
NOTES ON SIMPLICIAL BF THEORY

P. MNËV

Abstract. In this work we discuss the construction of “simplicial BF theory”, the
field theory with finite-dimensional space of fields, associated to a triangulated manifold,
that is in a sense equivalent to topological BF theory on the manifold (with infinite-
dimensional space of fields). This is done in framework of simplicial program — program
of constructing discrete topological field theories. We also discuss the relation of these
constructions to homotopy algebra.
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1. Introduction

This work contains first results obtained by the author in framework of simplicial pro-
gram proposed to him by Andrei Losev, also some preliminary arguments are included.
The idea of simplicial program is to take some topological quantum field theory TM on
manifold M and formulate discrete field theory TΞ on triangulation Ξ of M , which is
(in some sense) equivalent to TM . Having succeeded in constructing TΞ, we can use it
to compute quantities associated to TM , like state sum or vacuum expectation values of
observables, in terms of finite-dimensional integrals (since space of fields of TΞ is finite-
dimensional), instead of functional integrals. Thus, having a discrete theory TΞ, we leave
behind all subtleties of functional integrals, like regularization and possibility of renor-
malization.

To our knowledge the simplicial program was successfully completed for abelian Chern-
Simons theory (see [1], [15]).

We consider a special topological theory, “extended BF theory”, which is the ordinary
non-abelian BF theory with fields promoted to extended fields — non-homogeneous dif-
ferential forms (also called “super fields” in physical literature). From physical point of
view, extended BF theory is ordinary BF theory with ghosts, ghosts for ghosts etc. taken
into account, and arises naturally in process of quantization. This theory perfectly fits
into Batalin-Vilkovisky formalism as a special case of what we call “abstract BF theory”.
The latter is a class of theories associated to differential graded Lie algebras, for extended
BF case — associated to algebra of differential forms on manifold M with values in a
gauge Lie algebra g. The action of extended BF theory is a generating function for struc-
ture constants of commutator and differential on the algebra of g-valued differential forms,
and Batalin-Vilkovisky master equation is equivalent to the three quadratic relations for
forms: d2 = 0, Leibniz identity and Jacobi identity.

For any abstract BF theory, associated to some DGLA G, if G is decomposed into
sum of two subcomplexes G = G ′ ⊕G ′′ with G ′′ acyclic, we construct induced (in physical
terminology, “effective”) theory, associated to G′. The action of this induced theory is
constructed via an integral “over G′′” (more precisely, an integral over Lagrangian sub-
manifold in ΠG ′′ ⊕ [G ′′]∗) — the Batalin-Vilkovisky integral. The question of convergence
of the latter is quite subtle for infinite-dimensional G′′; we hope that it is at least pertur-
batively well-defined, and our calculations of induced action for BF theory on simplex
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confirm this conjecture (but do not prove it in full generality, of course). The tree part of
effective action is the generating function for L∞ algebra operations on G ′, and quadratic
relations on the operations follow from classical master equation. The general theorem
states that G ′ and G are quasi-isomorphic as L∞ algebras. In terms of BV integral, the
quasi-isomorphism between G′ and G is explicitly constructed via “expectation value map”
(theorem 2).

By Koszul duality, to define L∞ structure on G ′ is the same as to define cohomological
vector field Q (i.e. an odd vector field satisfying Q2 = 0) on parity-reversed space ΠG′.
The 1-loop part of effective action defines a Q-invariant measure (volume form) on ΠG′.
The Q-invariance follows from quantum master equation. And there are no higher-loop
contributions to BV integrals of abstract BF theory. Thus there are classical (given by
tree approximation) effects in BV integral — the induced L∞ operations on G ′ and the
quasi-isomorphism G ′ → G, and quantum effect (given by 1-loop contributions) — the
Q-invariant measure on ΠG ′. Calculation of the quantum effect is much more involved:
values of 1-loop Feynman diagrams for effective action are expressed as certain super
traces over G ′′ and may contain divergencies if G′′ is infinite-dimensional. The induced
theory associated to G ′ is in some sense “homotopic” to initial theory associated to G.
By “homotopic” we mean that L∞ structure on G ′ generated by tree part of effective
action is quasi-isomorphic to DGLA structure on G. Whether the notion of homotopy of
L∞ algebras can be extended to L∞ algebras with Q-invariant measure, is an interesting
question.

We use the name “classical higher operations” for terms of Taylor expansion of tree
part of effective action — these correspond to L∞ operations on G ′, and name “quantum
higher operations” for terms of Taylor expansion of 1-loop part of effective action (which
is the logarithm of density of Q-invariant measure on ΠG′).

For the sake of simplicial program we are interested in constructing induced theory
for extended BF theory on manifold M , associated to subcomplex of g-valued differen-
tial forms, consisting of g-valued Whitney forms on triangulation Ξ of M . We call this
induced theory “simplicial BF theory” on Ξ. From general arguments, this theory on tri-
angulation, with finite-dimensional space of fields, is “homotopic” to extended BF theory
on M .

Technically, to write down simplicial BF action for any triangulation Ξ, it is sufficient
to solve the problem for single simplex in each dimension (this property is formulated
as the factorization of BV integral for simplicial action on triangulation — theorem 5).
Thus only one universal calculation is needed in each dimension. In dimension D = 0 it
is trivial, for D = 1 — not quite trivial, but can be done exactly, and explicit formula
for simplicial BF action on 1-simplex is written (theorem 6). For dimensions D > 1 we
do not know closed expression for effective action on D-simplex, but we have computed
first classical and quantum higher operations (values of simplest Feynman diagrams for
BV integral for the effective action are computed). We would like to emphasize that
calculation of effective action on simplex is absolutely universal and done once and for
all time — having it, we have defined simplicial BF theory on any triangulation of any
manifold, and may conduct further calculations starting from this discrete topological
field theory, via finite-dimensional BV integrals.

One immediate use of simplicial BF theory is as follows. We can construct induced
BF theory on de Rham cohomologies of manifold M . The tree part of effective action is
the generating function for Massey operations on cohomologies, and 1-loop part provides
a Q-invariant measure on parity-reversed space of cohomologies. But now instead of
calculating this effective action via functional BV integral, starting from extended BF
theory on M , we may induce theory on cohomologies from simplicial BF theory on
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triangulation Ξ, via finite-dimensional integral. The 1-loop part of effective action on
cohomologies may be integrated to give the state sum of extended BF theory, which
therefore again can be computed from simplicial BF theory, avoiding functional integrals.

Other possible uses of simplicial BF theory include the construction of knot (and
higher-dimensional knot) invariants in terms of vacuum expectation values of certain
observables in simplicial BF theory. Another possible use is combinatorial construction
of characteristic classes. We intend to elaborate on these points in the future.

1.1. Main results.

• The fact that simplicial BF action on triangulation Ξ decomposes into sum over
simplices of Ξ of some local contributions, which we call “reduced effective actions”
on simplices (theorem 5). This statement is the reason why calculation of simplicial
BF action on one simplex in each dimension is universal and allows to define
simplicial BF action on any triangulation.

• Explicit expression for reduced effective action on 1-simplex (theorem 6), obtained
by direct computation of corresponding BV integral. This result allows us to fully
construct simplicial BF theory on 1-dimensional simplicial complexes. We also
use it to illustrate simplicial approach by computing state sum of BF theory on
circle Z(S1) starting from simplicial BF action on discretized circle and calcu-
lating finite-dimensional BV integral. We show that Z(S1) equals the volume of
gauge group. The expression for reduced effective action on 1-simplex is also an
important ingredient for defining simplicial BF action in dimensions D > 1.

• Explicit expressions for first classical higher operations on simplex of arbitrary
dimension (theorem 7).

• Result of direct calculation of simplest non-trivial quantum operation q(2) for 2-
simplex and for 3-simplex (theorem 9). This computation is quite long and con-
tains divergent quantities in intermediate stages, and thus requires regularization.
Not quite surprisingly, the final answers are finite.

• Partial result for first quantum operation q(2) on simplex of arbitrary dimension:
symmetry allows only two possible terms for q(2). We recover coefficient for one of
the terms from quantum master equation and known classical higher operations
(theorem 8), while the other term is Q-exact, and thus the corresponding coefficient
cannot be recovered in this way. This result agrees with theorem 9 in dimensions
2 and 3, but is much cheaper, in a sense that it does not require hard calculations.

Another important general construction (not specific to the simplicial setting) is the
construction of L∞ quasi-isomorphism between DGLA (or more generally, L∞ algebra) G
and induced L∞ structure on its subcomplex G ′ via BV integral (theorem 2).

1.2. Open problems. The following is the beginning of long list of interesting questions
one can ask about simplicial BF theory:

• Question of Wilson renormalization of simplicial BF action. If Ξ′ is a triangula-
tion and Ξ is some subdivision of Ξ′, we can induce effective action S̃Ξ′ on Ξ′ from
simplicial BF action SΞ on Ξ. The question is: does S̃Ξ′ obtained in this way
differ from simplicial BF action SΞ′ on Ξ′ (obtained by standard induction from
extended BF theory on manifold), and if yes, what is the difference? General ar-
guments indicate that this difference (“renormalization”) should be BV-exact, in

a sense that exponentials eS̃Ξ′/� and eSΞ′/� belong to the same cohomology class of
BV-Laplacian. We checked that in dimension D = 1 there is no such renormaliza-
tion, while already for D = 2 the first quantum operation gets renormalized under
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barycentric aggregation of triangulation (while first classical higher operations are
not renormalized).

• More general setting for the previous question is as follows. Let G be a DGLA and
RetG be the category of retracts, where objects are subcomplexes G′ ⊂ G, con-
taining all cohomology of G and morphisms are retractions. As we explain in this
paper, information contained in induced BF theory (BF∞ theory) on subcomplex
G ′ ∈ RetG is equivalent to the pair (Q, ρ) where Q is a cohomological vector field
on ΠG ′ and ρ is the Q-invariant measure on ΠG′. Then operation of induction of
BF∞ theory from G ′ to G ′′ ⊂ G ′ with Lagrangian manifold for BV integral defined
by given chain homotopy operator K, may be regarded as “parallel transport” of
(Q, ρ)-structure on objects of RetG along morphism K. Then general setting for
question about Wilson renormalization is: what can we say about holonomy of
this parallel transport?

• Problem of constructing observables for simplicial BF theory. Particularly we are
interested in observables, associated to knots and higher dimensional knots. These
should be some discrete analogs of observables constructed in [4].

• Simplicial BF action defines curvature of a discretized superconnection. A natural
question is: how to use it to write local combinatorial formulae for characteristic
classes?

• Question of relation between state-sum of extended BF theory on a manifold
(calculated via simplicial BF theory on triangulation) and Turaev-Viro-type in-
variants of manifolds, calculated as sum over colorings of triangulation (see [16]).

• Extension of our simplicial constructions to Poisson sigma model (see [12]), and
their application to deformation quantization and Kontsevich integrals (see [8],
[5]).

1.3. Sources and literature. The simplicial program for topological field theories was
inspired by problem of constructing combinatorial version of Chern-Simons theory. This
problem was proposed by M. Atiyah in [3]. Our main sources for geometric interpretation
of Batalin-Vilkovisky formalism are [2] and [14]. Our source on infinity-algebras is [11].
One of key constructions for our treatment of simplicial BF theory — the construction of
Dupont’s chain homotopy between differential forms on manifold M and Whitney forms,
associated to triangulation of M , is borrowed from [6]. The construction of effective
action for BF theory is explained in [10]. In unpublished paper [9] an alternative treat-
ment of simplicial program is given. Paper [13] explains induction of effective action on
cohomologies on tree level in mathematical rigor.

1.4. Acknowledgements. I wish to thank my advisor L.D. Faddeev for support and
discussion, and Andrei Losev for inspiration. The setting of problem and many ideas here
are due to discussions with A. Losev. I also wish to thank Nikolai Mnëv, Nikolai Gromov,
Andrei Kozak and Florian Schätz for useful discussions and comments.

2. Extended BF theory in Batalin-Vilkovisky formalism

Ordinary BF theory on D-dimensional manifold M with compact gauge group G is
defined by classical action

(1) S(ω,B) = tr

∫
M

B ∧ F

where F = dω + ω ∧ ω is the curvature of connection 1-form ω on M with values in Lie
algebra g of group G, and B is (D − 2)-form on M with values in g. Trace is taken in
some representation of g.
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2.1. Extended BF theory: fields, action. Now we move to the extended BF theory.
Let Ω(M) = Ω0(M)⊕· · ·⊕ΩD(M) be the commutative differential graded algebra (cDGA)
of differential forms on M (with Ωk(M) being the subspace of k-forms)— the de Rham
algebra with de Rham differential and wedge product. We denote by G = g ⊗ Ω(M) =
G0 ⊕ · · · ⊕ GD the differential graded Lie algebra (DGLA) of g-valued differential forms
on M . Let {eα} be some basis in G and {eα} be the dual basis in G∗. We also suppose
that each basis element eα is homogeneous and denote its degree by |α|, which means that
eα ∈ G|α|. Parity of eα (and parity of eα) is equal to parity of integer |α|.

