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1 Introduction

There exists a general ideology according to which many geometric notions and construc-
tions may be translated into the language of different adelic groups related to a scheme
over a field and some additional data, for instance a coherent sheave on the scheme,
for more details see, for example, [24]. This article gives several new examples to this
approach. Namely, we study so-called multiplicative adeles, which should be related with
algebraic cycles on the scheme.

The first example are ideles on an algebraic curve. They map to the Picard group of
the curve. The Weil pairing of two elements £, M from the m-torsion of the Jacobian
of an algebraic curve C equals to the product of m-th powers of local Hilbert symbols
of two ideles «, 8 € Af, corresponding to £ and M in such a way that o™ and g™ are
principal ideles:

ordy (ag)ordy (Bg) . ordsz (Bz) p—orde(az)1\m
(['aM)m:(H Ny /6[(—1) de(az)ordz (Bz) o, orde (B )ﬁx ( )]) _

zeC

First, it was proven for arbitrary genus in [13]; a more elemetary proof was given later
by M. Mazo in [17]. On the other hand Arbarello, de Concini and Kac have constructed
some central extension of the group of ideles on an algebraic curve C,

0—k* = AL — AL, — 0,

in which the commutator is also equal up to sign to the product of all local Hilbert
symbols of two ideles «, B € A.:

(c, 8) = (1) 28l 98O TT Nany g 1) lo)ordelB) g e 0) o))

zeC

We give an intrinsic explanation for the apparent similarity of these two formulas. In
turns out that there exists a close relation between the central extension from [1] and
a Poincaré biextension over Jac(C') x Jac(C'), which defines the Weil pairing. In fact,
Poincaré biextension is a quotient of a (trivial) biextension over the square of the group
of ideles of zero degree (A%)° x (A%)?, associated to A%.

Next, let us look at the higher-dimensional case. Let X be a Noetherian separa-
ble scheme of finite type over a field. One should change idéles, and the sheaf O%,
both related with Ki-functor, by certain higher-dimensional adeles and sheaves of K-
groups, related with higher K-functors. Recall that for sheaves of K-groups IC,(Ox) on
X there have been constructed Gersten resolution (see section 3.1 for more details).
It allows relate cohomology of sheaves of K-groups, called K-cohomology, with the
(algebraic) geometry of X. In particular, a famous Bloch-Quillen formula says that
H"(X,K,(0Ox)) = CH"(X), see [26]. Further, there is a canonical product between
sheaves of K-groups, induced by the product in K-groups themselves. However, this
product structure cannot be prolonged to Gersten resolution: otherwise there would
exist an intersection theory for algebraic cycles without taking them modulo rational
equivalence.



On the other hand, the general theory of sheaves provides many multiplicative res-
olutions of sheaves, i.e. resolutions carrying the product structure, for example Chech
resolution or Godement resolution, see [11]. But these resolutions seem to be too general
to reflect the algebro-geometric structure of a scheme, e.g. direct image maps for a good
class of morphisms, while Gersten resolution does have these properties.

Our aim is to construct a certain multiplicative resolution for sheaves of K-groups,
called adelic resolution. Recall that Gersten resolution consists of direct sums over
shematic points of fixed codimension. The main idea is to replace them by certain
restricted products over flags of fixed length, i.e. sequences of schematic points 7y...17,
on X such that n; € m;,_; and n; # n;_; for all 1 < ¢ < p. This involves a simplicial
structure, which allows define products in adelic resolution.

Note that the adelic resolution constructed below also does not have direct images,
as general topological resolutions mentioned above do not. However, covariant Gersten
resolution turns out to be a left dg-module over the dg- algebra of the adelic complex. It
seems that there is no analogous module structure of the Gersten resolution over other
multiplicative resolutions (such as Chech or Godement).

Analysis of the adelic resolution provides some explicit formulas for products and also
Massey higher products in K-cohomology. In particular, we obtain a new direct proof
of the coincidence of the intersection product in Chow groups and the natural product
in K-cohomology. Another example is the triple product mgs(«, [, £), which occurs to be
related to Weil pairing of a and £, where a € CH4(X),, £ € Pic’(X),.

