the form

(i
j1,0

1,0 | . . . |i
j1,l1
1,l1

)⊗ · · · ⊗ (i
jq,0

q,0 | . . . |i
jq,lq

q,lq
).

Such product is nonzero only if we have ip+1,0 = ip,lp , jp+1,0 = jp,lp for 0 ≤ p ≤ q − 1p (since the tensor

product is over R). Thus, its degree is ≥ [n(l1+···+lq)

2k
]. In particular, (A+)⊗Rq is concentrated in degrees

≥ [nq
2k

].
Now we want to know when Cq(A,A〈2−q〉) 6= 0. Let ϕ ∈ Cq(A,A < 2−q >) = HomR−R((A+)⊗Rq,M),

and let c = (i
j1,0

1,0 | . . . |i
j1,l1
1,l1

) ⊗ · · · ⊗ (i
jq,0

q,0 | . . . |i
jq,lq

q,lq
). Then (i

j1,0

1,0 )ϕ(c) = ϕ(c) = ϕ(c)(i
jq,lq

q,lq
). Suppose that

ϕ(c) 6= 0. It is possible only in one of the following cases:





1)i1,0 = iq,lq , j1,0 = jq,lq , ϕ(c) ∈ F(i
j1,0

1,0 );

2)i1,0 = iq,lq − 1, j1,0 = jq,lq , ϕ(c) ∈ F(i
j1,0

1,0 |(i1,0 + 1)j1,0);

3)i1,0 = iq,lq + 1, j1,0 = jq,lq − 1, ϕ(c) ∈ F(i
j1,0

1,0 |(i1,0 − 1)j1,0+1);

4)i1,0 = iq,lq , j1,0 = jq,lq − 1, ϕ(c) ∈ F(i
j1,0

1,0 |(i1,0 + 1)j1,0|ij1,0+1
1,0 ) for i1,0 ≤ m− 1 and

ϕ(c) ∈ F(mj1,0|(m− 1)j1,0+1|mj1,0+1) for i1,0 = m.

The case 1. We have deg(ϕ(c)) = q − 2 and deg(c) ≥ [nq
2k

] ≥ q. This leads to the contradiction.
The case 2. Since q > 2 and all nonzero paths in A are of length ≤ 2 and each nonzero path can have

not more than one arrow in non-horizontal direction, we have that q ≥ k + 1. Further, deg(c) ≥ [nq
2k

],
deg(ϕ(c)) ≤ d n

2k
e+ q − 2. Thus,

0 = deg(c)− deg(ϕ(c)) ≥
[nq

2k

]
−

⌈ n

2k

⌉
− q + 2 >

n(q − 1)

2k
− q =

=
( n

2k
− 1

)
q − n

2k
≥

( n

2k
− 1

)
(k + 1)− n

2k
=

n− 2k − 2

2
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Hence, we have that n ≤ 2k + 1. Then deg(c) ≥ [
nq
2k

] ≥ q > d n
2k
e+ q− 2 ≥ deg(ϕ(c)), and this leads to

a contradiction.
The case 3. This case is absolutely analogous to the previous one.
The case 4. As in case 2, we have q ≥ k + 1. Further, deg(c) ≥ [nq

2k
], deg(ϕ(c)) ≤ dn

k
e+ q− 2. Thus,

0 = deg(c)− deg(ϕ(c)) ≥
[nq

2k

]
−

⌈n

k

⌉
− q + 2 >

n(q − 2)

2k
− q =

= (
n

2k
− 1)q − n

k
≥

( n

2k
− 1

)
(k + 1)− n

k
=

(n− 2k − 4)(k − 1)− 4

2k

Hence, we have the following possibilities:





k ≥ 5, 2k ≤ n ≤ 2k + 4

k = 4, 8 ≤ n ≤ 13

k = 3, 6 ≤ n ≤ 11

k = 2, 4 ≤ n ≤ 11.

We start with the consideration of the cases n = 2k, 2k + 1, k ≥ 2.
The case n = 2k. We have that (A+)⊗Rp is concentrated in degrees ≥ p, and A〈2−q〉 is concentrated

in degrees ≤ q. For p = q + 1, we see that Cq+1(A,A〈2− q〉) = 0. Thus, we need to proof that the map

dq−1 : Cq−1(A, A〈2− q〉) → Cq(A,A〈2− q〉) is surjective. For each path (ij00 | . . . |ijq
q ) ∈ F[Γk

m,n] with iq =

i0, jq = j0+1 let ϕ
i
j0
0 ,...,i

jq
q
∈ Cq(A,A〈2−q〉) be the homomorphism which sends (ij00 |ij11 )⊗· · ·⊗(i

jq−1

q−1 |ijq
q ) to

(ij00 |ijq−1

q−1 |ijq
q ), and sends the other basis elements of (A+)⊗Rq to zero. Then the homomorphisms ϕ

i
j0
0 ,...,i

jq
q

form a basis of Cq(A,A〈2− q〉). Indeed, for grading reasons we have

ϕ((i
j1,0

1,0 | . . . |i
j1,l1
1,l1

)⊗ · · · ⊗ (i
jq,0

q,0 | . . . |i
jq,lq

q,lq
)) = 0

whenever lp > 1 for at least one p.

Now we take some elements in Cq−1(A,A〈2 − q〉). For each path (ij00 | . . . |ijq−1

q−1 ) ∈ F[Γk
m,n] with

either iq−1 = i0 + 1, jq−1 = j0 or iq−1 = i0 − 1, jq−1 = j0 + 1 let ϕ′
i
j0
0 ,...,i

jq−1
q−1

∈ Cq−1(A,A〈2 − q〉) be

the homomorphism which sends (ij00 |ij11 )⊗ · · · ⊗ (i
jq−1

q−1 |ijq−1

q−1 ) to (ij00 |ijq−1

q−1 ) and sends other basis elements
to zero. By the very definition, we have that dq−1(ϕ′

i
j0
0 ,...,i

jq−1
q−1

) = ±ϕ
i
j0
0 ,...,i

jq−1
q−1 ,i

j0+1
0

± ϕ
i
jq−1−1

q−1 ,i
j0
0 ,...,i

jq−1
q−1

.