The extended BF action is defined as

(2) S(ω, p) =< p, dω +
1

2
[ω, ω] >

where < •, • > denotes the canonical pairing of G and G∗. The fields ω and p are

ω =
∑

α

ωαeα(3)

p =
∑

α

eαpα(4)

where {ωα} are variables of parity opposite to parity of |α|, while {pα} are variables of
parity coinciding with parity of |α|. Thus ω is totally odd and p is totally even. Field ω
belongs to space ΠG, the totally odd version of G (which is no longer a DGLA, but just
a vector super space):

ω ∈ ΠG := [R1|1 ⊗ G]odd = ΠG0 ⊕ G1 ⊕ ΠG2 ⊕ · · · ⊕ ΠD+1GD

while p belongs to G∗, the totally even version of G∗:

p ∈ G∗ := [G∗ ⊗ R
1|1]even = [G0]∗ ⊕ Π[G1]∗ ⊕ [G2]∗ ⊕ · · · ⊕ ΠD[GD]∗

Here Π is the parity reversing operation on vector super spaces, Πk = Π for k odd and
Πk = id for k even. We also use the traditional notation R

k|l = R
k ⊕ΠR

l, and for a vector
super space X we denote its even and odd subspaces by [X]even and [X]odd respectively.

The action

(5) S(ω, p) =< p, dω +
1

2
[ω, ω] >=

=
∑
α,β

(−1)|β|+1 < eα, d eβ > pα ωβ +
1

2

∑
α,β,γ

(−1)|β| (|γ|+1) < eα, [eβ, eγ ] > pα ωβωγ

belongs to the space R[[{ωα}, {pα}]] of formal power series of variables {ωα} and {pα}.
This space is an associative commutative super algebra freely generated by variables
{ωα} and {pα}. Thus we may think of it as of algebra of functions Fun(F) on space
F = ΠG ⊕G∗. The latter is called “space of fields”. To match more general constructions
of Batalin-Vilkovisky formalism (see [2]), we may identify F with cotangent bundle to
ΠG with reversed parity in fibers:

(6) F = ΠT ∗(ΠG)

In this picture ωα are coordinate functions on base of F , while pα are coordinate functions
on fibers of F . Our initial fields ω and p are then “generating functions” for coordinate
functions on base and on fibers of F respectively, useful to write short formulae for various
objects of extended BF theory (as in (5)).

Less formally, extended BF action (2) is obtained from (1) by promoting ω and B to
extended fields (also called “super fields”) and introducing a new field p, related to B by
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lowering an index: < p, • >= tr
∫

M
B ∧•. Field ω is a non-homogeneous differential form

on M with values in gauge algebra g:

ω = ω(0) + · · · + ω(D)

with ω(k) being g-valued k-form with parity opposite to parity of integer k. Field p is
decomposed as

p = p(0) + · · · + p(D)

with p(k) a k-coform (element of [Ωk(M)]∗, or equivalently (D − k)-form with lowered
index) with values in coalgebra g∗ and with parity equal to parity of k. Thus ω is a
non-homogeneous g-valued form of total parity 1, while p is a non-homogeneous g∗-valued
coform of total parity 0.

Remark. One can give an alternative description of extended BF theory in terms of Z⊕Z

grading: we may prescribe “ghost numbers” to {ωα} and {pα} instead of just parities:
gh(ωα) = 1 − |α|, gh(pα) = −2 + |α|. Then we say that fields ω and p belong to spaces
[Gr ⊗ G]deg +gh=+1 and [G∗ ⊗ Gr]deg +gh=−2 respectively, where Gr =

⊕∞
k=−∞ R

[+k] — the
vector super space graded by ghost number gh, and deg is the grading on G. The space of
functions Fun(F) becomes Z-graded commutative associative algebra with grading given
by ghost number. The action (2) has ghost number zero.

Remark. Extended BF theory arises naturally in process of quantizing ordinary BF
theory by incorporating ghosts, ghosts for ghosts etc. and anti-fields for all these (and
original fields). This set of fields is then organized into a pair of “superfields” — non-
homogeneous differential forms ω and p, and the action may be written in simple form
(2).

2.2. P -structure on space of fields of extended BF theory. Space F has a struc-
ture of QP -manifold. The P -structure (odd simplectic structure) is defined by Batalin-
Vilkovisky 2-form (odd simplectic form)

(7) ΩBV =< δω, δp >

so that ω and p are canonically conjugated w.r.t. ΩBV. The odd simplectic structure
on F induces on space of functions of fields Fun(F) the structure of anti-bracket algebra
(odd Poisson algebra) with usual pointwise associative (super)commutative product and
the anti-bracket, defined as

{f, g} = f

(
<

←−
∂

∂p
,

−→
∂

∂ω
> − <

←−
∂

∂ω
,

−→
∂

∂p
>

)
g

for a pair of functions f, g ∈ Fun(F). Following properties hold for anti-bracket:

• symmetry property

{f, g} = −(−1)(ε(f)+1)(ε(g)+1){g, f}

• Leibniz rule for anti-bracket

{f, g · h} = {f, g} · h + (−1)(ε(f)+1) ε(g)g · {f, h}

• Jacobi identity

{{f, g}, h} + (−1)(ε(h)+1)(ε(f)+ε(g)){{h, f}, g} + (−1)(ε(f)+1)(ε(g)+ε(h)){{g, h}, f} = 0
7



Here ε is notation for parity and we assume that f, g, h ∈ Fun(F) are functions of definite
parity. Batalin-Vilkovisky Laplacian ∆BV on Fun(F) is defined as

∆BV =<
∂

∂ω
,

∂

∂p
>

It satisfies

• the nilpotence property

∆2
BV = 0

• the property relating ∆BV and the anti-bracket

∆BV(f · g) = ∆BVf · g + (−1)ε(f)f · ∆BV g + (−1)ε(f){f, g}

2.3. Q-structure on space of fields of extended BF theory; master equation.
The Q-structure on F is induced from cohomological vector field Q on base ΠG defined
as

Q =< dω +
1

2
[ω, ω],

∂

∂ω
>

Action (2) on F is then S =< p,Q ω > and cohomological vector field on F is a Hamil-
tonian vector field generated by S:

QF = {S, •}
Action (2) satisfies the quantum master equation

(8) ∆BVeS/� = 0

where � is formal infinitesimal parameter. Since

∆BVeS/� = (�−2 1

2
{S, S} + �

−1∆BVS)eS/�

equation (8) is equivalent to the pair of equations

(9) {S, S} = 0

(the classical master equation) and

(10) ∆BVS = 0

In terms of Q, (9) means Q2 = 0, while (10) means that

(11) div Q = 0

This is in turn equivalent to the fact that volume form η =
∏

α δωα on ΠG is conserved
by vector field Q.

2.4. Extended BF action as generating function of DGLA structure on g⊗Ω(M).
Action (2) may be viewed as the generating function for structure constants of differential
and Lie bracket on G. Classical master equation (9) is then equivalent to the three
relations in DGLA G: d2 = 0, Leibniz identity and Jacobi identity:

1

2
{S, S} =< p,−d2ω > + < p,−1

2
d[ω, ω] + [dω, ω] > +

1

2
< p, [[ω, ω], ω] >= 0

Vanishing of linear in ω term here is equivalent to d2 = 0, of quadratic term — to Leibniz
identity, of cubic term — to Jacobi identity. Equation (10) reads

∆BVS = StrΠG [ω, •] = 0

This follows from relation f b
ab = 0 which we demand for structure constants of gauge

algebra g. For example, it holds for semi-simple gauge algebras.
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2.5. Generalization from extended BF to abstract BF theory. The construction
of extended BF theory admits a natural generalization to abstract BF theory as follows:
take any DGLA G instead of differential forms on manifold with values in a gauge algebra.
We should only demand that structure constants of G satisfy fβ

αβ = 0. Then construct
space of fields (6), which is again a QP manifold. The action is again given by (2) and it
again satisfies quantum master equation by virtue of general properties of DGLA: d2 = 0,
Leibniz identity, Jacobi identity, and the property fβ

αβ = 0 which we demanded for G.

2.6. Canonical transformations, gauge symmetry, symmetry under diffeomor-
phisms. Infinitesimal canonical transformation is defined as follows: let R ∈ Fun(F)
be some infinitesimal odd function of fields (the generator of canonical transformation).
Then map

φ∗
R : Fun(F) → Fun(F)

f 	→ f + {f,R}
is an automorphism of anti-bracket algebra Fun(F) (in lowest order in R) due to Leibniz
identity and Jacobi identity for the anti-bracket. Canonical transformation on functions
φ∗

R may be understood as a pullback of simplectomorphism (in terminology of Hamiltonian
formalism, canonical change of coordinates) φR : F → F , defined by ω → ω + {ω,R} and
p → p + {p,R}. Action is transformed by φ∗

R as

S 	→ S + {S,R} + � ∆BVR

the last term is due to the fact that action is not a scalar function but rather a logarithm
of density of measure on space of fields, and thus transforms non-tensorially under change
of coordinates. It may be more transparent to write canonical transformation of action
in terms of exponentials:

eS/� 	→ eS/� + ∆BV(eS/�R)

Canonically transformed action leads of course to physically equivalent theory.
It turns out that two important symmetries of extended BF theory, the gauge symme-

try and symmetry under diffeomorphisms, may be regarded as special canonical transfor-
mations that leave action invariant. Namely, infinitesimal diffeomorphism, generated by
vector field v on manifold M , may be regarded as canonical transformation with generator

Rv =< p,Lvω >

where Lv is the Lie derivative along v, acting on differential forms on M .
The gauge invariance may be formulated in more general setting of abstract BF the-

ory. The parameter of gauge transformation is totally even element α ∈ [R1|1 ⊗ G]even

(for extended BF case, this is a totally even g-valued differential form). The gauge
transformation acts on fields by

ω 	→ ω + [ω, α] + dα

p 	→ p + [p, α]

where [p, α] is the right coadjoint action of G on G∗. We see that this gauge transformation
is actually a special canonical transformation with generator

Rα = − < p, dα + [ω, α] >

It is instructive to note that Rα may be obtained directly from the action:

(12) Rα =< α,
∂

∂ω
S >
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Gauge invariance of the action follows then from master equation. This approach allows
us to describe gauge transformation in even more general case of BF∞ theories, which we
will introduce later.

In case of extended BF theory gauge symmetry we described is rather a “super gauge
symmetry”, since it mixes components of ω and p of different de Rham degree. The
ordinary gauge transformations correspond to the case when gauge parameter α is just a
g-valued function: α ∈ G0. The form of gauge transformation of field ω allows us to call
ω the ”superconnection” in trivial G-bundle on M . Then F = dω + 1

2
[ω, ω] is naturally

the curvature of superconnection ω.

3. Effective action for abstract BF theory

We first describe a general construction of effective action for abstract BF theory, and
then specialize to differential forms (extended BF case) in the next section.

3.1. Infrared and ultraviolet fields, chain homotopy, BV integral for effective
action on infrared fields. Let DGLA G be split into sum of two subcomplexes

G = G ′ ⊕ G ′′

with G ′′ acyclic. We call G ′ the infrared subcomplex and G ′′ the ultraviolet subcomplex.
Names “infrared” and “ultraviolet” come from physical construction of Wilson effective
action in quantum field theory: one splits fields into low-frequency (infrared) and high-
frequency (ultraviolet) parts and integrates out the ultraviolet fields to obtain effective
action on infrared fields. Space of fields of BF theory associated to G is then also split:
F = F ′ ⊕ F ′′. Fields ω ∈ ΠG and p ∈ G∗ are decomposed into infrared and ultraviolet
parts: ω = ω′ + ω′′, p = p′ + p′′ with ω′ ∈ ΠG ′, ω′′ ∈ ΠG ′′, p′ ∈ [G ′]∗, p′′ ∈ [G ′′]∗. Let us
denote projectors on G ′ and G ′′ by P ′ and P ′′ respectively.

Let also K be a linear operator on G′′ satisfying

Kd + dK = P ′′(13)

K2 = 0(14)

(a chain homotopy). It is continued to G by defining K|G′ = 0. Starting from chain
homotopy K we construct a Lagrangian submanifold LK ⊂ F ′′ as a vector subspace in
F ′′ defined by equations Kω′′ = 0, p′′K = 0. In other words

LK = Π ker K ⊕ [coker K]∗

Then we define the effective action S′ on F ′ via an integral over LK (“BV integral”):

(15) e
1
�

S′(ω′,p′;�) =
1

N

∫
LK

e
1
�

S(ω′+ω′′,p′+p′′)[Dω′′Dp′′]LK

Here [Dω′′Dp′′]LK
is the volume form on LK and

N =

∫
LK

e
1
�

<p′′,dω′′>[Dω′′Dp′′]LK

is the normalization factor.
10



3.2. Perturbative evaluation of BV integral for effective action. We view (15)
as a formal perturbative definition of S′. If we expand in ultraviolet fields the action in
exponent in integrand of (15) we get

(16) S(ω′ + ω′′, p′ + p′′) = S(ω′, p′)+ < p′′, dω′′ > + < p′′,
1

2
[ω′′, ω′′] > +

+ < p′′,
1

2
[ω′, ω′] > + < p′′, [ω′, ω′′] > + < p′, [ω′, ω′′] > + < p′,

1

2
[ω′′, ω′′] >

The first term here is constant (on LK), the second term we interpret as a free Gaussian
action S ′′

0 =< p′′, dω′′ >. The other terms are treated as perturbation of S′′
0 (and hence

as vertices in Feynman rules for (15)). Let us denote the normalized expectation value of
f ∈ Fun(LK) with respect to S′′

0 by


 f �0=
1

N

∫
LK

e
1
�

<p′′,dω′′> f(ω′′, p′′) [Dω′′Dp′′]LK

Then propagator 
 ω′′ ⊗ p′′ �0 viewed as an element of G ′′ ⊗ [G ′′]∗ = End(G ′′) is (up to
constant factor) the chain homotopy operator:


 ω′′ ⊗ p′′ �0= −�K

This implies that for constant vectors ω̃ ∈ ΠG, p̃ ∈ G∗ we have


 1

�
< p̃, ω′′ > ·1

�
< p′′, ω̃ > �0= −1

�
< p̃,Kω̃ >

Using this fact and Wick’s theorem we obtain description of values of Feynman graphs
for (15) in terms of iterated operation formalism.