The paper is organized as follows. First, in section 2.1 we give an abstract construc-
tion of a pairing, associated to central extensions, and corresponding to the formula
from [1]. The case of the idele group is considered from this point of view (theorem 2.8).
Then, in section 2.2 a construction of a quotient biextension is given (proposition 2.12).
As a quotient of the trivial biextension associated with Arbarello, de Concini and Kac
central extension appears Poincaré biextension over the Jacobian of a curve (theorem
2.16). The relation between two abstract constructions is given in section 2.3 (proposi-
tion 2.18), which implies, in particular, the adelic formula for the Weil pairing (corollary
2.20).

Next, in section 3.1 after a short overview of Gersten complex we give a detailed
construction of higher-dimensional adelic groups, providing some examples, and discuss
their general properties (propositions 3.9, 3.12, corollary 3.11). Then, in section 3.2
we treat some functorial properties: contravariancy of the adelic complex (proposition
3.15), dg-module structure of Gersten complex over the adelic complex (propositions
3.16, 3.19), and also a comparison morphism to the additive de Rham adelic complex
(proposition 3.22).

Section 4 contains the main result (theorem 4.1), which states that the adelic complex
is indeed a resolution of sheaves of K-groups for smooth varieties over infinite fields. Some
consequences of this statement are discussed (corollaries 4.3, 4.6) and the first steps of the
proof are done. After several technical lemmas the proof of the main theorem is reduced
to some approximation statement (lemma 4.11). Then, in section 4.2 we develop a notion
of strongly locally effaceable pairs, which is a globalization of the method from Quillen’s
proof of Gersten conjecture in the geometric case. In particular, we get some sort of a



uniform version of local exactness of Gersten resolution, which might have interest in its
own right (corollary 4.21). Finally, in section 4.3 we give a proof of lemma 4.11 using
the developed technique of strongly locally effaceable pairs.

Section 5.1 is devoted to the explicit construction of classes in the adelic complex
representing cocyles in Gersten resolution. Section 5.2 provides a construction of the
Euler characteristic map from K-groups of the exact category of complexes of coherent
sheaves on a scheme T, which are exact outside of a closed subscheme S C T, to K'-
groups of S. The existence of such map also follows from a general construction of
Waldhausen K-theory of perfect complexes in [29], but we tried to use an easier and a
more explicit approach (though the results of this section do not pretend to be new).
Next, explicit formulas for the products in K-cohomology in terms of Gersten cocycles
are obtain in section 5.3 as a consequence of the product structure in the adelic resolution
(theorem 5.16).

The case of triple products is treated in sections 6.1 and 6.2. After the easiest case of a
curve we show the coincidence of a certain triple product of zero-cycles and divisors with
Weil pairing (theorem 6.3). Next, we find an explicit formula for arbitrary codimension
cycles (proposition 6.7) and say some comments about its coincidence with the Weil
pairing between Griffiths intermediate Jacobians in the complex field case, providing its
interpretation as a triple product in Deligne cohomology (lemma 6.11). The definition
of Massey higher products is given in section 6.3.

The last section 7 contains several open questions and remarks about possible further
investigations.

The author is very grateful to prof. A. N. Parshin for many useful conversations and
suggestions, and also to prof. C. Soulé for his attention to the present work.

2 1Ideles on a curve

2.1 Central extensions

First abstract construction: pairing, related to the central extension of abelian
groups

In all groups considered below the group law is written in a multiplicative manner.
Consider a central extension of an abelian group A by a group N (which, automati-
cally, is also abelian):
1 +N—-G5 A1,

Let 1 be a unit in the group N, and e be a unit in the group A. For each element
a € A denote by G, “a fiber” 77'(a). For any two elements g, € G, and g, € G, their
commutator [gq, gp] = gagbga_lgb’1 € N depends only on a and b, since N is a central
subgroup inside G. Let the bracket (a,b) denote the commutator [g,, gp).