Further, for each path (ij00 | . . . |ijq
q ) ∈ F[Γk

m,n] with i2 = i0 (and hence j2 = j0+1), iq = i0, jq = j0+1. Let

ϕ′′
(i

j0
0 |...|i

jq
q )
∈ Cq−1(A, A < 2−q >) be homomorphism which sends (ij00 |ij11 |ij22 )⊗(ij22 |ij33 ) · · ·⊗ . . . (i

jq−1

q−1 |ijq
q )

to (ij00 |ij11 |ijq
q ) and sends other basis elements to zero. Then we have that

dq−1(ϕ′′
i
j0
0 ,...,i

jq
q

) =

{
±ϕ

i
j0
0 ,(i0+1)j0 ,i

j2
2 ,...,i

jq
q
± ϕ

i
j0
0 ,(i0−1)j0+1,i

j2
2 ,...,i

jq
q

for 2 ≤ i0 ≤ m− 1;

±ϕ
i
j0
0 ,(i0+1)j0 ,i

j2
2 ,...,i

jq
q

for i0 = 1.

Therefore, we obtain the following relations in HHq(A,A〈2− q〉):
1) [ϕ

i
j0
0 ,...,i

jq
q

] = ±[ϕ
i
j1
1 ,...,i

jq
q ,i

j1+1
1

];

2) [ϕ
i
j0
0 ,...,i

jq
q

] = ±[ϕ
i
j0
0 ,(i1−2)j0+1,i

j2
2 ...,i

jq
q

] if i0 = i2, i1 = i0 + 1;

3) [ϕ
i
j0
0 ,...,i

jq
q

] = 0 if i0 = i2 = 1 (and hence i1 = 1).

Using these relations it is easy to prove that HHq(A, A〈2 − q〉) = 0. Indeed, show that each
class [ϕ

i
j0
0 ,...,i

jq
q

] is zero. Using the relation 1), we may assume that i1 is maximal of all ip. Then

i0 = i2 = i1−1. For i1 = 2 the relation 3) says that [ϕ
i
j0
0 ,...,i

jq
q

] = 0. For i1 = 2 the relation 2) shows that
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our class coincides, up to a sign, with another such class, for which the sum (i1 + · · · + iq) is smaller.
Thus, by induction over (i1 + · · ·+ iq) we obtain that all our classes are zero.

The case n = 2k+1. We prove that this case is impossible. Note that deg(c) ≥ [n(l1 + · · ·+ lq)2k] ≥
[ (2k+1)(2k+2)

2k
] = 2k + 3. Further, dn

k
e + q − 2 = q + 1 ≥ deg(ϕ(c)). Hence, q ≥ 2k + 2. In the case

q = 2k + 2 we have that, on one side, since deg(ϕ(c)) = 2k + 3, then the degree of (i
j1,0

1,0 |i
jq,lq−1

q,lq−1 |i
jq,lq

q,lq
) in

A equals to 3, and, on the other side, since deg(c) = 2k + 3, the degree of (i
j1,0

1,0 |i
jq,lq−1

q,lq−1 |i
jq,lq

q,lq
) in A equals

to deg(c)− 2k − 1 = 2, this leads to a contradiction.
Suppose that q > 2k + 2. Then we have that l1 + · · ·+ lq > 2k + 2, and hence l1 + · · ·+ lq ≥ 4k + 2

and deg(c) ≥ [ (2k+1)(4k+2)
2k

] = 4k + 4, and, analogously, q ≥ 4k + 3. Thus,

0 = deg(c)− deg(ϕ(c)) ≥
[
(2k + 1)q

2k

]
− d2k + 1

k
e − q + 2 ≥

≥
[
(2k + 1)(4k + 3)

2k

]
+q−4k−3−d2k + 1

k
e−q+2 =

[
(2k + 1)(4k + 3)

2k

]
−4k−4 =

[
2k + 3

2k

]
≥ 1,

this leads to a contradiction.
All the other cases. The other cases can be considered as follows. Let n = 2k + t. Using similar

arguments one obtains that

⌈
t

k

⌉
+ q =

⌈n

k

⌉
+ q − 2 ≥ deg(ϕ(c)) = deg(c) ≥

[
n(2k + 2)

2k

]
≥ n + 2 +

[
t

k

]
,

and hence q ≥ n + [n
k
]− d t

k
e. Thus,

0 = deg(c)−deg(ϕ(c)) ≥
[nq

2k

]
−

⌈n

k

⌉
−q+2 ≥

[
n(n + [n

k
]− d t

k
e)

2k

]
+q−n−

[n

k

]
+

⌈
t

k

⌉
−

⌈n

k

⌉
−q+2 ≥

≥
[
n(n + [n

k
]− d t

k
e)

2k

]
− n−

[n

k

]

Then one checks that the expression on the right is positive in our cases, and this leads to a contradiction.
This finishes the proof.

4.6 Faithfulness of action on D′(Ak
m,n) and proof of main theorem.

Due to Lemma 4.17, Lemma 4.19, Proposition 4.20 and Lemma 4.24, we may work with the cate-
gory D(Ak

m,n) instead of D(REnd(E)). It will be more convenient for us to consider its full sub-
category D′(Ak

m,n) which consists of dg-modules with finite-dimensional cohomology. Then one can
check that the sequences (P1

i , . . . ,Pk
i ) are n-spherical in D′(Ak

m,n). Further, the collection of sequences
(P1

1 , . . . ,Pk
1 ), . . . , (P1

m, . . . ,Pk
m) is an (Ak

m)-configuration. Thus, we obtain the following to lemmas.