First we need to introduce some general notation for a binary operation iterated on a
rooted binary tree. By a rooted binary tree T we mean an acyclic graph with one vertex
of valence 2 (root), several vertices of valence 1 (leaves) and all other vertices of valence 3
(internal vertices). This graph comes with fixed planar structure, i.e. embedding T → R

2

modulo diffeomorphisms of R
2, so that each non-leaf vertex has well-defined left and right

children. Let X be a vector super-space over R and O : X ×X → X a bilinear map. For
a rooted binary tree T with |T | = n leaves, define n-linear map

IterT,O : Xn → X

by the following iterative procedure: for (x1, . . . , xn) the n-tuple of elements of X decorate
each leaf of T with xi where i is the number of leaf counted counterclockwise starting from
root. Decorate each non-leaf vertex v with O(xvl

, xvr) where xvl
and xvr are elements of

X assigned to left and right children of v respectively. We define IterT,O(x1, . . . , xn) as
the value assigned to root of T by this procedure. We also need the following modification
of this definition: for O,O′ : X × X → X a pair of binary operations we define

IterT,O,O′ : Xn → X

by the same procedure as above with the only difference that in the root we evaluate O′

on children instead of O If we identify binary rooted trees with binary bracket structures,
we have for example

Iter((∗(∗∗))(∗∗)), O (x1, x2, x3, x4, x5) = O(O(x1,O(x2, x3)),O(x4, x5))

and
Iter((∗(∗∗))(∗∗)), O,O′ (x1, x2, x3, x4, x5) = O′(O(x1,O(x2, x3)),O(x4, x5))

Here symbols ∗ denote leaves of the tree.
We also need the general notation for trace operator associated to a bilinear map and a

binary 1-loop graph. Let L be a graph with one oriented cycle (and fixed planar structure),
11



internal vertices of valence 3 and |L| = n vertices of valence 1 (leaves). We define n-linear
function LoopL,O,X : Xn → R as follows. Cutting any edge of the cycle of L produces a
tree T with n + 1 leaves and one leaf marked (it was connected to root before cutting).
We define LoopL,O,X as the super-trace

LoopL,O,X(x1, · · · , xn) = StrXIterT,O(x1, · · · , xi−1, •, xi, · · · , xn)

where i is the number of the marked leaf (counted counterclockwise from the root, as
before). If we denote 1-loop graphs as trees with one marked leaf, we have for example

Loop(((∗∗)•)∗), O, X = StrXO(O(O(x1, x2), •), x3)

Here symbols ∗ denote non-marked leaves and • denotes the marked leaf.
Let T be the set of binary rooted trees and L be the set of binary 1-loop graphs. Let

also T̂ be set of binary rooted trees without planar structure (i.e. quotient of T over

graph isomorphisms), and L̂ — the set binary 1-loop graphs without planar structure.
Having introduced the necessary notation we return to perturbation theory for (15).

For every tree T ∈ T̂ we define a function ST ∈ Fun(F ′) as

(17) ST (ω′, p′) =
1

|Aut(T )| < p′, IterT, −K[•,•], [•,•](ω′, . . . , ω′) >

Here Aut(T ) is the group of automorphisms of T and |Aut(T )| is its order (factor 1
|Aut(T )|

is usually called “symmetry coefficient” of the Feynman graph). Expression (17) is linear
in p′ and of degree |T | in ω′. It does not depend on planar structure on T since binary
operations we are iterating O = −K[•, •] and O′ = [•, •] are commutative on ΠG′, and so
the result does not depend on which child of a vertex we call left and which we call right.

Analogously, for every binary 1-loop graph L ∈ L̂ we define a function SL ∈ Fun(ΠG ′)
as the super-trace over ΠG ′:

(18) SL(ω′) =
1

|Aut(L)|LoopL, −K[•,•], ΠG′(ω′, . . . , ω′)

Here |Aut(L)| is again the order of automorphism group of graph L. Expression (18) is
of degree |L| in ω′. The independence of (18) on planar structure on L is checked by the
same argument as for trees.

Now we have all the ingredients to describe the perturbation series for S′ in powers of
ω′:

Theorem 1 (Perturbation expansion for effective action of abstract BF theory).
Effective action is linear in �:

S ′(ω′, p′; �) = S ′(0)(ω′, p′) + �S ′(1)(ω′)

S ′(0) is represented as sum over rooted binary trees without planar structure

(19) S ′(0)(ω′, p′) = S(ω′, p′) +
∑

T∈T̂: |T |≥3

ST (ω′, p′) =

= S(ω′, p′) +
∑

T∈T̂: |T |≥3

1

|Aut(T )| < p′, IterT, −K[•,•], [•,•](ω′, . . . , ω′) >

The first term here is a restriction of BF action in full space F to subspace F ′. S ′(1) is
a sum over binary 1-loop graphs L without planar structure

(20) S ′(1)(ω′) =
∑
L∈L̂

SL(ω′) =
∑
L∈L̂

1

|Aut(L)|LoopL, −K[•,•], ΠG′(ω′, . . . , ω′)
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and does not depend on p′. First terms of perturbation expansions for S′(0) and S ′(1) are:

(21) S ′(0)(ω′, p′) =< p′, dω′ > +
1

2
< p′, [ω′, ω′] > −1

2
< p′, [K[ω′, ω′], ω′] > +

+
1

2
< p′, [K[K[ω′, ω′], ω′], ω′] +

1

8
< p′, [K[ω′, ω′], K[ω′, ω′]] > +O(p′ω′5)

and

(22) S ′(1)(ω′) = −Str K[ω′, •] +
1

2
Str K[K[ω′, ω′], •] +

1

2
Str K[ω′, K[ω′, •]]−

−1

2
Str K[K[K[ω′, ω′], ω′], •]−1

2
Str K[K[ω′, ω′], K[ω′, •]]−1

3
Str K[ω′, K[ω′, K[ω′, •]]]+O(ω′4)

3.3. Properties of effective theory on infrared fields: QP -structure on space
of fields, master equation. Space of infrared fields F ′ = ΠT ∗(ΠG ′) becomes equipped
with QP -structure in the following way. The P structure is provided by restriction of BV
2-form on F to F ′:

Ω′
BV = ΩBV|F ′ =< δω′, δp′ >

Analogously, the BV Laplacian and anti-bracket on Fun(F ′) are just restrictions of their
counterparts on Fun(F) to Fun(F ′). Effective action S′ ∈ Fun(F ′) automatically satisfies
quantum master equation by virtue of general property of BV integrals:

<
∂

∂ω′ ,
∂

∂p′
> e

1
�

S′(ω′,p′;�) =
1

N

∫
LK

(∆BV− <
∂

∂ω′′ ,
∂

∂p′′
>)e

1
�

S(ω,p)[Dω′′Dp′′]LK
=

= − 1

N

∫
LK

<
∂

∂ω′′ ,
∂

∂p′′
> e

1
�

S(ω,p)[Dω′′Dp′′]LK
= 0

In terms of S ′(0) and S ′(1) the quantum master equation means

(23) {S ′(0), S ′(0)} = 0

(the classical master equation for S′(0)) and

(24) {S ′(0), S ′(1)} + ∆BVS ′(0) = 0

Hence tree effective action S′(0) provides a Q structure to F ′ — the cohomological vector
field

QF ′ = {S ′(0), •}
Since S ′(0) is linear in p′, vector field QF ′ is tangent to the base ΠG ′, and defines on it the
cohomological vector field Q′ (thus Q′ is a coderivation of Fun(ΠG ′)). In terms of Q′ the
classical master equation (23) is the cohomologicity condition

(25) Q′2 = 0

while the equation (24) means

(26) div Q′ + Q′S ′(1) = 0

3.4. Tree effective action on infrared fields as generating function of L∞ algebra
structure. A well known theorem from [2] states that Q - structure on a manifold N
generates an L∞ algebra structure on parity-reversed tangent space ΠTaN in the point
a ∈ N where Q vanishes. In our case of effective BF theory we have N = ΠG′, a = 0,
due to linearity of space of fields we identify ΠT0(ΠG ′) with G ′. Thus Q′ is a generating
function for L∞ algebra structure on G ′.

This is also a special case of Koszul duality: to introduce a coderivation Q′ on com-
mutative associative super algebra of functions Fun(ΠG′) is equivalent to defining L∞
structure on G ′.
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3.5. Construction of L∞ quasi-isomorphism between G′ and G via expectation
value map for BV integral; perturbative series. We can construct an L∞ quasi-
isomorphism U of L∞ algebra (G ′, Q′) and DGLA (G, Q):

U : ΠG ′ → ΠG
Map U is a non-linear deformation of the embedding ι : G′ → G. The pullback U∗ :
Fun(ΠG) → Fun(ΠG ′) is constructed as expectation value map:

(27) U∗(f)(ω′) =

∫
LK

f(ω) e
1
�

S(ω,p)[Dω′′Dp′′]LK∫
LK

e
1
�

S(ω,p)[Dω′′Dp′′]LK

for f ∈ Fun(ΠG). Map U∗ can be lifted to pre-L∞ morphism U : ΠG ′ → ΠG because U∗

is a homomorphism: U∗(fg) = U∗(f)U∗(g). This is in turn a consequence of the fact that
field ω is non self-interacting in BF theory. To show that U is a true L∞ morphism we
need to check that for any function f ∈ Fun(ΠG) we have

(28) Q′U∗(f) = U∗(Qf)

This is ensured by the following argument:

∆′
BV(eS′/�U∗(f)) = eS′/�(

1

�
{S ′, U∗(f)}′+∆′

BVU∗(f)) =
1

�
eS′/�{S ′, U∗(f)}′ =

1

�
eS′/�Q′U∗(f)

(we put primes here on BV Laplacian and anti-bracket on Fun(F ′) to distinguish them
from their counterparts on full space Fun(F)). On the other hand

∆′
BV(eS′/�U∗(f)) =

1

N
∆′

BV

(∫
LK

f eS/�[Dω′′Dp′′]LK

)
=

=
1

N

∫
LK

∆BV(f eS/�)[Dω′′Dp′′]LK
=

1

N

∫
LK

1

�
(Qf) eS/�[Dω′′Dp′′]LK

=
1

�
eS′/�U∗(Qf)

Hence (28) holds. Fact that U is quasi-isomorphism is trivial since the embedding ι
obviously induces an isomorphism of cohomologies ι : H∗(G ′) → H∗(G). The perturba-
tion expansion for (27) gives an expression for U as sum over binary rooted trees. We
summarize these results in the following statement.

Theorem 2. Map U : ΠG ′ → ΠG defined by (27) is an L∞ quasi-isomorphism between
L∞ algebra (G ′, Q′) and DGLA (G, Q), and may be expanded as the following sum over
binary rooted trees

(29) U(ω′) = ω′ +
∑

T∈T̂: |T |≥2

1

|Aut(T )|IterT, −K[•,•](ω′, . . . , ω′) =

= ω′−1

2
K[ω′, ω′]+

1

2
K[K[ω′, ω′], ω′]−1

2
K[K[K[ω′, ω′], ω′], ω′]−1

8
K[K[ω′, ω′], K[ω′, ω′]]+· · ·

3.6. 1-loop effective action on infrared fields as logarithm of density on ΠG′.
The 1-loop part of effective action S′(1) has the following interpretation. Define function
ρ′ ∈ Fun(ΠG ′) as exponential of S′(1):

ρ′(ω′) = eS′(1)(ω′)

Then ρ′ is a density on space ΠG ′, such that the volume form

(30) η′ = ρ′ ∏
α′

δωα′
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on ΠG ′ is conserved by Q′ (in the sense that Lie derivative of η′ along Q′ vanishes). This
conservation is equivalent to (26). Another formulation of this conservation property is
hydrodynamical: substituting S′(1) = log ρ′ into (26) we obtain equation

ρ′ div Q′ + Q′ ρ′ = 0

which is known in hydrodynamics as the equation of conservation of compressible fluid in
a stationary flow, with Q′ the velocity field of the flow and ρ′ the density of the fluid.

3.7. Dependence of effective action on chain homotopy. Our definition of effective
BF action (15) depends on choice of chain homotopy operator K : G′′ → G ′′. We will
include K as a subscript in notation S′

K(ω′, p′; �) while we are interested in K-dependence.
We formulate a statement on behaviour of S′

K under infinitesimal changes of chain homo-
topy K 	→ K + δK. As a consequence of (13,14), for K + δK to be a chain homotopy (in
first order in δK) the variation δK needs to satisfy two properties: d δK + δK d = 0 and
K δK + δK K = 0.