Remark 2.1. Suppose that the biextension corresponds to the cocycle a € H?(A, N),
and let @: A x A — N be lifting of this cocycle (that is not uniquely defined). Then the



following identity holds:

a(a, b)

a(b,a)’ (*)
Evidently, the bracket (-,-) is a skew symmetric one. Now let us show that (-,-) is

bilinear. For any group there is a following equality:

[£9,h) = [f, hllg, h]Ad (g~ "h)(f ") Ad(hg ") (f),

(a,b) =

where Ad(g)(+) is an internal automorphism corresponding to the conjugation by ¢. In
our case the commutator of any two elements is central, hence Ad(¢g~'h) = Ad(hg™'),
and

[fg,h] = [f, hllg, h].

Thus
(ab,c) = (a,c)(b,c)

for all a, b, c € A.
Now let B be a subgroup in A such that the extension

1-N—-7nYB)5B—1

splits, i.e. there exists an isomorphism ¢ : 77'(B) 2 N x B under which 7 corresponds
to the projection on the second multiple. In particular, it follows that (by, be) = 1 for all
bl, b, € B.

Let us fix an isomorphism . Then B becomes isomorphic to a certain subgroup in G,
whose elements will be denoted by (b,1), b € B. Let us remark that the multiplication
on the right by (b, 1) indetifies the fibers G, and G for a’ = a-b. It allows to define the
map

G/B — A/B,

where G/B has not only a structure of a pointed set, but also has a structure of a
principal homogenous space of a relative group N x A/B over A/B.
In our notations the following equality holds:

Ad(g)((b, 1)) = [g, (b, DI(b, 1) = (7 (g),0)(b, 1) = (b, (7(9),0))-

Thus B is normal in G, i.e. G/B is a group, if and only if (a,0) =1 foralla € A, b € B.

Remark 2.2. On the other hand if G/B is a group, then the bracket (-,-) should be
defined for the quotient A/B. This is possible only if B is inside the kernel of the
bilinear pairing (-, -).

Now let make this condition to be satisfied in a “violent” way. Choose a natural
number m € N and change the extension G by G®™, which corresponds to the cocycle
a™ € H*(A,N). It follows from the formula (*) that the new bracket is equal to the
m-th power of an old one, i.e. is equal to (-,-)"™. Moreover, the extension G®™ may be
also obtained by changing all the fibers of G by their m-th tensor power (in the category
of principal homogenous spaces over N), and also by raising to the m-th power the

5



morphisms of fibers, defining the multiplication (this construction explains the notation
ccG®m77 )
Let us also replace the group A by a subgroup /B, consisting of all elements a € A,
such that o™ € B; the restriction of the new extension on it will be denoted by G*™| 5.
For the new extension

1= N =G| wg = VB—1

the subgroup B is normal in G®™| w5
(a,0)" = (a,b™) =1 forall ac VB, be B.

Moreover, it is possible to extend B up to the subgroup B - A,, by “roots from unity of
m-th degree” in the group A. Indeed, there is a canonical trivialization of the extension
G®™ over A, G2™ 2 Gym = G, = N > 1, which defines a homomorphism of groups
A, — G®™ by the commutativity of A,,.

What is important is that in fact two trivializations over B N A,,, coming from B
and A,,, do coincide:

G, 2 G =G
119" (a,1)%™,

while
G¥" > Gym =G,
(a,1)®™ — (a™,1) = 1.
Besides, the elements of type (a,1) and (b, 1), where a € A,,, b € B, commute with each
other, since (a,b)™ = (a™,b) = (1,b) = 1. This makes it possible to define a splitting
over the subgroup B - A,, in VB.
Thus we get a central extension

1= N = (G wp5)/(B-An) — VB/(B-Ay) — 1.

Its commutator takes values in N,, — the subgroup of m-th torsion in /V:

(a1, a2)™ = (ai,a) = 1 for all ay,ay9 € A.

So, starting with a subgroup B, over which the initial cetral extension splits, we
obtain a skew symmetric bilinear pairing

Um: VB/(B-Ay) x VB/(B-Ay,) = Ny,

wich arises as a commutator in the quotientextension over V' B/B.