Lemma 4.26. The multi-twist functors ti : D′(A) → D′(A) are autoequivalences.

Lemma 4.27. The autoequivalences ti : D′(A) → D′(A) satisfy the relations of braid group Bm+1:

titi+1ti = ti+1titi+1 for 1 ≤ i ≤ m− 1, titj = tjti for |i− j| > 1.

It is useful to spell out the definition of the dual multi-twist functors which are quasi-inverse to ti.
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Definition 4.28. The dual multi-twist functors t′i : D′(Ak
m,n) → D′(Ak

m,n) are given by

t′i(M) = {ηi : M→
k⊕

j=1

Mej+1
i ⊗ Ωj

i}.

Here M is placed in degree zero, Ωj
i = Pj

i [d2j−1 + d2j], and the composition of ηi and projection onto
j-th component is

ηj
i (x) = x(ij|(i + 1)j|ij+1)⊗ (ij) + x((i + 1)j|ij+1)⊗ (ij|(i + 1)j)+

+ x((i− 1)j+1|ij+1)⊗ (ij|(i− 1)j+1) + x(ij+1)⊗ (ij|(i + 1)j|ij+1)

The definition is correct because the element (ij|(i + 1)j|ij+1)⊗ (ij) + ((i + 1)j|ij+1)⊗ (ij|(i + 1)j) +
((i − 1)j+1|ij+1) ⊗ (ij|(i − 1)j+1) + (ij+1) ⊗ (ij|(i + 1)j|ij+1) ∈ Aej+1

i ⊗ Ωj
i is central, i.e left and right

multiplications on it with any a ∈ Ak
m,n give the same result.

Lemma 4.27 gives us the homomorphism ρk
m,n : Bm+1 → Aut(D′(Ak

m,n)). We are going to prove the
following

Theorem 4.29. Let g ∈ Bm+1. Suppose that ρk
m,n(g)(Pj

i )
∼= Pj

i for all 1 ≤ i ≤ m, 1 ≤ j ≤ k. Then g
is central. Moreover, if n ≥ 2k then g is the identity element of Bm+1.

Recall that the center of Bm+1 is isomorphic to Z and is generated by the element (g1 . . . gm)m+1,
where gi are the standard generators.

Lemma 4.30. For each 1 ≤ i ≤ m, 1 ≤ j ≤ k one has (t1 . . . tm)m+1(Pj
i )
∼= Pj+m+1

i [2m − d2j+i−2 −
· · · − d2j+i+2m−1].

Proof. Note that

ti1(Pj
i2
) ∼=





Pj+1
i [1− d2j+i−2 − d2j+i−1] if i1 = i2 = i,

{Pj+1
i2−1[−d2j+i] → Pj

i2
} if i1 = i2 − 1,

{Pj
i2+1[−d2j+i] → Pj

i2
} if i1 = i2 + 1,

Pj
i2

if |i1 − i2| > 1.

Using this observation, it is easy to obtain that

t1 . . . tm(Pj
i )
∼=

{
Pj

i+1[1− d2j+i−2] for 1 ≤ i ≤ m− 1,

Mj
0 for i = m,

where Mj
0 = {Pj+m

1 [1− dm+2j−2− · · ·− d2m+2j−2] → · · · → Pj+1
m [1− dm+2j−2− dm+2j−1]} (the last term

is placed in degree zero). Similarly,

t′i1(Pj
i2
) ∼=





Pj−1
i [d2j+i−4 + d2j+i−3 − 1] if i1 = i2 = i,

{Pj
i2
→ Pj

i2−1[d2j+i2−3]} if i1 = i2 − 1,

{Pj
i2
→ Pj−1

i2+1[d2j+i2−3]} if i1 = i2 + 1,

Pj
i2

if |i1 − i2| > 1.

Further, t′m . . . t′1(Pj
1)

∼= {Pj−1
1 [d2j−2 + d2j−3 − 1] → · · · → Pj−m

m [d2j−2 + · · · + d2j−m−2 − 1]} =
Mj−m−1

0 [d2j−m−4 + · · ·+d2j−2−m−1]. Therefore, t1 . . . tm(Mj
0) = Pj+m+1

1 [m+1−d2j+m−2− . . . d2j+2m]
Finally, we have that

20



t1 . . . tm(Pj
1) = Pj

2 [1− d2j−1],
(t1 . . . tm)2(Pj

1) = Pj
3 [2− d2j−1 − d2j],

. . .
(t1 . . . tm)m−1(Pj

1) = Pj
m[m− 1− d2j−1 − d2j − · · · − d2j+m−3],

(t1 . . . tm)m(Pj
1) = Mj

0[m− 1− d2j−1 − · · · − d2j+m−3],
(t1 . . . tm)m+1(Pj

1) = Pj+m+1
1 [2m− d2j−1 − · · · − d2j+m].

The same argument for Pj
i instead of Pj

1 finishes the proof.