Theorem 3. Effective action S′
K+δK differs from S ′

K by an infinitesimal canonical trans-
formation

(31) S ′
K+δK − S ′

K = {S ′
K , RK, δK} + � ∆BV(RK, δK)

and the generator of canonical transformation RK, δK ∈ Fun(F ′) is given by

(32) RK, δK(ω′, p′; �) =
∂

∂z

∣∣∣∣
z=0

S ′
K+zK δK(ω′, p′; �)

where z ∈ R
0|1 is an odd infinitesimal variable. Equivalently, the exponential of effective

action changes under K 	→ K + δK by a ∆BV-exact term:

(33) e
1
�

S′
K+δK − e

1
�

S′
K = ∆BV

(
�

∂

∂z

∣∣∣∣
z=0

e
1
�

S′
K+zK δK

)
For the generator of infinitesimal canonical transformation RK, δK we obtain using (32)

and series (21,22) the perturbative expansion

(34) RK, δK(ω′, p′; �) =

= −1

2
< p′, [K δK[ω′, ω′], ω′] > +

1

2
< p′, [K δK[K[ω′, ω′], ω′], ω′] > −

− 1

2
< p′, [K[K δK[ω′, ω′], ω′], ω′] > +

1

4
< p′, [K δK[ω′, ω′], K[ω′, ω′]] > −

− � Str K δK[ω′, •] + � Str K δK[ω′, K[ω′, •]] + O(p′ω′5) + O(� ω′3)

This expansion may be interpreted as a sum over binary rooted trees with one internal
edge marked (we put operator −K δK on the marked edge and −K on the others, as
usual) plus sum over binary 1-loop graphs with one internal edge marked (and the same
rule for assigning operators to edges as for trees).

3.8. Physical and mathematical interpretations of procedure of inducing effec-
tive action for abstract BF theory. We have two interpretations of construction for
effective action S′ ∈ Fun(F ′) from abstract BF action S ∈ Fun(F). The first is the phys-
ical interpretation: we construct effective action (in Wilson sense) for abstract BF theory
by integrating out ultraviolet degrees of freedom (15), ending up with an effective topolog-
ical theory on the space of infrared fields F ′. The second is mathematical interpretation:
starting from DGLA G (with additional property fβ

αβ = 0), we construct L∞ algebra
structure on subcomplex G ′ ⊂ G, containing all the cohomologies of G: H∗(G) ⊂ G ′. The
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L∞ operations on G ′ are generated by cohomological vector field Q′ on ΠG ′. Additionally
we get density function ρ′ = eS′(1) ∈ Fun(ΠG ′), defining Q′-invariant measure (30) on
space ΠG ′. We have also built an L∞ quasi-isomorphism (27,29) between G′ and G.

Apparently, the physically-inspired tool, the BV integral, gives answers to questions
that may be formulated in terms of homotopy algebra, but are not, to our knowledge,
studied. Especially, not only we have the fact of existence of quasi-isomorphism between
G and G ′, but we have expression for it in terms of BV integral. Further, the Q′-invariant
measure ρ′ is a new object for homotopy algebra. The pair (Q′, ρ′) of a cohomological
vector field on ΠG ′ and Q′-invariant measure on ΠG ′ should be considered as defining a
structure of “quantum L∞ algebra” on G ′.

3.9. Generalization to BF∞ theories. Class of BF∞ theories as “closure” of
class of abstract BF theories with respect to procedure of inducing effective
action. Effective theory for abstract BF theory belongs to a wider class of BF theories,
which we call BF∞. We define a BF∞ theory in the following way: let (G, Q, ρ) be any
L∞ algebra with ρ ∈ Fun(ΠG) a Q-invariant density on ΠG. Then the space of fields is
(as for extended BF and abstract BF case)

F = ΠT ∗(ΠG)

and the action S ∈ Fun(F)

(35) S(ω, p; �) =< p,Qω > +� log ρ(ω)

We keep the notation S(0) for < p,Qω > and S(1) for log ρ. The BF∞ action auto-
matically satisfies quantum master equation. This action is also invariant under gauge
transformations — canonical transformations on F with generator

Rα =< α,
∂

∂ω
S(0) >

where gauge parameter α belongs to [R1|1 ⊗ G]even. Invariance of action under gauge
transformation follows directly from master equation. This argument is a straightforward
generalization of argument from section 2.6.

If G is split into a sum of two subcomplexes G = G′ ⊕ G ′′ with G ′′ acyclic, and K :
G ′′ → G ′′ is the chain homotopy, we can use BV integral (15) to define effective action
S ′ ∈ Fun(F ′) on F ′ = ΠT ∗(ΠG ′). Then the effective theory on F ′ is again BF∞ theory.
Class of BF∞ theories may be regarded as the closure of class of abstract BF theories
with respect to operation of inducing effective action.

3.10. Perturbative expansion for effective action of BF∞ theory. There are now
more admissible Feynman graphs in perturbation expansion for S′ then for case of inducing
from abstract BF theory (subsection 3.2), due to the fact that action S(ω′+ω′′, p′+p′′; �)
now contains vertices of order O(p′′ω′′3),O(p′′ω′′4) etc. as well as vertices of order O(�ω′′),
O(�ω′′2) etc.

Let us introduce the the obvious generalization of Iter and Loop for case of rooted trees
and 1-loop graphs without restriction on vertices to be trivalent (non-binary case). Let X
be a vector super-space over R and {Ok}k≥2 = {O2,O3, . . .} be a collection of polylinear
maps Ok : Xk → X. Let T be a rooted tree with |T | = n vertices of valence 1 (leaves), one
root of valence ≥ 2 and all other vertices (internal vertices) of valence ≥ 3 (we also mean
that T comes with planar structure). We define the n-linear map IterT,{Ok} : Xn → X
by the same iterative procedure as for binary trees, with only difference that we decorate
each vertex (internal or root) with k children by Ok evaluated on values assigned to
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children. Map IterT,{Ok},{O′
k} : Xn → X is defined analogously where in the root we

evaluate operator O′
k instead of Ok, where k is the valence of root. For example,

Iter((∗(∗∗∗))∗(∗∗)), {Ok}, {O′
k}(x1, x2, x3, x4, x5, x6, x7) = O′

3(O2(x1,O3(x2, x3, x4)), x5,O2(x6, x7))

We also need a special case when operators O′
k take values in R instead of X. The

definition of Iter does not change and it becomes an R-valued map IterT,{Ok},{O′
k} : Xn →

R. If we include the unary operator O′
1 in the list of operators {O′

k} then we mean that
trees with univalent root are allowed for this case.

Let L be a 1-loop graph: a graph with one oriented cycle, |L| = n vertices of valence 1 —
leaves, and with all other vertices (internal ones) of valence ≥ 3. We define LoopL, {Ok}, X :
Xn → R in complete analogy with binary case: we cut the cycle to transform L into a
rooted tree T with one marked leaf and set

LoopL,{Ok},X(x1, . . . , xn) = StrXIterT,{Ok}(x1, . . . , xi−1, •, xi, . . . , xn)

where i is the number of marked leaf. For example,

Loop((∗∗)(∗•∗)), {Ok}, X(x1, x2, x3, x4) = StrX O2(O2(x1, x2),O3(x3, •, x4))

We also introduce notation T∞, L∞ for the sets of rooted trees and 1-loop graphs with
planar structure, and notation T̂∞, L̂∞ for the corresponding sets factorized over graph
isomorphisms (i.e. with planar structure forgotten).

Now we return to description of perturbation series for effective action of BF∞ theory.
Let Taylor series for Q be

Q =<

∞∑
n=1

1

n!
l(n)(ω, . . . , ω),

∂

∂ω
>

with l(n) : (ΠG)⊗n → G the set of super-antisymmetric polylinear maps (the L∞ algebra
operations on G) and Taylor series for S(1) be

S(1) =
∞∑

n=1

1

n!
q(n)(ω, . . . , ω)

with q(n) ∈ Fun(ΠG) the set of super-antisymmetric polylinear functions on ΠG. Let us
formulate the generalization of theorem 1 for BF∞ case.

Theorem 4. Effective action of BF∞ theory has the form

S ′(ω′, p′; ω) = S ′(0)(ω′, p′) + � S ′(1)(ω′)

with S ′(0) expanded as a sum over rooted trees without planar structure as

(36) S ′(0)(ω′, p′) =

=< p′, l(1)(ω′) > +
∑

T∈T̂∞

1

|Aut(T )| < p′, IterT, {−K◦l(k)}k≥2, {l(k)}k≥2
(ω′, . . . ω′) >

and S ′(1) is expanded as

(37) S ′(1)(ω′) =
∑

L∈L̂∞

1

|Aut(L)|LoopL, {−K◦l(k)}k≥2, ΠG′(ω′, . . . , ω′)+

+
∑

T∈T̂∞

1

|Aut(T )|IterT,{K◦l(k)}k≥2,{q(k)}k≥1
(ω′, . . . , ω′)
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First terms in (36) are given by

(38) S ′(0)(ω′, p′) =< p′, l(1)(ω′) > +
1

2
< p′, l(2)(ω′, ω′) > +

1

6
< p′, l(3)(ω′, ω′, ω′) > −

− 1

2
< p′, l(2)(Kl(2)(ω′, ω′), ω′) > +

1

24
< p′, l(4)(ω′, ω′, ω′, ω′) > −

− 1

6
< p′, l(2)(Kl(3)(ω′, ω′, ω′), ω′) > −1

4
< p′, l(3)(Kl(2)(ω′, ω′), ω′, ω′) > +

+
1

2
< p′, l(2)(Kl(2)(Kl(2)(ω′, ω′), ω′), ω′) > +

1

8
< p′, l(2)(Kl(2)(ω′, ω′), Kl(2)(ω′, ω′)) > +O(p′ω′5)

and the first terms in (37) are

(39) S(1)(ω′) = q(1)(ω′) − Str Kl(2)(ω′, •) +
1

2
q(2)(ω′, ω′) − 1

2
q(1)(Kl(2)(ω′, ω′))+

+
1

2
Str Kl(2)(Kl(2)(ω′, ω′), •)+1

2
Str Kl(2)(ω′, Kl(2)(ω′, •))+1

6
q(3)(ω′, ω′, ω′)−1

2
q(2)(Kl(2)(ω′, ω′), ω′)−

− 1

6
q(1)(Kl(3)(ω′, ω′, ω′))+

1

2
q(1)(Kl(2)(Kl(2)(ω′, ω′), ω′))+

1

6
Str Kl(2)(Kl(3)(ω′, ω′, ω′)), •)−

− 1

2
Str Kl(2)(Kl(2)(Kl(2)(ω′, ω′), ω′), •) − 1

2
Str Kl(2)(Kl(2)(ω′, ω′), Kl(2)(ω′, •))−

− 1

3
Str Kl(2)(ω′, Kl(2)(ω′, Kl(2)(ω′, •))) + O(ω′4)

with the super traces taken in ΠG′.

3.11. Effective action on ΠT ∗(ΠH∗(G)) as iterative limit. Case of limiting effec-
tive action for extended BF theory, Massey operations on cohomologies. The
procedure of inducing effective action, starting from BF∞ theory built on L∞ algebra G
can be iterated, and reaches the iterative limit on subcomplex G′ = H∗(G) consisting of
cohomologies of G. Tree part of the corresponding effective action generates L∞ algebra
structure on cohomologies H∗(G). In particular, when we start from extended BF theory
on manifold M , so that G = g ⊗ Ω(M), the iterative limit of inducing effective action
is reached on de Rham cohomologies of M with values in g: G′ = g ⊗ H∗

dR(M). The
induced L∞ algebra structure on g ⊗ H∗

dR(M) generates Massey operations on de Rham
cohomologies H∗

dR(M). The 1-loop part of effective action S′(1) ∈ Fun(g ⊗ ΠH∗
dR(M))

should then be interpreted as a generating function for “quantum Massey operations” on
H∗

dR(M).

3.12. Iterated induction as parallel transport in category of retracts. We now
proceed to more formal description of iterated induction. Let G be a cochain complex,
and suppose that BF∞ theory on G (that is, with space of fields ΠT ∗(ΠG)) is defined
by (35) by a pair (Q, ρ) — a cohomological vector field on ΠG and Q-invariant measure
on ΠG. Let RetG be the category of retracts of G. Its objects are subcomplexes G′ ⊂ G,
containing all cohomology of G. Objects constitute a partially ordered set w.r.t. inclusion:
if G ′,G ′′ ∈ RetG and G ′′ ⊂ G ′, we say that G ′ is larger then G ′′. Category RetG possesses
the largest object — full complex G, and set of smallest objects, corresponding to different
embeddings of cohomologies H∗(G) into G. Morphisms in RetG are retractions: for G ′′ ⊂ G ′

a pair of objects (subcomplexes), P : G′ → G ′′ a projection and K : kerP → kerP a chain
homotopy operator, contracting G′ onto G ′′, we associate to the pair (P , K) a morphism
mP,K : G ′ → G ′′. Thus morphisms are always from larger object to smaller one, and
for such a pair of objects there are typically many morphisms. There are no nontrivial
automorphism in RetG: the only automorphism for each object G′ is the identity.
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Now BF∞ theory on any object G ′ ∈ RetG is defined by a pair (Q, ρ)G′ — a cohomo-
logical vector field and Q-invariant measure on ΠG′. If mP,K is a morphism from (larger
object) G ′ to (smaller object) G ′′, the operation of induction of BF∞ theory from G ′ to
G ′′, using projection P to define separation of fields into infrared and ultraviolet parts,
and using chain homotopy operator K to define Lagrangian manifold LK for BV integral,
may be viewed as “parallel transport” of (Q, ρ) structure from G′ to G ′′ along morphism
mP,K :

IP,K : (Q, ρ)G′ 	→ (Q, ρ)G′′

where IP,K denotes induction. Iterated induction is then interpreted as the parallel trans-
port along a chain of morphisms. This parallel transport also respects composition of
morphisms: if mP2,K2 ◦ mP1,K1 = mP3,K3 then IP2,K2 ◦ IP1,K1 = IP3,K3 . In particular this
means that iterated induction can always be reduced to induction in one move.