Remark 2.3. We also could say nothing about extensions and get the pairing v, directly,
just considering the bracket (-,-), and using its bilinearity and triviality over B.



Example with ideles

Consider a nonsingular projective curve C' of genus g over a perfect field £ (maybe not
an algebraically closed one). Let K = k(C) be the field of rational functions on C, let
A be the ring of adeles on C, O =[] O, C A¢, and let A7, denote the group of
ideles, i.e. O* =[] ., O C AL

Remark 2.4. There is a natural surjective homomorphism from the group A}, to Pic(C).
The kernel of this homomorphism is equal to the subgroup K* - O*.

zeC

For any idele av € Ay, the subspace aO C A¢ is commensurable with O, i.e. there
exists a k-subspace L C A¢ such that L C O, L C aO, and the quotients O/L and
aO/L are finite dimensional. Thus there is a well-defined one-dimensional vector space
(OlaO) over k, which is equal to detg(aO/L) ® det,(O/L) (it is easy to show that this
space doesn’t depend on the choice of L). For instance, if «O O O, then (O|aQ) =
detk (a(?/(’)) .

For each subspace L C A¢, which is commensurable with O, we associate an adelic
compler

AL):0 - K®L— Ac — 0,

where the differential d is given by the formula d(f, (a;)) = (f—a;) for f € K, (a;) € L C
A¢. Denote by K(L) = dety, H'(A(L))®det, ' H'(A(L)) the determinant of cohomology
of this complex.

There is a canonical isomorphism

K(0) ® (0]a0) = K(aO).

To obtain this we should consider two morphisms of adelic complexes A(L) — A(O)
and A(L) — A(aO), where L C O, L C aO is a subspace as described above. In other
words, (O|aQ) = Hom(K(O), K(aO)).

Now let us construct a group extension, for which A = A}, N = k*, and G = Q&g
consists of pairs (o, ), where a € Ay, r € (O]aO), r # 0. The multiplication in ;&’5 is
given by mean of natural isomorphisms

g

(O|0120) (a10|a1a2(9)

and
(O|C¥10) X (0110|0116Y20) = ((9|a1a2(’)).

This extension was constructed and studied in [1]. In particular, there was proved the
following result:

Theorem 2.5. For all o, B € A{, the commutator of their liftings to the group ;‘;E 08
equal up to sign to the product of norm residue symbols:

(, 8) = (1) e84 T Nam (1)t ot Bl Bl g excele),

zeC



where ord,(,) is an order of the idéle y € Af, at the point v € C, deg(y) = >, o ordy(7.) k() :
k] is the degree of the idéle v, 7, stays for the value of the idéle v at the point v € C in
the case ordg(v,) > 0, and Nmyg)/k s a usual Galois norm from the residue field k(x)
of the point x to the ground field k.

The role of the subgroup B will be played by the subgroup of principal ideéles
K* C A{. Indeed, the extension splits over this group, because there is a canonical
isomorphism between the complexes A(Q) and A(fQO), given by multiplication by f
(what is important is that it gives a trivialization of Kg over K* as a group extension,
for more details see 2.2).

Remark 2.6. The subgroup K* is not inside the kernel of the bracket (-,-), hence the
extension A{, may not be factorized through the idele class group.

Remark 2.7. The extension AE does not split over the subgroup K*-(QO*, since the bracket

(+,-) is not trivial on it. On the other hand, the extension A}, splits over the subgroup
O*, because all the spaces (O]|aQ) coincide by definition with k for o € O* (O = a0),

and the multiplication, defined in ;&g over O*, coincides with the natural multiplication
in the direct product O* x k*. Nevertheless, two trivializations over O* N K* = k*,
coming from O* and K*, are not the same: one trivialization corresponds to the trivial
homomorphism k* — {1} C k*, while another one corresponds to the homomorphism
k* — k* defined by raising to the (1 — g)-th power, respectively (see 2.2). Thus over the
intersection of O* and K* two trivialization do not “glow” together. This is one of the

reasons for the extension not to split over O* - K*.
Section 2.1 implies that there exists a skew symmetric bilinear pairing
Um: VE* /(K" (AG)m) X VE* /(K" - (AL)m) = pm (k)

where pi,,,(k) denotes the group of roots of m-th power from unity in the field k.
Let us remark the following indentities:

VEK*/(VK*NK*- 0%) = YK/ (K" (VO " NK*)p-) =

= VK /(K" 0}) = VK" /(K" (AL)m),

where (V/O* N K*)e- is the root of m-th power from O* N K* = k* in the group O*.
The image of Y/K* in Pic(C) is contained inside Jac(C),,. Let us denote it by
Jac(C)! ..
We have obtained the following statement:

Theorem 2.8. Over Jac(C),, there exists a canonical k*-extension, whose commutator
will define a skew symmetric bilinear pairing

VU s Jac(C)! x Jac(C), — pm(k),
defined by the formula

Ui (€, M) = ([T Ningeyul (—1)rde)ore () e 0] gronds (e,

zeC



where o, B € Af are two idéles, corresponding to L and M from Jac(C)),, such that
o™ g™ e K*.

Remark 2.9. If k is algebraically closed and (chark, m) = 1, then Jac(C)!, = Jac(C),.
Remark 2.10. If chark|m, then the paring v, may occur to be a trivial one. For example
it holds, if & is a finite field, and m = [k : F, |, where p = chark.

2.2 Biextensions
Construction of a quotient biextension

Let us return to the case of an arbitrary central extension of an abelian group (using the
same notations as in section 2.1).

We could associate with each principal homogenous space over the relative group
N x A a principal homogenous space Sym®G over the relative group N x (A x A) by
the formula Sym*G = Hom(p'G ® p3G, m*G) — A x A, where p;, p, and m denote,
respectively, projections on the first mulptiple, second multiple and multiplication in the
group A, while Hom and ® are taken by fibers in the category of principal homogenous
spaces over N.

Suppose that G — A is a group extension. Then Sym®G has a canonical trivialization,
corresponding to the multiplication morphism

G, Gy — Gy, where a,b € A.

In particular, this trivialization endows Sym?G with a structure of a trivial biextension
over A x A. Let us denote by 1( the value at (a,b) of a constant “unit” section
Ax A — Sym®@G, induced by the trivialization described above. The biextension Sym?*G
is symmetric, i.e. there exists a canonical isomorphism of biextensions ¢: i*(Sym*G) —
Sym?G, where i: Ax A — A X A is a transposition of multiples. By definition, t(1p,a) =
(CL, b)l(a,b)-

Let B,C C A be two subgroups, such that the extension G splits over each of them.
Denote by (b,15) and (c¢,1¢) the elements of corresponding sections over B and C' for
b € B, c € C'. The reason of this notation is that these sections could not coincide over
the intersection B N C.

Suppose that for all g € G and for all b € BN C there is an equality

(b,15)g = g(b, 1c). ()

Then it is possible to define a quotient G = B\G/C, that will be a principal homogenous
space over the relative group N x (B\A/C).
It is easy to check that Sym?®G also has a structure of a biextension, and, in fact, is

a quotient Sym?G of a trivial biextension Sym?G — A x A under the induced action of
the group (B -C) x (B -C).

Moreover, it is possible to construct the quotient biextension over B\ A/C not only
when B and C satisfy the condition (xx), but also when for each b € BN C' there exists
¢(b) € N such that



Remark 2.11. In this case the map ¢: BN C — N is automatically a homomorphism of
groups.

If (% * %) is satisfied, then, taking for ¢g the unity from G, we get that (b,15) =
@(b)(b,1¢) for b € BN C. Taking into account this equality together with condition
(% * %) we see, that BN C' is inside the kernel of the bracket (-,-).