Now we need to recall some facts and notions concerning the topology of curves in 2-dimensional
disk with m + 1 marked points. We refer to [KhS, section 3] for the detailed exposition of the subject.
Let D be a closed 2-disk, 4 ⊂ D\∂D be a subset with |4| = m+1. Let Diff(D, ∂D;4) be the group
of diffeomorphisms f : D → D such that f |∂D = id and f(4) = 4. There is an obvious notion of an
isotopy within this group, and we write f0 ' f1 for isotopic diffeomorphisms. In this section by a curve
in (D,4) we mean a subset c ⊂ D\∂D which is the image of a smooth embedding γ : [0; 1] → D with
γ−1(4) = {0; 1}. Note that our curves are not oriented. One can easily define the notion of isotopy
for such curves and we also denote it by c0 ' c1. The geometric intersection number of curves c0, c1 is
denoted by I(c0, c1) and is defined as

I(c0, c1) = |(c′0 ∩ c1)\4|+ 1

2
|c′0 ∩ c1 ∩4|,

where c′0 is a curve in the isotopy class of c0 which has minimal intersection with c0 (see [KhS]). Note
that I(c0, c1) ∈ 1

2
Z>0. Here are some basic properties of geometric intersection numbers:

(I1) I(c0, c1) depends only on the isotopy classes of c0, c1;
(I2) I(c0, c1) = I(f(c0), f(c1)) for each f ∈ Diff(D, ∂D;4);
(I3) I is symmetric, i.e. I(c0, c1) = I(c1, c0).
Fix an orientation on D. Then, π0(Diff(D, ∂D;4)) is identified with braid group Bm+1 and

standard generators g1, . . . , gm ∈ Bm+1 correspond to the connected components of positive half-twist
(see [KhS] for definition) along the curves bi, which are shown in Figure 3. For f ∈ Diff(D, ∂D;4 we
write [f ] for the element of Bm+1 corresponding to the connected component of f .

y y y y yp p p p p p p p p pb1 b2 bm

Figure 3.

Definition 4.31. A curve d in (D,4) is called admissible if d ' f(bi) for some f ∈ Diff(D, ∂D;4),
1 ≤ i ≤ m.

Lemma 4.32. Suppose that c0, c1 are admissible curves and I(c0, d) = I(c1, d) for all admissible curves
d. Then c0 ' c1.
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Lemma 4.33. Let f ∈ Diff(D, ∂D;4) be a diffeomorphism such that f(bi) ' bi for 1 ≤ i ≤ m. Then
[f ] ∈ Bm+1 is central.

Now we want to prove the Lemma which relates geometric intersection numbers and our braid group
actions ρk

m,n.

Lemma 4.34. Let f ∈ Diff(D, ∂D;4) be a diffeomorphism and g = [f ] ∈ Bm+1 be the corresponding
element. Then ∑

1≤j≤k,r∈Z
dimFHomD′(Ak

m,n)(Pj1
i1

, ρk
m,n(g)(Pj

i2
)[r]) = 2I(bi1 , f(bi2))

for all 1 ≤ i1, i2 ≤ m, 1 ≤ j1 ≤ k.

To prove this Lemma, we first show that the sum on the left side does not depend on n. Let
mod-Ak

m,1 be the category of finitely generated right graded Ak
m,1-modules (without differential). We

write Db(Ak
m,1) for the bounded derived category of the abelian category mod-Ak

m,1. Denote the standard

projective modules ej
iA

k
m,1 by P j

i . If M is a graded Ak
m,n-module then M〈1〉 denotes the result of

shifting of its grading by one. This is obviously functorial in M and these functor descends to an
exact autoequivalence of the category Db(Ak

m,1). This autoequivalence should not be mixed with the
usual shift [1] in the derived category. The following multi-twist functors are not the specialization of
multi-twist functors with respect to n-spherical sequences.

Definition 4.35. Multi-twist functors t̄1, . . . , t̄m from Db(Ak
m,1) to itself are defined by

t̄i(M) = {
k∑

j=1

M(ij)⊗ P j
i → M}.

Here M(ij) is considered just as a complex of vector spaces, the tensor product is over F and the
map is the multiplication map. The following Lemma is analogous to Proposition 2.4 and Theorem
2.5 in [KhS]. It can be also proved by applying the general caonstruction of braid group actions to the
spherical functors from the bounded derived category of graded finite-dimensional F[Vk]-modules (the
grading on F[Vk] is trivial). We leave the details to the reader.

Lemma 4.36. Functors t̄1, . . . , t̄m are exact autoequivalences and satisfy braid relations (up to isomor-
phism). Thus, they generate the braid group action ρ̄k

m : Bm+1 → Aut(Db(Ak
m,1)).

Let B be subcategory of mod-Ak
m,1 which consists of finite direct sums of objects P j

i and let Kb(B)
be the full (triangulated) subcategory of Kb(mod-Ak

m,1) which consists of finite complexes of objects in
B. From the very definition, t̄i(K

b(B)) ⊂ Kb(B). The following Lemma relates the categories Kb(B)
and D′(Ak

m,n).

Lemma 4.37. There exists an exact functor G : Kb(B) → D′(Ak
m,n) such that

(1) G(P j
i ) is isomorphic to Pj

i up to shifting;
(2) There exists an isomorphism of functors G◦ < 1 >∼= [n] ◦G;
(3) The natural map

⊕
r2+nr1=0

HomKb(B)(X,Y 〈r1〉[r2]) → HomD′(Ak
m,n)(G(X), G(Y ))

is an isomorphism for all X, Y ∈ Kb(B).
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Proof. First put G(P j
i 〈r〉) = Pj

i [σ
j
i + nr], where σj

i = −d1 − · · · − d2j+i−3. Note that we have natural
isomorphisms

HomKb(B)(P
j1
i1
〈r〉, P j2

i2
〈s〉) ∼= (ij22 )(Ak

m,1)
s−r(ij11 ) ∼=

∼= (ij22 )(Ak
m,n)σ

j2
i2
−σ

j1
i1

+n(s−r)(ij11 ) ∼= HomD′(Ak
m,n)(Pj1

i1
[σj1

i1
+ nr],Pj2

i2
[σj2

i2
+ ns]).