Another equivalent picture may be useful. Category RetG contains isomorphic objects
that are different embeddings of the same complex into G. We may factorize RetG over
chain isomorphisms. We denote the factorized category Ret◦G (one might call it ”category
of abstract retracts”). Its objects are abstract chain complexes G′ that can be embedded
into G and with cohomologies coinciding with cohomologies of G. This category has
only one smallest object — the complex of cohomologies H∗(G), and one largest object —
whole G. A morphism mι,P,K : G ′ → G ′′ is now specified by a triple (ι,P , K) where ι is the
embedding (injective chain map) ι : G′′ → G ′, P is projection P : G ′ → G ′′ (surjective chain
map satisfying P ◦ ι = idG′′) and K : kerP → kerP is the chain homotopy, contracting
G′ onto G ′′. This category Ret◦G has fewer objects, but more morphisms between two
given objects than in RetG. In particular, there are nontrivial automorphisms for objects
of Ret◦G, which correspond to chain automorphisms of complexes. We may understand
operation of inducing BF∞ theory as parallel transport of (Q, ρ) structure on objects of
Ret◦G along morphisms in complete analogy with RetG.

Interpretation of induction of BF∞ theory in terms of category of retracts allows us
to understand Wilson-type renormalization of simplicial BF theory under aggregation of
triangulation in terms of holonomy of the parallel transport I.

3.13. Towards state-sum for BF∞ theory. The state-sum Z(G) for BF∞ theory on
ΠT ∗(ΠG) may be defined as follows: induce effective action S′ on F ′ = ΠT ∗(ΠH∗(G)),
then integrate the exponential of effective action along the base of F ′ (this is our choice
of Lagrangian submanifold in F ′):

(40) Z(G) =

∫
ΠH∗(G)

eS′/�Dω′ =

∫
ΠH∗(G)

ρ′Dω′

with ρ′ = eS′(1)
the induced density function on ΠH∗(G). The integral (40) over whole

space ΠH∗(G) can diverge, and there should exist some “non-perturbative” reason, why
we should regularize this integral. One possible regularization is to integrate over some
domain in ΠH∗(G), for instance over connected component of support of ρ′, containing
zero. However, we do not have a good explanation, why one should use this regularization
for state-sum.

4. Effective action for extended BF theory on a triangulation

We now proceed to specializing the construction of effective action to the case of con-
structing effective action of extended BF theory on a triangulated manifold.
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4.1. Whitney complex of a simplicial complex. Let us recall the concept of Whitney
complex of a simplicial complex (see [6]). Let ∆n be a standard geometrical n-simplex
with barycentric coordinates t0, . . . , tn subject to relation t0 + · · ·+ tn = 1 and inequalities
t0 ≥ 0, · · · , tn ≥ 0. We introduce a set of special piecewise-linear differential forms on
∆n:

(41) χi0··· ik = k!
k∑

r=0

(−1)rtirdti0 ∧ · · · d̂tir · · · ∧ dtik

where hat means exclusion. Forms χσ are associated to subsets {i0, . . . , ik} ⊂ {0, . . . , n}
or, equivalently, to faces of ∆n. Following properties hold for forms χσ:

• for σ, σ′ faces of ∆n ∫
σ′

χσ =

{
1 if σ = σ′

0 otherwise

• de Rham differential acts on forms χσ as

dχi0... ik =
n∑

j=0

χji0··· ik

Linear space spanned by forms χσ is closed under de Rham differential and is called
Whitney complex of ∆n. We denote it ΩW (∆n). Elements of ΩW (∆n) (linear combinations
of forms χσ) are called Whitney forms. There is a natural isomorphism between Whitney
complex ΩW (∆n) and complex C∗(∆n) of simplicial cochains on ∆n that identifies basis
cochains eσ with forms χσ. The de Rham differential is identified with the coboundary
operator on C∗(∆n). Canonical pairing between chains and cochains on ∆n is interpreted
as integral of Whitney form over a chain.

Let now Ξ be a simplicial complex. The Whitney complex ΩW (Ξ) on Ξ is glued from
Whitney complexes on simplices of Ξ with ΩW (σ)|σ∩σ′ and ΩW (σ′)|σ∩σ′ identified. The
cocycle condition for this gluing is ensured by “compatibility” of Whitney complexes on
a simplex σ and its face σ′ ⊂ σ:

ΩW (σ)|σ′ = ΩW (σ′)

A Whitney form α ∈ ΩW (Ξ) is a differential form on Ξ such that its restrictions to all
simplices of Ξ are Whitney forms: α|σ ∈ ΩW (σ). Basis forms χσ are associated to each
simplex σ ∈ Ξ. Form χσ is defined by (41) on each simplex σ′ ∈ Ξ containing σ as a
face, and by zero on all other simplices. Whitney complex ΩW (Ξ) can again be identified
with complex of simplicial cochains C∗(Ξ), as in the case of one simplex Ξ = ∆n. By this
identification we chose special representatives for simplicial cochains in de Rham algebra
Ω(Ξ) — the Whitney forms.

Projection PW : Ω(Ξ) → ΩW (Ξ) is defined as

PW (α) =
∑
σ∈Ξ

(∫
σ

α

)
χσ

4.2. Chain homotopy between Ω(Ξ) and ΩW (Ξ): Dupont’s construction. Con-
sider first the case of one simplex Ξ = ∆n. We cite the Dupont’s construction of chain
homotopy between Ω(∆n) and ΩW (∆n) from [6], adjusting it to our notations.

Given a vertex [i] of the n-simplex ∆n, define the dilation map

φi : [0, 1] × ∆n → ∆n

by the formula
φi(u, t0, . . . , tn) = (ut0, . . . , uti + (1 − u), . . . , utn)
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Let π : [0, 1] × ∆n → ∆n be the projection on the second factor, and let π∗ : Ω∗([0, 1] ×
∆n) → Ω∗−1(∆n) be integration over the first factor. Define operators

hi : Ω∗(∆n) → Ω∗−1(∆n)

by the formula

hiα = π∗φ∗
i α

Let evi : Ω(∆n → R) be evaluation at vertex [i]. Stokes’s theorem implies that hi is the
chain homotopy between the identity and evi:

dhi + hid = id − evi

Operators hi also satisfy

hihj + hjhi = 0

The operator

(42) K∆n =
n−1∑
k=0

(−1)k
∑

0≤i0<···<ik≤n

χi0... ikh
ik · · ·hi0

was introduced by Dupont. Dupont proved the following explicit form of de Rham theo-
rem:

(43) dK∆n + K∆nd = id − PW

Thus K∆n is a chain homotopy between id : Ω(∆n) → Ω(∆n) and PW . The following
compatibility property holds: if σ is a face of ∆n and α ∈ Ω(∆n) then

(44) (K∆nα)|σ = Kσ(α|σ)

Now let Ξ be any simplicial complex. We then define KΞ : Ω∗(Ξ) → Ω∗−1(Ξ) by

(45) (KΞα)|σ = Kσ(α|σ)

for any simplex σ ∈ Ξ. This definition is self-consistent due to (44). Operator KΞ is a
chain homotopy between identity id : Ω(Ξ) → Ω(Ξ) and projection PW : Ω(Ξ) → ΩW (Ξ)

(46) dKΞ + KΞd = id − PW

4.3. Effective action of extended BF theory on triangulation: factorization of
BV integral, reducing the problem to single simplex. Let M be a D-dimensional
manifold with corners, and let Ξ be some triangulation of M . We split de Rham algebra
Ω(M) into sum of two subcomplexes:

Ω(M) = ΩW (Ξ) ⊕ Ω′′(Ξ)

with Whitney complex playing the role of infrared subcomplex, Ω′′(Ξ) the ultraviolet
subcomplex. The latter consists of differential forms α′′ such that

∫
σ
α′′ = 0 for any

simplex σ ∈ Ξ. The space of fields of extended BF theory F = ΠT ∗(Π(g ⊗ Ω(M))) is
then split into space of infrared fields F ′ = ΠT ∗(Π(g ⊗ ΩW (Ξ))) and space of ultraviolet
fields F ′′ = ΠT ∗(Π(g ⊗ Ω′′(Ξ))). We use BV integral (15) to define effective action SΞ

on F ′. The Lagrangian manifold over which we integrate in (15) is defined by Dupont’s
chain homotopy operator KΞ.

Let us split the space of ultraviolet forms into subspaces enumerated by simplices of Ξ:

Ω′′(Ξ) =
⊕
σ∈Ξ

Ω′′(M,σ)
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where Ω′′(M,σ) is the space of forms supported on the interior of σ (and vanishing on its
boundary), with zero integral over σ:

Ω′′(M,σ) = {α′′
σ ∈ Ω(M) : α′′

σ|M\σ = 0, α′′
σ|∂σ = 0,

∫
σ

α′′
σ = 0}

Field ω ∈ Π(g ⊗ Ω(M)) is then decomposed as

(47) ω =
∑
σ∈Ξ

ωσχσ +
∑
σ∈Ξ

ω′′
(σ) =

∑
σ∈Ξ

ω′
(σ) +

∑
σ∈Ξ

ω′′
(σ)

where ωσ ∈ Πg if σ is even-dimensional and ωσ ∈ g if σ is odd-dimensional; ω′′
(σ) ∈

Π(g ⊗ Ω′′(M,σ)). Field p ∈ [Ω(M)]∗ ⊗ g∗ is decomposed correspondingly:

(48) p =
∑
σ∈Ξ

eσpσ +
∑
σ∈Ξ

p′′(σ) =
∑
σ∈Ξ

p′(σ) +
∑
σ∈Ξ

p′′(σ)

where pσ ∈ g if σ is even-dimensional, pσ ∈ Πg if σ is odd-dimensional, eσ are basis
simplicial chains on Ξ, p′′(σ) ∈ [Ω(M,σ)]∗ ⊗ g∗. We use here the identification of Whitney

coforms on Ξ and simplicial chains: [ΩW (Ξ)]∗ = C∗(Ξ). Substituting decompositions
(47,48) into extended BF action (2), we get (omitting terms with vanishing support)

(49) S(ω, p) =< p, dω +
1

2
[ω, ω] >=

=
∑
σ∈Ξ

(
< p′(σ),

∑
σ1⊂σ

dω′
(σ1) +

1

2

∑
σ1,σ2⊂σ

[ω′
(σ1), ω

′
(σ2)] +

∑
σ1⊂σ

[ω′
(σ1), ω

′′
(σ)] +

1

2
[ω′′

(σ), ω
′′
(σ)] > +

+ < p′′(σ), dω′′
(σ) +

1

2

∑
σ1,σ2⊂σ

[ω′
(σ1), ω

′
(σ2)] +

∑
σ1⊂σ

[ω′
(σ1), ω

′′
(σ)] +

1

2
[ω′′

(σ), ω
′′
(σ)] >

)
=

=
∑
σ∈Ξ

S

(∑
σ1⊂σ

ω′
(σ1) + ω′′

(σ), p
′
(σ) + p′′(σ)

)
Hence the BV integral (15) factorizes:

(50)

∫
LKΞ

e
1
�

S(ω,p)[Dω′′Dp′′]LKΞ
=

∏
σ∈Ξ

∫
LKσ

e
1
�

S(ω′|σ+ω′′
(σ)

,p′
(σ)

+p′′
(σ)

)[Dω′′
(σ)Dp′′(σ)]LKσ

Here we use that ω′|σ =
∑

σ1⊂σ ω′
(σ1). The factorization of measure in (50) is due to

“simplicial locality” of KΞ (45). It follows that the effective action SΞ on infrared fields
splits into sum of contributions of individual simplices of Ξ.

Theorem 5 (Separation of variables for SΞ). Effective action SΞ on F ′ = ΠT ∗(Π(g⊗
ΩW (Ξ))) splits as

(51) SΞ(ω′, p′; �) =
∑
σ∈Ξ

S̄σ(ω′|σ, p′(σ); �)

where functions S̄σ are defined by following “elementary” BV integrals:

(52) e
1
�

S̄σ(ω′|σ ,p′
(σ)

;�) =

∫
LKσ

e
1
�

S(ω′|σ+ω′′
(σ)

,p′
(σ)

+p′′
(σ)

)[Dω′′
(σ)Dp′′(σ)]LKσ∫

LKσ
e

1
�

<p′′
(σ)

,dω′′
(σ)

>[Dω′′
(σ)Dp′′(σ)]LKσ
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Thus the task of calculating effective action of extended BF theory on any triangulated
manifold (M, Ξ) is reduced to the series of universal problems: calculate (52) for a simplex
of each dimension σ = ∆n with n = 0, 1, 2, . . .