In this case there is a well-defined action of (B - C) x (B - C) on Sym®G as if there
were an action of B - C on GG. Namely, for all g, h € G we have an identity

(b,15)g(c,1¢) - (', 1p)h(c, 1¢) = (B, 1B)gh(cd, 1¢) - (¢, b') (7 (g),b") (¢, w(h)).

This gives an action of (B -C) x (B -C) on Sym*G by the formula

(be,b'c’) © (Lin(g)mtny)) = (¢, 0)(m(g), ') (c, m(h)) (L (x(gybesnthyprer))-

In spite of the non-existence of a well-defined action of B-C on G, the action on Sym*G
does not depend on the choice of decompositions bc and b'¢’ into the product of elements
from B and from C. The last statement follows from the fact that B N C' is inside the
kernel of the bracket (-,-).

Let us remark that (B -C) x (B - C) acts on Sym*G not only as on a principal
homogenous space but also as on a biextension, i.e. the action commutes the maps

(Sym2G)(a1,b) ® (Sym2G)(az,b) - (SymZG)(alaz,b)a

(SYm*G) apy) ® (Sym®G)(ape) — (SYM*G)(ayt0)

for all ay, as, a, by, by, b € A. Moreover, it preserves the structure of a symmetric biexten-
sion, i.e. commutes with isomorphisms

t: (Sym?G) ey — (Sym’G)(ap)

for all a,b € A. All these properties follow from the explicit formula for the action of
(B-C) x (B-C) on Sym®G, and from the formulas for the maps mentioned above in
terms of the constant “unit” section 1,p).

So, we have shown the following result:

Proposition 2.12. If a central extension G — A splits over the subgroups B,C C A,
and the subgroups B and C' satisfy the condition (x x x), then there exists a symmetric

biextension Sym’G over B\A/C x B\A/C, which is a quotient of a trivial symmetric
biextension Sym*G — A x A.

Second abstract construction: Weil pairing in terms of biextensions

Now suppose we are given a biextension P — A x A over an arbitrary abelian group
A, such that the fiber of P at (e, e) is isomorphic to the abelian group N. Let P
be symmetric, i.e. there is an isomorphism of biextensions t: ¢*P — P. There exists
a canonical trivialization of the biextension P®™ over A,, x A, obtained by mean of

10



the canonical isomorphisms P(%T) = Pamp) = Pep) & Pee). Consider a restriction on

A, x A, of the section s, induced under this trivialization from the constant “unit”
section of a trivial biextension. The function ¢,,(a,b) = t(s(b,a))/s(a,b) is defined on
A, X Ay, takes values in N,,, and defines a skew symmetric bilinear pairing on A,, with
values in N, that we will call a Weil pairing.

Remark 2.13. If we choose another constant section (not a “unit” one), induced by the
trivialization of P®™ over A,, X A as described above, then the function ¢, will not
change.

Remark 2.14. If we replace the trivialization of P®™ over A,, x A,, by another one,
obtained by raising to the m-th power the second multiple, then the Weil pairing will
not change as well.

Remark 2.15. Let s1(a, b) and sy(a, b) be two sections of P®™, obtained from the constant
“unit” section of the trivial biextension respectively by two different trivializations de-
scribed in remark 2.14, then s;(a, b)/ss(a,b) = ¢pn(a,b) (sometimes this is the definition
of the Weil pairing).

The last two statements follow from the equivalency of two (non commutative!) dia-
grams, arising from the symmetry isomorphism ¢: ¢* P — P: the diagram

Py = Pary — Peg

} i

Pagy = Plapm) = Pl
is isomorphic to the diagram

Py = Poamy = Pl

} i

P(%Ln) — P(bmya) — P(e,e).

Relation with the Poincaré line bundle and the usual Weil pairing

Now let us go back to the example with ideles on the curve C' over the perfect field .