The isomorphisms HomKb(B)(P
j1
i1
〈r〉, P j2

i2
→ HomD′(Ak

m,n)(Pj1
i1

[σj1
i1

+ nr],Pj2
i2

[σj2
i2

+ ns]) se isomorphisms
are obviously compatible with the composition. Thus they define full and faithful functor from the
full subcategory of Kb(B), which consists of the objects P j

i {r} (1 ≤ i ≤ m, 1 ≤ j ≤ k, r ∈ Z), to
D′(Ak

m,n). Extend this functor to the direct sums of P j
i {r} and then to the whole category Kb(B)

using convolutions. Note that the constructed functor is exact. Conditions (1) and (2) of the Lemma
are obviously satisfied. Since, the modules P j

i [r] are projective, the condition (3) is already known
for X = Pj1

i1
〈r〉, Y = Pj2

i2
〈s〉. Then, using Five Lemma, it is easy to obtain that it holds for all

X,Y ∈ Kb(B).

Corollary 4.38. The value of the expression

∑

r∈Z
dimFHomD′(Ak

m,n)(Pj1
i1

, ρk
m,n(g)(Pj2

i2
)[r])

depends only on m, k ∈ N, g ∈ Bm+1, 1 ≤ i1, i2 ≤ m, 1 ≤ j1 ≤ k, and does not depend on n.

Proof. From the definition of the functor G it follows that G◦ t̄i|Kb(B) ∼= ti◦G. Thus, for each g ∈ Bm+1

we have G ◦ ρ̄k
m(g)|Kb(B) ∼= ρk

m,n(g) ◦G. Hence,

∑

r∈Z
dimFHomD′(Ak

m,n)(Pj1
i1

, ρk
m,n(g)(Pj2

i2
)[r]) =

∑

r2+nr1=0,r∈Z
dimFHomKb(B)(P

j1
i1

, ρ̄k
m(P j2

i2
)〈r1〉[r2 + r]) =

=
∑

r1,r2∈Z
dimFHomKb(B)(P

j1
i1

, ρ̄k
m(P j2

i2
)〈r1〉[r2]).

The value of the last expression does not depend on n, the Corollary is proved.

Before we prove Lemma 4.34, we need the following result:

Lemma 4.39. [STh, Lemma 4.17.] Let f ∈ Diff(D, ∂D;4) be a diffeomorphism and g ∈ Bm+1 be
the corresponding element. Then

∑

r∈Z
dimFHomD′(A1

m,n)(P1
i1
, ρ1

m,n(g)(P1
i2
)[r]) = 2I(bi1 , f(bi2))

for all 1 ≤ i1, i2 ≤ m.

Proof of Lemma 4.34. Due to Corollary 4.38, it is sufficient to prove Lemma for some certain value of
n. We will prove it for n = k.

In this case we have that

di =

{
0 for i odd,

1 for i even.

We are going to construct exact functors

Ψ∗ : D(Ak
m,k) → D(A1

m,1), Ψ∗ : D(A1
m,1) → D(Ak

m,k),
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satisfying the following properties:
(Ψ1) Ψ∗(Pj

i ) is isomorphic to P1
i ;

(Ψ2) Ψ∗(P1
i ) is isomorphic to

k⊕
j=1

Pj
i ;

(Ψ3) Ψ∗ is left adjoint to Ψ∗.
Let M ∈ D(Ak

m,k). Define Ψ∗(M) as follows. As a complex of vector F-spaces, it equals to M.
Note that

M =
∑

1≤i≤m,1≤j≤k

Mej
i .

Now define the right multiplication in Ψ∗(M) by the elements of A1
m,1:

1) The multiplication by (i1) acts by zero on Mej
i1

for i1 6= i, 1 ≤ j ≤ k, and acts as the identity on

Mej
i for 1 ≤ j ≤ k;

2) The multiplication by (i1|(i + 1)1) acts by zero on Mej
i1

for i1 6= i, 1 ≤ j ≤ k, and maps Mej
i to

Mej
i+1 as follows:

x(ij) · (i1|(i + 1)1) = x(ij|(i + 1)j);

3) The multiplication by (i1|(i − 1)1) acts by zero on Mej
i1

for i1 6= i, 1 ≤ j ≤ k, and maps Mej
i to

Mej+1
i−1 as follows:

x(ij) · (i1|(i− 1)1) = x(ij|(i− 1)j+1).

It is easy to check that this indeed defines on Ψ∗(M) the structure of a right dg-module over A1
m,1.

Define Ψ∗ on morphisms (in D(Ak
m,k)) in the tautological way. Then Ψ∗ becomes an exact functor from

D(Ak
m,k) to D(A1

m,1). Note that Ψ∗(Pj
i )
∼= P1

i .

Now we want to define the functor Ψ∗ : D(A1
m,1) → D(Ak

m,k). Let N be an object of D(A1
m,1). As

a complex of vector F-spaces, Ψ∗(N ) equals to the direct sum N⊕k. Denote the j-th copy of N in this
sum by N j. For our convenience we put N j+k = N j. Define the right multiplication in Ψ∗(N ) by the
elements of Ak

m,k as follows:
1) The multiplication by (ij) acts by zero on N j1e1

i1
for (i1, j1) 6= (i, j) and acts as the identity on N je1

i ;
2) The multiplication by (ij|(i+1)j) acts by zero on N j1e1

i1
for (i1, j1) 6= (i, j) and maps N je1

i to N je1
i+1

as follows:
xj(i1) · (ij|(i + 1)j) = xj(i1|(i + 1)1);

3) The multiplication by (ij|(i − 1)j+1) acts by zero on N j1e1
i1

for (i1, j1) 6= (i, j) and maps N je1
i to

N j+1e1
i−1 as follows:

xj(i1) · (ij|(i− 1)j+1) = xj+1(i1|(i− 1)1).