Notice that the elementary BV integral (52) does not define an effective action of BF -
type theory, since S̄σ is a function on space

F̄σ = Π(g ⊗ ΩW (σ)) ⊕ Π|σ|g∗

lacking canonical odd simplectic structure for |σ| > 0. We use notation |σ| for the
dimension of σ; symbol Π|σ| means “reverse parity if σ is odd-dimensional”. But instead
we can think of S̄σ as of honest effective BF action on simplex σ, which according to (51)
equals Sσ(ω′, p′; �) =

∑
σ1∈σ S̄σ1(ω

′|σ1 , p
′
(σ1); �), restricted from full space of infrared fields

F ′
σ = ΠT ∗(Π(g⊗ΩW (σ))) = Π(g⊗ΩW (σ))⊕ [ΩW (σ)]∗ ⊗ g∗ to the subspace F̄σ ⊂ F ′

σ, so
that S̄σ = Sσ|F̄σ

. Thus we may name S̄σ the “reduced effective action” on simplex σ.

4.4. Simple cases of elementary BV integral on simplex: dimensions 0 and 1.
Task of computing (52) on 0-dimensional simplex σ = ∆0 is trivial, since the space of
ultraviolet fields ΠT ∗(Π(g ⊗ Ω′′(σ, σ))) is empty in this case. Infrared fields are ω′ =
ω′

(0) = ω0χ0, p′ = p′(0) = e0p0 and the coordinates ω0 ∈ Πg, p0 ∈ g∗. Hence

S̄(ω0, p0) =< p0,
1

2
[ω0, ω0] >g

which is indeed a extended BF action on a point. Here < •, • >g is the canonical pairing
between g and g∗.

Let us now turn to case of dimension 1 for (52). The 1-dimensional case σ = ∆1 turns
out to be exactly solvable, due to the fact that on the Lagrangian submanifold LK the
action we are integrating in (52) becomes quadratic in ultraviolet fields.

Whitney forms on interval ∆1 are: χ0 = t0, χ1 = t1, χ01 = t0dt1 − t1dt0 = dt1. Let us
expand infrared fields as

(53) ω′ = ω′
(0) + ω′

(1) + ω′
(01) = ω0χ0 + ω1χ1 + ω01χ01 and p′ = p′(01) = e01p01

with the coordinates ω0, ω1 ∈ Πg, ω01 ∈ g and p01 ∈ Πg∗. Let us also expand ultraviolet
fields according to de Rham degree:

ω′′
(01) = ω′′0

(01) + ω′′1
(01) and p′′(01) = p′′0(01) + p′′1(01)

In these notations the superscript is the degree of form (or degree of coform for p), while
the subscript is the simplex where the ultraviolet field is supported. Spaces where these
components of ultraviolet fields belong are:

ω′′0
(01) ∈ Πg ⊗ Ω′′0(∆1, ∆1)

ω′′1
(01) ∈ g ⊗ Ω′′1(∆1, ∆1)

p′′0(01) ∈ [Ω′′0(∆1, ∆1)]∗ ⊗ g∗

p′′1(01) ∈ [Ω′′1(∆1, ∆1)]∗ ⊗ Πg∗

Thus ω′′0
(01) is a Πg-valued function on interval ∆1 vanishing on the end-points, ω′′1

01 is a

g-valued 1-form on ∆1 with vanishing integral over ∆1, p′′0(01) is a g∗-valued 0-coform whose

pairing with linear functions χ0, χ1 on ∆1 vanishes, p′′101 is a Πg∗-valued 1-coform whose
pairing with constant 1-form χ01 vanishes.

Let us choose the homogeneous coordinate t = t1, associated with right end-point of
the interval as the parameter along ∆1. The chain homotopy operator (42) vanishes on
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functions α ∈ Ω0(∆1) and acts on 1-forms α = α(t)dt ∈ Ω1(∆1) as

(54) K(α(t)dt) = χ0h
0(α) + χ1h

1(α) =

= t0t1

∫ 1

0

du α(ut1) + t1(t1 − 1)

∫ 1

0

du α(1 − u(1 − t1)) =

∫ t

0

dt α(t) − t

∫ 1

0

dt α(t)

It is clearly seen from here that a form on interval is sent to zero by K, iff either it is a
0-form or a constant 1-form: {α ∈ Ω(∆1) : Kα = 0} = Ω0(∆1) ⊕ Ω1

W (∆1). Thus the
Lagrangian submanifold LK is in our case

(55) LK :

{
ω′′1

(01) = 0

p′′0(01) = 0

Let us expand the action under integral in (52) on submanifold (55):

(56) S|LK
=< p′(01), d(ω′

(0) + ω′
(1)) + [ω′

(0) + ω′
(1), ω

′
(01)] > + < p′(01), [ω

′
(01), ω

′′0
(01)] > +

+ < p′′1(01), [ω
′
(0) + ω′

(1), ω
′
(01)] > + < p′′1(01), [ω

′
(01), ω

′′0
(01)] >

Elementary BV integral (52) can be interpreted as an integral of type (15), inducing
effective action for extended BF theory on one simplex σ (i.e. a simplicial complex
consisting of σ and all its faces), and then restricting infrared field p′ to infrared coforms
of highest degree. Thus we can use perturbative series (21,22) for (52). Absence of cubic
terms in ultraviolet fields in (56) drastically reduces the number of possible Feynman
diagrams for S̄(ω′, p′; �), and series (21,22) for tree and 1-loop parts of S̄ are simplified to

(57) S̄(0)(ω′, p′) =< p′(01), d(ω′
(0) + ω′

(1)) + [ω′
(0) + ω′

(1), ω
′
(01)]−

− [K[ω′
(0) + ω′

(1), ω
′
(01)], ω

′
(01)] + [K[K[ω′

(0) + ω′
(1), ω

′
(01)], ω

′
(01)], ω

′
(01)]−

− [K[K[K[ω′
(0) + ω′

(1), ω
′
(01)], ω

′
(01)], ω

′
(01)], ω

′
(01)] + · · · >

and

(58) S̄(1)(ω′) = −Str K[ω′
(01), •] +

1

2
Str K[ω′

(01), K[ω′
(01), •]]−

− 1

3
Str K[ω′

(01), K[ω′
(01), K[ω′

(01), •]]] +
1

4
Str K[ω′

(01), K[ω′
(01), K[ω′

(01), K[ω′
(01), •]]]] − · · ·

where the super traces are taken on Πg⊗Ω′′0(∆1, ∆1) or equivalently on the whole space
of Πg-valued 0-forms Πg⊗Ω0(∆1) (since the diagonal matrix elements of operators under
super-traces vanish on Whitney 0-forms). The series (57,58) are evaluated using the two
following lemmata.

Lemma 1. On 1-dimensional simplex ∆1, for n ≥ 1

(59) [K(χ01 ∧ •)]n ◦ χ1 = −[K(χ01 ∧ •)]n ◦ χ0 =
Bn+1(t) − Bn+1

(n + 1)!

where Bn(t) is the n-th Bernoulli polynomial and Bn = Bn(0) is n-th Bernoulli number.
Also

(60)

∫
∆1

χ01[K(χ01 ∧ •)]n ◦ χ1 = −
∫

∆1

χ01[K(χ01 ∧ •)]n ◦ χ0 = − Bn+1

(n + 1)!

Proof. Consider the generating function

(61) f(x, t) =
∞∑

n=0

xn[K(χ01 ∧ •)]n ◦ χ1
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Applying xK(χ01 ∧ •) to both sides and using (54) we get the integral equation

x

(∫ t

0

fdt − t

∫ 1

0

fdt

)
= f − t

and differentiating it w.r.t. t we obtain

∂

∂t
f − 1 = x

(
f −

∫ 1

0

fdt

)
and hence ∂

∂t
f = xf + C(x) where C(x) is something not depending on t. Solving this

as a differential equation in variable t with boundary conditions f(x, 0) = 0, f(x, 1) = 1
(emerging from n = 0 term in (61), the other terms are vanishing on end-points of interval)
yields unique solution

f(x, t) =
ext − 1

ex − 1
Since Bernoulli polynomials are defined by

∞∑
n=0

Bn(t)

n!
xn =

xext

ex − 1

we obtain

[K(χ01 ∧ •)]n ◦ χ1 =
Bn+1(t) − Bn+1

(n + 1)!

Fact that K(χ01 ∧ •)]n ◦ χ1 = −[K(χ01 ∧ •)]n ◦ χ0 is obvious from K(χ01 ∧ •)]n ◦ χ1 +
[K(χ01 ∧ •)]n ◦ χ0 = [K(χ01 ∧ •)]n ◦ 1 = 0. Formula (60) follows directly from (59) and

from the following property of Bernoulli polynomials:
∫ 1

0
dt Bn(t) = 0 for n ≥ 1. �

Lemma 2. On 1-dimensional simplex ∆1 for n ≥ 2

(62) StrΩ0(∆1) [K(χ01 ∧ •)]n = −Bn

n!

Proof. Let us calculate these super-traces (which are now just ordinary traces, as
Ω0(∆1) is purely even vector space) in monomial basis 1, t, t2, t3, . . . ∈ Ω0(∆1). Denote
for brevity the operator under super-trace in (62) by Mn with M = K(χ01 ∧ •) (letter
M for monodromy). For small n we may calculate (62) directly by finding all diagonal
matrix elements on Mn. Iterating operator M on a monomial tm we get:

(63) tm
M−→ tm+1

m + 1
− t

m + 1

M−→

M−→ tm+2

(m + 1)(m + 2)
− t2

2(m + 1)
+

(
1

2(m + 1)
− 1

(m + 1)(m + 2)

)
t

M−→ · · ·

It is clear that for general m,n structure of Mn(tm) is: Mn(tm) = m!
(m+n)!

tm+n + Pn(t; m)

where Pn(t; m) is some polynomial of degree n in t with coefficients being some rational
functions of m. Thus all matrix elements < tm|Mn|tm > vanish for m > n and only first
few contribute to Str, i.e. those with 1 ≤ m ≤ n. For instance for n = 2 from (63) we
obtain

(64) Str M2 =< t|M2|t > + < t2|M2|t2 >=

=

(
1

2(m + 1)
− 1

(m + 1)(m + 2)

)
m=1

+

(
− 1

2(m + 1)

)
m=2

=

(
1

2 · 2 − 1

2 · 3

)
+

(
− 1

2 · 3

)
= − 1

12
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Yet for general n we need to calculate somehow the diagonal matrix elements, and for
this we need a generalization of generating function (61):

(65) fm(x, t) =
∞∑

n=0

xn[K(χ01 ∧ •)]n ◦ tm

We again obtain a differential equation for fm:

∂

∂t
fm = xfm + mtm−1 + Cm(x)

where Cm(x) is something not depending on t. This equation with boundary conditions
fm(x, 0) = 0, fm(x, 1) = 1 uniquely determine the solution

(66) fm(x, t) =
ext − 1

ex − 1

(
1 − ex

∫ 1

0

dt̄ mt̄m−1e−xt̄

)
+ ext

∫ t

0

dt̄ mt̄m−1e−xt̄ =

=
ext − 1

ex − 1

m−1∑
k=0

m!

(m − k)!
x−k −

m−1∑
k=1

m!

(m − k)!
tm−kx−k

Let us expand fm(x, t) in powers of t: fm(x, t) =
∑∞

k=1 fm,k(x). Extracting coefficient of
tm from fm(x, t) we obtain the generation function for diagonal elements of powers of M
in the following sense:

fm,m(x) =< tm|1|tm > +x < tm|M|tm > +x2 < tm|M2|tm > +x3 < tm|M3|tm > · · ·

From the explicit formula (66) we have

fm,m(x) = 1 − 1

ex − 1

∞∑
k=m+1

xk

k!

The unit term here is the matrix element of identity. Now, to get generating function for
super-traces, we must evaluate the sum

∑∞
m=1(fm,m(x) − 1):

(67)
∞∑

m=1

(fm,m(x) − 1) = x Str M + x2 Str M2 + x3 Str M3 + · · · =

= − 1

ex − 1

∞∑
m=1

∞∑
k=m+1

xk

k!
= − 1

ex − 1

∞∑
k=2

k − 1

k!
xk = 1 − x − x

ex − 1
= −1

2
x −

∞∑
n=2

Bn

n!
xn

Thus we proved that Str Mn = −Bn

n!
for n ≥ 2. �

Now we have all the ingredients to obtain explicit expression for S̄ on a interval ∆1:
we just have to take series (57,58), plug there the decompositions of infrared fields (53),
and use formulae (60,62). We should also take into account that the first term in (58)
vanishes, since it is proportional to the contraction f b

ab = 0 of structure constants of gauge
algebra. The result is:

Theorem 6. The reduced effective BF action on 1-dimensional simplex ∆1, as defined
by (52), is

S̄(ω0, ω1, ω01, p01; �) = S̄(0)(ω0, ω1, ω01, p01) + � S̄(1)(ω01)
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and the tree and 1-loop parts of S̄ are:

(68) S̄(0)(ω0, ω1, ω01, p01) =

=< p01,−(ω1 − ω0) +
1

2
[ω0 + ω1, ω01] −

∞∑
n=2

Bn

n!
(adω01)n(ω1 − ω0) >g=

=< p01,
1

2
[ω0 + ω1, ω01] −

(
adω01

2
coth

adω01

2

)
(ω1 − ω0) >g

and

(69) S̄(1)(ω01) =
∞∑

n=2

1

n

Bn

n!
trg(adω01)n = trg log

(
sinh

adω01

2
adω01

2

)
where adω01 = [ω01, •] is the adjoint action of ω01, < •, • >g is canonical pairing between
g and g∗, trg is the trace over g.

Remark. We can recognize in (68) a special case of Baker-Campbell-Hausdorff series:

S̄(0)(ω0, ω1, ω01, p01) =< p01,
∂

∂ε

∣∣∣∣
ε=0

log
(
e−εω1

e−ω01

eεω0
)

>g

where ε ∈ ΠR is an infinitesimal odd variable. The 1-loop part of reduced effective action
on interval (69) has the following interpretation. The measure it defines on gauge Lie
algebra g is the pullback of Haar measure µG on gauge group G w.r.t exponential map
exp : g → G

eS̄(1)(ω01)δω01 = detg

(
sinh

adω01

2
adω01

2

)
δω01 = exp∗ µG

(see e.g. [7]).

4.5. Simplicial BF theory on interval. The simplest example of simplicial BF theory
(apart from trivial 0-dimensional case) is the case when the manifold M is an interval
M = [0, 1] and triangulation Ξ consists of one 1-dimensional simplex [01] — the interval
itself and two 0-dimensional simplices [0], [1] — the end-points of interval. Infrared fields
are ω′ = ω0χ0 + ω1χ1 + ω01χ01 and p′ = e0p0 + e1p1 + e01p01. Here ω0, ω1 ∈ Πg, ω01 ∈ g,
p0, p1 ∈ g∗, p01 ∈ Πg∗. Space of fields ω′ may be identified with space Πg ⊗ C∗(Ξ) of
Πg-valued cochains on Ξ and space of fields p′ with space C∗(Ξ)⊗ g∗ of g∗-valued chains.
The effective action is

(70) SΞ(ω′, p′; �) = S̄0(ω
0, p0) + S̄1(ω

1, p1) + S̄01(ω
0, ω1, ω01, p01; �) =

=< p0,
1

2
[ω0, ω0] >g + < p1,

1

2
[ω1, ω1] >g +

+ < p01,
1

2
[ω0 + ω1, ω01] −

(
adω01

2
coth

adω01

2

)
(ω1 − ω0) >g +� trg log

(
sinh

adω01

2
adω01

2

)
Action SΞ satisfies quantum master equation by construction and thus defines cohomo-
logical vector field on Πg ⊗ C∗(Ξ):

(71) Q(ω′) =<
1

2
[ω0, ω0],

∂

∂ω0
>g + <

1

2
[ω1, ω1],

∂

∂ω1
>g +

+ <
1

2
[ω0 + ω1, ω01] −

(
adω01

2
coth

adω01

2

)
(ω1 − ω0),

∂

∂ω01
>g
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Vector field Q generates L∞ algebra structure on the space of g-valued cochains g⊗C∗(Ξ).
The 1-loop part of action SΞ produces density function ρ(ω′) on Πg ⊗ C∗(Ξ):

ρ(ω′) = eS
(1)
Ξ (ω′) = detg

(
sinh

adω01

2
adω01

2

)

Density ρ is Q-invariant by construction. The L∞ quasi-isomorphism U : Πg ⊗ C∗(Ξ) →
Πg ⊗ Ω(∆1) is easily found from (29) using (59):

U(ω′) = ω0 +

(
1 − e−t adω01

1 − e−adω01

)
(ω1 − ω0) + ω01dt

or equivalently in more symmetric form:

U(ω′) =

(
1 − et0 adω01

1 − eadω01

)
ω0 +

(
1 − e−t1 adω01

1 − e−adω01

)
ω1 + ω01dt

Let us now take a triangulation Ξ on the interval I = [0, 1], consisting of N ≥
1 1-dimensional simplices [01], [12], . . . , [(N − 1)N ] and N + 1 0-dimensional simplices
[0], [1], . . . , [N ]. Let the coordinate of [i] on the interval [0, 1] be i

N
, and let ε = 1

N

denote the spacing. The infrared fields are: ω′ =
∑N

i=0 ωiχi +
∑N

i=1 ωi−1,iχi−1,i, p′ =∑N
i=0 eipi +

∑N
i=1 ei−1,ipi−1,i and the effective action is

SΞ(ω′, p′; �) =
N∑

i=0

S̄i(ω
i, pi) +

N∑
i=1

S̄i−1,i(ω
i−1, ωi, ωi−1,i, pi−1,i; �)

Let us introduce normalized coordinates on space of infrared fields: ωi = ω̃i, ωi−1,i =
ε ω̃i−1,i, pi = ε p̃i, pi−1,i = p̃i−1,i. Then the projector P ′ acts on smooth forms ω(t) ∈
Πg ⊗ Ω([0, 1]) as

ω̃i = ω(
i

N
), ω̃i−1,i =

1

ε

∫ i
N

i−1
N

ω

Thus ω̃ is what we would call a “lattice approximation” of a smooth form. Expressing
effective action SΞ in terms of these normalized infrared fields, we obtain:

(72) SΞ(ω′, p′; �) =

ε

(
−

N∑
i=1

< p̃i−1,i,
ω̃i − ω̃i−1

ε
>g +

N∑
i=0

< p̃i,
1

2
[ω̃i, ω̃i] >g +

N∑
i=1

< p̃i−1,i, [
ω̃i−1 + ω̃i

2
, ω̃i−1,i] >g

)
−

−
∞∑

n=2

εn+1Bn

n!

N∑
i=1

< pi−1,i, (adω̃i−1,i)n

(
ω̃i − ω̃i−1

ε

)
>g +�

∞∑
n=2

εn Bn

n n!

N∑
i=1

trg(adω̃i−1,i)n

Expression (72) constitutes a subtle lattice version of ordinary extended BF action (on
smooth forms) on interval S =< p, dω + 1

2
[ω, ω] >. The first three terms in (72) are

what we would call the naive lattice action for extended BF theory on interval, while the
other terms are corrections of higher order in spacing ε. These additional terms make this
lattice action satisfy quantum master equation (the naive lattice action does not satisfy
QME).
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4.6. Simplicial BF theory on circle, induction to cohomologies of circle, BF
state-sum on circle. Now let M = S1 be a circle, and Ξ be a triangulation of circle,
consisting of N ≥ 2 1-simplices [01], [12], . . . , [(N−1)N ] and N 0-simplices [1], [2], . . . , [N ].

Infrared fields are ω′ =
∑N

i=1 ωiχi +
∑N

i=1 ωi−1,iχi−1,i, p′ =
∑N

i=1 eipi +
∑N

i=1 ei−1,ipi−1,i

and effective action is

(73) SΞ(ω′, p′; �) =
N∑

i=1

< pi,
1

2
[ωi, ωi] >g +

+
N∑

i=1

< pi−1,i,
1

2
[ωi−1 + ωi, ωi−1,i] −

(
adωi−1,i

2
coth

adωi−1,i

2

)
(ωi − ωi−1) >g +

+ �

N∑
i=1

trg log

(
sinh

ad
ωi−1,i

2
ad

ωi−1,i

2

)
We use here the convention ω0 = ωN .

Let us induce effective action on cohomologies of circle from action (73), considered as
BF∞ type theory. For simplicity take N = 2, i.e. the simplest non-degenerate triangu-
lation of the circle. Next we split the fields living on triangulation Ξ into (new) infrared
and ultraviolet parts:

ω1 = ωA − 1

2
ω′′A, ω2 = ωA +

1

2
ω′′A, ω01 =

ωB − ω′′B

2
, ω12 =

ωB + ω′′B

2
,

p1 =
pA − p′′A

2
, p2 =

pA + p′′A
2

, p01 = pB − 1

2
p′′B, p12 = pB +

1

2
p′′B

Here A and B label the 0- and 1-dimensional cohomologies of circle: eA = 1, eB = dt.
The Lagrangian submanifold LK is: ω′′B = 0, p′′A = 0. Restricted to LK the action (73)
gives

(74) SΞ|LK
=< pA,

1

2
[ωA, ωA] +

1

8
[ω′′A, ω′′A] >g + < pB, [ωA, ωB] >g −

− < p′′B,

(
adωB

4
coth

adωB

4

)
ω′′A >g +� trg log

(
sinh

ad
ωB

4
ad

ωB

4

)2

The BV integral (15) is

(75)

e
1
�

SH∗(S1) =

∫
eSΞ/� δω′′Aδp′′B = exp

(
1

�
(< pA,

1

2
[ωA, ωA] >g + < pB, [ωA, ωB] >g)

)
·

· detg

(
adωB

4
coth

adωB

4

)
detg

(
sinh

ad
ωB

4
ad

ωB

4

)2

=

= exp

(
1

�
(< pA,

1

2
[ωA, ωA] >g + < pB, [ωA, ωB] >g)

)
detg

(
sinh

ad
ωB

2
ad

ωB

2

)
Hence the effective action on cohomologies of circle (i.e. on space ΠT ∗(Πg ⊗ H∗(S1))) is

(76) SH∗(S1)(ω
A, ωB, pA, pB; �) =

=< pA,
1

2
[ωA, ωA] >g + < pB, [ωA, ωB] >g +� trg log

(
sinh

ad
ωB

2
ad

ωB

2

)
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This action coincides with (73) if we formally set N = 1 (although this corresponds to
degenerate triangulation). Indeed we could derive (76) directly from continuous extended
BF theory on circle and arrive to the same answer. The difference is that inducing (76)
from (73) we only need to calculate a finite-dimensional integral. Action (76) generates Lie
algebra structure on g⊗H∗(S1) and no higher homotopic operations (Massey operations),
since circle is a formal manifold. The 1-loop part of (76) gives Q-invariant density function
on Πg ⊗ H∗(S1):

ρ(ωB) = detg

(
sinh

ad
ωB

2
ad

ωB

2

)
The state-sum for extended BF theory on circle, according to definition from (3.13) is

then

(77) Z(g ⊗ Ω(S1)) =

∫
ΠH∗(S1)

ρ(ωB) δωAδωB =

∫
g

detg

(
sinh

ad
ωB

2
ad

ωB

2

)
δωB

As we observed before, the measure we are integrating is a pullback of Haar measure on
the gauge Lie group G under exponential map exp : g → G. Notice that integral (77) (if
taken over the connected component of support of ρ, containing zero — the integral over
whole g diverges) gives the volume of the gauge group:

Z(g ⊗ Ω(S1)) = vol(G)

As we mentioned in section 3.13, we do not have a good explanation, why we should
regularize the integral for state-sum in such a way. Notice also that the compactness
of gauge group suddenly becomes important for finiteness of state-sum. This should be
viewed as an essentially quantum phenomenon.

4.7. Elementary BV integral on simplex of dimension D ≥ 2: perturbative
results. Integral (52) on D-dimensional simplex ∆D is no longer Gaussian if D ≥ 2 and
we do not know the closed expression for S̄∆D . But we can use perturbative expansion
(21,22) for S̄∆D and calculate its first terms explicitly.

We use the same notation for Taylor expansion of S̄ as in subsection 3.10:

S̄∆D(ω, p∆D) =
∞∑

n=1

< p∆D ,
1

n!
l̄
(n)

∆D(ω, . . . , ω) >g +�

∞∑
n=1

1

n!
q̄
(n)

∆D(ω, . . . , ω)

where l̄
(n)

∆D is a n-linear super-antisymmetric map

l̄
(n)

∆D : (Πg ⊗ ΩW (∆D))⊗n → [ΩD
W (∆D)]∗ ⊗ g∗ � ΠDg∗

and q̄
(n)

∆D is a n-linear super-antisymmetric function

q̄
(n)

∆D : (Πg ⊗ ΩW (∆D))⊗n → R

and we put bars on l and q to indicate that they correspond to the reduced effective action
on simplex.

Now introduce a set of functions CT on faces of ∆D as follows: for every rooted binary
tree T with |T | = n leaves and σ1, . . . , σn faces of ∆D we define

CT (σ1, . . . , σn) =

∫
∆D

IterT, K(•∧•), •∧• (χσ1 , . . . , χσn)

For the trivial tree with one leaf we set

C(∗)(σ1) =

∫
∆D

dχσ1
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We also introduce the sign functions εT taking values in {−1, 0, +1}, defined as

εT (σ1, . . . , σn) =

 +1 if CT (σ1, . . . , σn) > 0
0 if CT (σ1, . . . , σn) = 0
−1 if CT (σ1, . . . , σn) < 0

Functions CT have the following symmetry properties:

• Internal symmetry: for π1, . . . , πn permutations of vertices of simplices σ1, . . . , σn

(78) CT (π1σ1, . . . πnσn) = (−1)π1 · · · (−1)πnCT (σ1, . . . , σn)

where (−1)πi is the sign of permutation πi.
• External symmetry: for π a permutation of vertices of ∆D

(79) CT (πσ1, . . . , πσn) = (−1)πCT (σ1, . . . , σn)

• Symmetry under tree isomorphisms: if trees T and T ′ are isomorphic as non-planar
graphs and κ : T → T ′ is the isomorphism, then

(80) CT ′(σκ(1), . . . , σκ(n)) = εκ(|σ1|, . . . , |σn|) CT (σ1, . . . , σn)

where we understand that κ maps leaves of T into leaves of T ′. The sign εκ(|σ1|, . . . , |σn|) =
±1 depends only on dimensions of faces, not on faces themselves and is defined by
(80). Important case of this symmetry is when T ′ = T and κ ∈ Aut(T ).

Examples of symmetry (80):

C(∗(∗∗))(σ3, σ1, σ2) = (−1)(|σ1|+|σ2|−1) |σ3|C((∗∗)∗)(σ1, σ2, σ3)

C((∗∗)∗)(σ2, σ1, σ3) = (−1)|σ1| |σ2|C((∗∗)∗)(σ1, σ2, σ3)

Obviously symmetries (78,79,80) also hold for sign functions εT .