Similarly, one can check that this defines on Ψ∗(N ) the structure of right dg-module over Ak
m,k.

Define Ψ∗ first on morphisms in Dgm(A1
m,1). Let Ψ∗(f) be the direct sum of k copies of f . It is easy to

check that this is well-defined. Since Ψ∗ preserves quasi-isomorphisms, it descends to an exact functor

C1
m,1 → D′(Ak

m,k). Note that Ψ∗(P1
i ) ∼=

k∑
j=1

Pj
i .

As we have already noticed, the properties (Ψ1) and (Ψ2) are satisfied. Prove the property (Ψ3).
We have from the very definitions of Ψ∗ and Ψ∗ that Ψ∗Ψ∗(M) equals to M⊕k as a complex of vector
spaces. Again, denote the j-th copy ofM byMj. The right multiplication in Ψ∗Ψ∗(M) by the elements
of Ak

m,k is the following:

1) The multiplication by (ij) acts by zero on Mj1ej2
i2

for (i2, j1) 6= (i, j) and acts as the identity on

Mjej1
i for 1 ≤ j1 ≤ k;

2) The multiplication by (ij|(i + 1)j) acts by zero on Mj1ej2
i2

for (i2, j1) 6= (i, j) and maps Mjej1
i to

Mjej1
i+1 as follows:

xj(ij1) · (ij|(i + 1)j) = xj(ij1|(i + 1)j1);
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3) The multiplication by (ij|(i − 1)j+1) acts by zero on Mj1ej2
i2

for (i1, j1) 6= (i, j) and maps Mjej1
i to

Mj+1ej1+1
i−1 as follows:

xj(ij1) · (ij|(i− 1)j+1) = xj+1(ij1|(i− 1)j1+1).

We have the following morphism of dg-modules φM : M → Ψ∗Ψ∗(M), defined as φM(x(ij)) =
xj(ij). Clearly, it is well-defined and is functorial in M, so that it defines the morphism of functors
π : IdD(Ak

m,k) → Ψ∗Ψ∗.

Now describe Ψ∗Ψ∗(M) as a dg-module. As a complex of vector spaces it equals again to M⊕k and
we denote the j-th copy by Mj. The right multiplication by the elements of Ak

m,1 is the following:
1) The multiplication by (i1) acts by zero on Mje1

i1
for i1 6= i and acts as the identity on Mje1

i for
1 ≤ j ≤ k;
2) The multiplication by (i1|(i + 1)1) acts by zero on Mje1

i1
for i1 6= i and maps Mje1

i to Mje1
i+1 as

follows:
xj(i1) · (i1|(i + 1)1) = xj(i1|(i + 1)1);

3) The multiplication by (i1|(i− 1)1) acts by zero on Mje1
i1

for i1 6= i and maps Mje1
i to Mj+1e1

i−1 as
follows:

xj(i1) · (i1|(i− 1)1) = xj+1(i1|(i− 1)1).

Similarly, we have the following morphism of dg-modules ψM : Ψ∗Ψ∗(M) → M, defined as
ψM(xj) = x. Clearly, this is also functorial in M and defines the morphism of functors ψ : Ψ∗Ψ∗ →
IdD(Ak

m,1).

A straightforward checking shows that the compositions

Ψ∗
φ(Ψ∗)−−−→ Ψ∗ ◦Ψ∗ ◦Ψ∗

Ψ∗(ψ)−−−→ Ψ∗,

Ψ∗ Ψ∗(φ)−−−→ Ψ∗ ◦Ψ∗ ◦Ψ∗ ψ(Ψ∗)−−−→ Ψ∗

coincide with the identity morphisms of Ψ∗ and Ψ∗ respectively. Then Proposition 2.4 shows that Ψ∗

is left adjoint to Ψ∗
Note that both Ψ∗ and Ψ∗ commute with t1, . . . , tm and hence are equivariant with respect to

Bm+1-actions. Thus, we have the following chain of isomorphisms:

∑

1≤j≤k,r∈Z
HomD(Ak

m,k)(Pj1
i1

, ρk
m,k(g)(Pj

i2
)[r]) ∼=

∑

r∈Z
HomD(Ak

m,k)(Pj1
i1

, ρk
m,k(g)(Ψ∗(P1

i2
))[r]) ∼=

∼=
∑

r∈Z
HomD(Ak

m,k)(Pj1
i1

, Ψ∗(ρk
m,k(g)(P1

i2
))[r]) ∼=

∑

r∈Z
HomD(A1

m,1)(Ψ
∗(Pj1

i1
), ρk

m,k(g)(P1
i2
)[r]) ∼=

∼=
∑

r∈Z
HomD(A1

m,1)(P1
i1
, ρk

m,k(g)(P1
i2
)[r]).

Applying Lemma 4.39 finishes the proof.

Proof of Theorem 4.29. Let f ∈ Diff(D, ∂D;4), and g = [f ]. Take some another analogous pair
f1, g1. Lemma 4.34 shows that

I(f1(bi1), f(bi2)) = I(bi1 , f
−1
1 f(bi2)) =

1

2

∑

1≤j≤k,r∈Z
dimFHomD′(Ak

m,k)(Pj1
i1

, ρk
m,n(g−1

1 )ρk
m,n(g)(Pj

i2
)[r]) =

=
1

2

∑

1≤j≤k,r∈Z
dimFHomD′(Ak

m,k)(Pj1
i1

, ρk
m,n(g−1

1 )(Pj
i2
)[r]) = I(bi1 , f

−1
1 (bi2)) = I(f1(bi1), bi2)

Since we can choose i1 and f1 arbitrary, for any admissible curve d in (D,4) and for each 1 ≤ i2 ≤ m we
have I(d, f(bi2)) = I(d, bi2). Then from Lemma 4.33 follows that g is central, i.e. g = (g1 . . . gm)ν(m+1)
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for some ν ∈ Z. We may assume that ν ≥ 0. From Lemma 4.30 we have that ρk
m,n(g)(Pj

i )
∼=

Pj+ν(m+1)
i [2νm − d2j+i−2 − · · · − d2j+i+(2m+2)ν−3]. Thus, ν(m + 1) is divisible by k and this object

equals to Pj
i [2νm− νn(m+1)

k
], 2νm = νn(m+1)

k
. Hence, if ν > 0 then n < 2k.