Lemma 3. Values of CT for |T | ≤ 3 are given by

C(∗)(σ1) = ε(∗)(σ1),(81)

C(∗∗)(σ1, σ2) = ε(∗∗)(σ1, σ2)
|σ1|! |σ2|!

(|σ1| + |σ2| + 1)!
,(82)

C((∗∗)∗)(σ1, σ2, σ3) = ε((∗∗)∗)(σ1, σ2, σ3)
|σ1|! |σ2|! |σ3|!

(|σ1| + |σ2| + 1) (|σ1| + |σ2| + |σ3| + 1)!
(83)

and signs ε(∗), ε(∗∗), ε((∗∗)∗) are uniquely determined by symmetries (78,79,80), specific
values

ε(∗)([12 · · ·D]) = 1,(84)

ε(∗∗)([0 · · · a], [a · · ·D]) = 1 for 0 ≤ a ≤ D,(85)

ε((∗∗)∗)([0 · · · a], [a · · · a + b], [a(a + b) · · ·D]) = (−1)a+b+1(86)

for 0 ≤ a ≤ D − 1, 1 ≤ b ≤ D − a

and non-vanishing conditions

ε(∗)(σ1) �= 0 iff |σ1| = D − 1,

ε(∗∗)(σ1, σ2) �= 0 iff |σ1| + |σ2| = D and σ1 ∪ σ2 = ∆D,

ε((∗∗)∗)(σ1, σ2, σ3) �= 0 iff |σ1| + |σ2| + |σ3| = D + 1, σ1 ∪ σ2 ∪ σ3 = ∆D

and σ1 ∩ σ2 = σ1 ∩ σ2 ∩ σ3 is a 0-simplex
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Here ∪ means union of simplices viewed as sets of vertices (or equivalently convex hull
of geometric simplices), ∩ means intersection.

The absolute value of CT turns out to be a simple function of dimensions of simplices,
non-vanishing condition is a combinatorial condition formulated in terms of dimensions
and unions/intersections of simplices, while the sign εT of CT is the most tricky thing
here, determined by reduction to standard cases (84,85,86) via symmetries (78,79,80).

We need coefficient functions CT for evaluating terms of perturbative expansion (21)
for the reduced effective action:

(87) < p, (−1)|T |IterT, K[•,•], [•,•](ω, . . . , ω >=

=
∑

σ1,...,σn⊂∆D

< e∆D

p∆D , (−1)|T | IterT, K[•,•], [•,•](ωσ1χσ1 , . . . , ω
σnχσn) >=

=
∑

σ1,...,σn⊂∆D

ε̃T (|σ1|, . . . , |σn|) CT (σ1, . . . , σn) < p∆D , IterT, [•,•](ωσ1 , . . . , ωσn) >g

Sign ε̃T comes from interchanging coordinates ω and Whitney forms χ in (87), and is
defined by

(88) (−1)|T | IterT, K[•,•], [•,•](ωσ1χσ1 , . . . , ω
σnχσn) =

= ε̃T (|σ1|, . . . , |σn|) CT (σ1, . . . , σn) IterT, [•,•](ωσ1 , . . . , ωσn)

For trees with |T | ≤ 3, ε̃T is given by

ε̃(∗)(|σ1|) = (−1)|σ1|+1,(89)

ε̃(∗∗)(|σ1|, |σ2|) = (−1)|σ1| (|σ2|+1),(90)

ε̃((∗∗)∗)(|σ1|, |σ2|, |σ3|) = (−1)|σ1| |σ2|+|σ1| |σ3|+|σ2| |σ3|+|σ1|+|σ3|(91)

Notice that (87) does not depend on planar structure of tree T : if T and T ′ are isomorphic
as non-planar graphs, then S̄T ′ = S̄T . At the same time ε̃T , CT and IterT, [•,•](ωσ1 , . . . , ωσn)
separately do depend on planar structure of T .

The expansion (21) for tree part of reduced effective action on simplex ∆D in terms of

polylinear maps l̄
(n)

∆D becomes

(92) l̄
(n)

∆D(ω, . . . , ω) =

= n!
∑

T : |T |=n

1

Aut(T )

∑
σ1,...,σn⊂∆D

ε̃T (|σ1|, . . . , |σn|) CT (σ1, . . . , σn) IterT, [•,•](ωσ1 , . . . , ωσn)

where we sum over classes of isomorphic trees (or equivalently over trees without specified

embedding into plane). Using Lemma 3 we obtain explicit expressions for l̄
(n)

∆D with n =

1, 2, 3 (and thus expansion for S̄
(0)

∆D up to order O(pω3)).
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Theorem 7. The first terms in tree part of reduced effective action S̄
(0)

∆D are given by

l̄
(1)

∆D(ω) =
∑

σ1⊂∆D

(−1)|σ1|+1ε(∗)(σ1) ωσ1 ,(93)

l̄
(2)

∆D(ω, ω) =
∑

σ1,σ2⊂∆D

(−1)|σ1| (|σ2|+1)ε(∗∗)(σ1, σ2)
|σ1|! |σ2|!

(|σ1| + |σ2| + 1)!
[ωσ1 , ωσ2 ],(94)

l̄
(3)

∆D(ω, ω, ω) = 3
∑

σ1,σ2,σ3⊂∆D

(−1)|σ1| |σ2|+|σ1| |σ3|+|σ2| |σ3|+|σ1|+|σ3|ε((∗∗)∗)(σ1, σ2, σ3) ·(95)

· |σ1|! |σ2|! |σ3|!
(|σ1| + |σ2| + 1) (|σ1| + |σ2| + |σ3| + 1)!

[[ωσ1 , ωσ2 ], ωσ3 ]

Let us now turn to the 1-loop part of reduced effective action S̄
(1)

∆D(ω). Similarly to
what we did for tree part, for every loop graph L with |L| = n leaves we introduce a
function CL on faces of ∆D:

CL(σ1, . . . , σn) = LoopL, K(•∧•), Ω(∆D)(χσ1 , . . . , χσn)

where the super-trace is taken over the space Ω(∆D) of all differential forms on ∆D, and
binary operator K(• ∧ •) is acting on the same space. Obviously CL like CT possesses
internal symmetry (78) and symmetry under graph isomorphisms (80) and the following
form of external symmetry: for π a permutation of vertices of ∆D

(96) CL(πσ1, . . . , πσn) = CL(σ1, . . . , σn)

only difference from the case of trees is the absence of sign (−1)π.
Using CL we may evaluate the terms of expansion (22) for reduced effective action on

∆D as follows

(97) (−1)|L| LoopL, K[•,•], Πg⊗Ω(∆D)(ω, . . . , ω) =

=
∑

σ1,...,σn⊂∆D

(−1)|L| LoopL, K[•,•], Πg⊗Ω(∆D)(ω
σ1χσ1 , . . . , ω

σnχσn) =

=
∑

σ1,...,σn⊂∆D

ε̃L(|σ1|, . . . , |σn|) CL(σ1, . . . , σn) LoopL,[•,•],g(ω
σ1 , . . . , ωσn)

The meaning of (97) is to separate super-trace over Πg⊗Ω(∆D) into trivial part — trace
over g and non-trivial part — super-trace over infinite-dimensional space Ω(∆D). Signs
ε̃L come from interchanging ωσ and χσ and are defined by (97). Plugging (97) into (22),
we obtain

(98) q̄
(n)

∆D(ω, . . . , ω) =

= n!
∑

L: |L|=n

1

Aut(L)

∑
σ1,...,σn⊂∆D

ε̃L(|σ1|, . . . , |σn|) CL(σ1, . . . , σn) LoopL,[•,•],g(ω
σ1 , . . . , ωσn)

Here we sum over classes of isomorphic 1-loop graphs. Graphs L with cycle of length 1 do
not contribute to (98) since for these graphs LoopL,[•,•],g is proportional to the contraction

f b
ab of structure constants of gauge algebra, and thus these terms vanish. For instance this

means that q̄
(1)

∆D = 0. For q̄
(2)

∆D the only contributing graph is L = (∗(∗•)). Symmetries

(78,96) for C(∗(∗•)) allow only two possible terms for q̄
(2)

∆D :

q̄
(2)

∆D(ω, ω) = AD

∑
0≤i<j≤D

trg (adωij)2 + BD

∑
0≤i<j<k≤D

trg (adωjk − adωik + adωij)2
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Here AD and BD are some coefficients, and symmetries tell nothing of their values. It
turns out that value of AD can be recovered from master equation for full effective action
on simplex ∆D (i.e. sum of reduced effective actions on all faces) and result (95) for tree
part of effective action. Coefficient BD on the other hand cannot be recovered from master
equation since the canonical transformation

S∆D 	→ S∆D + � α Q

( ∑
0≤i<j<k≤D

trg (adωjk − adωik + adωij) · adωijk

)

shifts coefficient BD by α (and gives indeed a solution to master equation). This also
means that coefficient BD is somehow less important then AD, since it stands in front of
Q-exact term.

Theorem 8. The first terms of 1-loop part of reduced effective action S̄
(1)

∆D are given by

q̄
(1)

∆D(ω) = 0

and

(99) q̄
(2)

∆D(ω, ω) = AD

∑
0≤i<j≤D

trg (adωij)2 + BD

∑
0≤i<j<k≤D

trg (adωjk − adωik + adωij)2

and coefficient AD is

(100) AD =
(−1)D+1

(D + 1)2 (D + 2)

We also carried out an explicit calculation of super-trace C(∗(∗•)) in dimensions D = 2, 3
(not relying on master equation arguments) and found out the following:

Theorem 9. In dimensions D = 2, 3 the lowest-order term in 1-loop part of reduced

effective action q̄
(2)

∆D is given by (99) with

A2 = − 1

36
, B2 =

1

270
,

A3 =
1

80
, B3 = − 1

648

For the coefficient BD we might try to guess some formula like

BD =
(−1)D

9 D(D + 1)(D + 3)

from here, but this is just a guess, and our evidence is limited to only two points D = 2, 3.
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Collecting our results for D = 2 we obtain

(101) S̄[012](ω, p; �) =

=< p012, (ω
01 + ω12 + ω20) +

1

3
[ω0 + ω1 + ω2, ω012] +

1

6
([ω01, ω12] + [ω12, ω20] + [ω20, ω12])+

+
1

72
([[ω01+ω12+ω20, ω01], ω01]+[[ω01+ω12+ω20, ω12], ω12]+[[ω01+ω12+ω20, ω20], ω20])−

− 1

24
([[ω1 − ω0, ω01], ω012] + [[ω2 − ω1, ω12], ω012] + [[ω0 − ω2, ω20], ω012])−

− 1

36
([[ω1 − ω0, ω012], ω01] + [[ω2 − ω1, ω012], ω12] + [[ω0 − ω2, ω012], ω20]) >g +

+ � trg

(
− 1

72
((adω01)2 + (adω12)2 + (adω20)2) +

1

540
(adω01 + adω12 + adω20)2

)
+

+ O(p ω4) + O(� ω3)

Importance of effective action on 2-simplex is that its tree part restricted to Whitney 1-
forms produces a formula for “simplicial curvature” of simplicial (i.e. Whitney) connection
1-form:

(102) F[012](ω
01, ω12, ω20) = (ω01 + ω12 + ω20) +

1

6
([ω01, ω12] + [ω12, ω20] + [ω20, ω12])+

+
1

72
([[ω01+ω12+ω20, ω01], ω01]+[[ω01+ω12+ω20, ω12], ω12]+[[ω01+ω12+ω20, ω20], ω20])+O(ω4)

Remark on divergencies. Calculating values of 1-loop Feynman graphs for effective
action on simplex reduces essentially to calculating super-traces over infinite-dimensional
space of differential forms. These might contain divergencies. As we have seen in section
4.4, this is not the case for dimension D=1: only finitely many terms of the monodromy
matrix (written in monomial basis) are non-zero, and thus the super-trace is a sum of
finitely many terms.

For dimension D = 2 we also carried out a calculation of super-trace for q(2) in monomial
basis. For this case diagonal elements of monodromy matrix do not vanish on monomials
of high degree. Moreover, super-traces of monodromy matrix on 0-forms and on 1-forms
diverge if calculated separately. If we employ the regularization that is the monomial
degree cut-off, i.e. we calculate super-trace of monodromy acting on monomials of total
degree < N , these divergences are logarithmic: StrΩ0(∆2) ∼ log N and StrΩ1(∆2) ∼ log N .
But in the total super-trace over all differential forms these divergencies cancel, and the
answer for q(2) is finite.

We also made a calculation of super-trace for q(2) in “coordinate representation”, i.e.
in basis of δ-functions of coordinates on simplex, centered in different points (thus super-
trace becomes an integral over the simplex). Here we also encounter divergencies, and
a nice way to handle them is to introduce the following regularization: we change the
Dupont’s chain homotopy operator K to a regularized one Kε, where Kε is obtained by
the same construction, described in section 4.2, where we redefine the dilation map φi to
act on [0, 1−ε]×∆D instead of [0, 1]×∆D. Here ε > 0 is an infinitesimal parameter. This
regularization immediately makes all answers in coordinate representation finite, and the
result for q(2) coincides with one obtained in monomial basis.

For case D = 3 we calculated q(2) in coordinate representation only (these calculations
are technically simpler than in monomial basis). In principle the corresponding super-
trace could have not just logarithmic, but even a linear (in cut-off parameter) divergence.
But, employing regularization K → Kε, we obtain a finite answer.
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