Proof of Theorem 4.14. First note that if ρ(g)(Ej
i ) = Ej

i for some i, j then ρ(g)(Ej1
i ) = Ej1

i for each
1 ≤ j1 ≤ k. These follows from the definition of n-spherical sequence and from the standard facts about
representable functors. Consider the following cases.
The case m = 1. In this case it is easy to see that T(E1)(E

j
1) = Ej+1

1 [1 − d2j−1 − d2j]. Suppose that

T r
(E1)(E

j
1) = Ej

1. Then r is divisible by k and r = d2j−1 + · · · + d2j+2r−2 = rn
k

. This contradicts to our
assumption that n ≥ 2k.
The case m ≥ 2. Recall that in our assumptions H(end(E)) ∼= Ak

m,n. Suppose that ρ(g)(Ej
i ) = Ej

i for
1 ≤ i ≤ m, 1 ≤ j ≤ k. let D′(REnd(E)) be the full subcaategory of D(REnd(E), which consists of dg-
modules with bounded cohomology. Note that the image of the functor ΨE contains in D′(REnd(E)).
Then Ψ′

E : T → D′(Ak
m,n) be the composition of ΨE and the equivalence D′(REnd(E)) → D′(Ak

m,n),

which is induced by the equivalence D(REnd(E)) → D(Ak
m,n). Then Ψ′

E(Ej
i )
∼= Pj

i . Note that the

functor Ψ′
E is equivariant with respect to our actions ρ and ρk

m,n. Thus, we have ρk
m,n(g)(Pj

i ) = Pj
i and

Lemma 4.29 shows that g is the identity element.

Note that we obtain the following
Corollary of Lemma 4.37 and Theorem 4.29. The action of Bm+1 on Db(Ak

m,1) is faithful.

Proof. It is sufficient to note again that the functor G from Lemma 4.37 is equivariant with respect to
our Bm+1-actions.

Remark. In the notation of Lemma 4.34, put

cj
i1,i2

(g) =
∑

r∈Z
dimFHomD′(Ak

m,n)(P1
i1
, ρk

m,n(g)(Pj
i2
)[r]).

From the statement of the Lemma it follows that
k∑

j=1

cj
i1,i2

(g) = I(bi1 , f(bi2)). This motivates us to find

the topological meaning of numbers ck
i1,i2

. To do that, one should consider the curves on k-covering of
D branched exactly at the points of 4. We will prove the corresponding result in another paper.

5 Applications.

5.1 General remarks.

In almost all situations, we need the category T to admit a Serre functor. If it exists then each
n-spherical sequence is up to a shift of the following kind:

(E, S(E), S2(E), . . . , Sk−1(E)),

where the following conditions on E hold:
(E1) E is exceptional;
(E2) Sk(E) ∼= E[n];
(E3) Hom∗(E, Sj(E)) = 0 for 2 ≤ j ≤ k − 1
Denote the corresponding multi-twist functor by RE. Clearly, we are interested in categories which

admit a Serre functor and an object E satisfying (E1),(E2),(E3).
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5.2 Smooth projective varieties.

Let Y be a smooth projective variety and A = Coh(Y ). Then, as it was mentioned in subsection 2.5,
the Serre functor on Db(A) = Db(Y ) equals to S(−) = (−)⊗ ωY [dimY ]. Let E1, . . . , Ek be objects in
Db(Y ). Then the corresponding multi-twist functor T(E) can be easily given by a kernel on Y ×Y . The
following Lemma is left to the reader:

Lemma 5.1. The functor T(E) is isomorphic to the Fourier- Mukai transform ΦP , where

P = Cone(η :
k⊕

j=1

Ej £ Ej → O4).

Now suppose that ωk
Y
∼= O for some k (minimal with this property), or, equivalently, Sk ∼= [kdim(Y )].

Then (E2) is satisfied for each object in Db(Y ). We want to describe the relation between the multi-
twist functors by the sequences given by such exceptional objects and the twist functors investigated by
Seidel and Thomas [STh]. The canonical bundle gives us an unramified G = Z/kZ-covering π : Ỹ → Y ,
where Y = SpecY (O⊕ωY ⊕ · · ·⊕ωk−1

Y ) Then the category Db(Y ) is equivalent to the category Db(Ỹ )G

of G-equivariant objects in Db(Y ).

Proposition 5.2. Let E be an object in Db(Y ). Then E satisfies (E1),(E2),(E3) iff π∗(E) ∈ Db(Ỹ ) is
spherical. In this case, π∗(E) is (dimY )-spherical, and E gives a (kdimY )-spherical sequence.

Proof. For each E ∈ Db(Y ) we have

π∗π∗(E) ∼=
k−1⊕
j=0

E ⊗ ωj
Y .

Further,

Homp(π∗(E), π∗(E)) ∼= Homp(E, π∗π∗(E)) ∼=
k−1⊕

l=0

Homp+ldimY (E, Sj(E)) (4)

Hence, π∗(E) is spherical iff
k−1∑
j=0

dimFHom∗(E, Sj(E)) = 2. But we always have (for E 6= 0)

Hom(E, E) 6= 0, Hom(E, S(E)) 6= 0. Thus, π∗(E) is spherical iff E satisfies (E1), (E3). As it is
mentioned above, E always satisfies (E2).

Finally, from (4) easily follows that if π∗(E) is spherical then it is (dimY )-spherical and the sequence
(E, S(E), . . . , Sk−1(E)) is (kdimY )-spherical.

The following Proposition relates the multi-twist functors and twist functors in the setting of this
subsection. It is left to the reader.

Proposition 5.3. Let E be an object satisfying (E1), (E2), (E3). Then have the following commutative
(up to isomorphism) diagram of functors:

Db(Y )
RE−−−→ Db(Y )

π∗
y π∗

y

Db(Ỹ )
Tπ∗(E)−−−−→ Db(Ỹ ).
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5.3 Enriques surfaces.

Enriques surface is a surface Y with H1(OY ) = H2(OY ) = 0 and ω2
Y = 0. For each such surface there

exist a K3-cover π : Ỹ → Y . Clearly, each exceptional object in Db(Y ) satisfies (E1),(E2),(E3) and
hence gives an autoequivalence RE. Unfortunately, we cannot construct braid group action of our type
because the Serre functor acts trivially on the numerical Grothendieck group of Y .

5.4 Quivers.

Let Q = (Q0, Q1) be a quiver and I ⊂ F[Q] be a two-sided ideal. Suppose that Q has not oriented
cycles. Let |Q0| = m. Order the vertices in Q0 in such way that there are no arrows from i-th vertex to
j-th vertex for i ≥ j. Then (Pm, . . . , P1) and (S1, . . . , Sm) are exceptional colloections in Db(Q, I) which
both generate this category. Hence, Db(Q, I) admits a Serre functor. It is easy to see that S(Pi) = Ii.
We will now give several examples of quivers for which there exist invertible multi-twist functors and for
which there exist braid group actions corresponding to (Ak

m)-configurations. Recall that, by Gabriel’s
theorem [G], for each quiver of Dynkin type has only finitely many indecomposable representations.
Since the homological dimension of Rep(Q) is not more than one for any quiver, than the same holds
for the derived category of any quiver of Dynkin type.

1. Let Q = Am and I = 0. Denote its paths by (i|(i + 1)| . . . |j) Then Db(Q, I) has, up to shifting,
m(m+1)

2
indecomposable objects

Mij =

{
Pi/(i|(i + 1)| . . . |j + 1)Pj+1 for 1 ≤ i ≤ j ≤ m− 1

Pi for 1 ≤ i ≤ m, j = m.

Each object in Db(Q, I) is a direct sum of shifted copies of Mij. Further, the Serre functor S acts
on these objects as follows:

S(Mij) =

{
M(i+1)(j+1)[1] for j ≤ m− 1

M1i for j = m
)

Further, we have Sm+1 ∼= [m−1]. The only multi-twist functor in this category is RP1
∼= S−1 ◦ [1].

2. Let Q0 be of card 3, and let Q1 consist of two arrows from the 1-th vertex to the 2-nd (u1
1, u

2
1)

and two arrows from the 2-nd vertex to the 3-rd (u1
2, u

2
2), see Figure 4.

@hh
¡
ÃÃ @hh

¡
ÃÃ1 2 3

u1
1 u1

2

u2
1 u2

2Figure 4.

Let I be an ideal generated by u1
1u

2
2 and u2

1u
1
2. Let Mj, j = 1, 2 be a representation of (Q, I) with

(Mj)i = F and

(Mj)uq
p

=

{
IdF for q = j

0 otherwise.

Taking projective resolution of Mj which is P3 → P2 → P1 one sees that Mj is exceptional.
Further, it can be checked that S(Mj) = M3−j[2]. Hence, (M1,M2) is 4-spherical sequence and it
gives an equivalence T(M).
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3. Let Q0 be of card 4, Q1 consist of four arrows: from i-th to (i + 1)-th (ui), where 1 ≤ i ≤ 3, and
from 2-nd to 4-th (v), see Figure 5.

- - -1 2 3 4@hhu1 u2 u3

v

Figure 5.

Let I be generated by u1u2 and u2u3. Then one can check that S2(P1) = P1[3], S2(P3) = P3[1].
Thus, they give autoequivalences RP1 , RP3 .

4. Let Q = D4, and I = 0. Then we have that

S(P3) = I3 = {P4 → P1}, S2(P3) = {P3 → P2}, S3(P3) = P3[2],

and
S(P4) = I4 = {P3 → P1}, S2(P4) = {P4 → P2}[1], S3(P4) = P4[2].

It is easy to check that both P3 and P4 satisfy (E1), (E2), (E3). Further, (P3, S(P3), S
2(P3))

and (P4, S(P4), S
2(P4)) form the (A3

2)-configuration of 2-spherical sequences. Hence we have
a B3-action on Db(Q). This action is obviously not faithful (because there are finitely many
indecomposable objects). In particular, the algebra A3

2,2 is not intrinsically formal.

5. Let Q = A4. Denote the arrows by u1, u2, u3 as in Figure 6.

- - -1 2 3 4u1 u2 u3

Figure 6.

Let I be generated by u1u2u3. Then

S(P1) = I1 = {P4 → P2 → P1}, S2(P1) = P3[2], S3(P1) = P1[2],

and
S(P2) = I2 = {P4 → P3 → P1}, S2(P2) = P4[2], S3(P2) = P2[2].

As in the previous example, one can check that P1 and P2 satisfy (E1), (E2), (E3) and
(P1, S(P1), S

2(P1)), (P2, S(P2), S
2(P2)) form the (A3

2)-configuration of 2-spherical sequences. We
are not able to say if the corresponding B3-action is faithful.

It would be interesting to construct examples of faithful braid group actions given by (Ak
m)-configurations

which are more complicated then our action on D′(Ak
m,n).
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