Since (O]a©) is canonically isomorphic to Hom(K(O), K(«Q)), for ideles o € A,
of degree g — 1 (where g is the genus of the curve C) there is a canonical isomor-
phism (s, : (OlaO) — (O]fauQ), where f € K*, u € O*, which is obtained from
the multiplication by f, defining an isomorphism of complexes A(aQ) and A(fau0O),
and inducing a canonical isomorphism of their cohomologies (the independency on the
choice of the decomposition fu by an element from K* and from O* follows from the
fact that deg(a) = g — 1, because the multiplication of a complex A(aQ) by a constant
c € K* N O* = k* leads to the multiplication of K(aO) by X(A@O) = cdeg(@)+1=9 gince
Riemann-Roch theorem).

Thus, we get a principal homogenous space of a relative group £* x Pic(g_l)(C) over
Pic¥ Y (C), whose fibers are equal to K(a®) = det RI'(X, £)\{0}, where the invertible
sheaf £ corresponds to the idele a: by the following rule: £ is a subsheaf in a constant
sheaf K*, consisting of all functions such that they have no poles after dividing them

11



by « in the idele group. The last statement follows from the existence of a canonical
isomorphism of complexes

A(a0) = Ac(L),

where A (L) denotes an adelic complez, associated to the invertible sheaf L:

Ac(L): 0L, H L, — H ’CAI®@IK$ — 0,

zeC zeC

where 7 is a generic point on C, z runs over all the closed points on C, [ denotes an
adelic product, and “stays for the completion (for a more detailed and general definition
see [24]).

It is a well-known fact that the line bundle det RT'(X, £) corresponds to the theta-
divisor (wich is correctly defined on Pic#=D(C)), see [20].

In order to apply the abstract constructions introduced above we have to interpret
this “cohomological” identification of fibers of the extension Af in group terms. Consider
a commutative diagram:

K©O) £ K(fo)
lz y | fux
K(@0) £ K(ja0),

where x is an arbitrary element from (O|aO)\{0}, and f € K*. Comparing the corre-
sponding adelic complexes it is easy to see, that f.x is equal to the image of x under
the isomorphism f: (O]aQ) — (fO|faO). Thus the product (f,1x-) -z is equal to the
diagonal of this commutative diagram. On the other hand, a “cohomological” identi-
fication of (O]aQ) with (O|faO) also maps x to the diagonal of this diagram. So, a
“cohomological” identification coincides with the multiplication on the left by (f, 1x+).

On the other hand, for u € O* there exists an identification of (O]|aO) with (O|uaO),
coming from the coincidence of the spaces aO and ua@. This identification, in turn,
corresponds to the multiplication on the right by (u, 1o-).

Now we are ready to apply the constructions from 2.2, taking for A the group of
ideles of zero degree (A%)°, for B the subgroup of principal ideéles K*, and for C' the
subgroup O* (the extension G stays the same, i.e. ;&’6, but restricted to (Af)?). There
is an equality

(¢, 1<) = nlc,1p+) - 79

for all n € (0|a0), a € (AL)°, c € K* N O* = k*. In other words, the subgroups K*
and O* satisfy the condition (x*x), and by proposition 2.12 we get a certain symmetric
biextension P over Jac(C) x Jac(C'). The main theorem of this paper states following:

Theorem 2.16. The symmetric biextension P, constructed above, is tsomorphic to the
symmetric biextension, induced by Poincaré line bundle.

Proof. Recall that the action of (K* - O*) x (K* - O*) on the trivial biextension over
(AL)? x (A)° corresponds to the “cohomological” indentification (O]aQ) = K(aOQ) ®
K(O)™! = det RT'(L) @ det RT'(O¢)~!, where an invertible sheaf £ correspond to the
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idele a as described above. Thus P is canonically isomorphic to the Poincaré bundle
P — Jac(C) x Jac(C) (with a removed zero section) as a principal homogenous space over
the relative group £* x (Jac(C') x Jac(C')), because of the formula Pz rq) = det RI'(L ®
M) @ det RT'(L) ! @ det RT'(M) ! @ det RT'(O¢). Besides, a “symmetric” structure of
the biextensions P and P is also the same (this follows directly from the definition).

So we have to verify that P and P have the same biextension structure. For this it
is enough to show that after we apply the isomorphism of principal homogenous spaces
P = P the pull-back under the map (A%)° — Jac(C) of the induced biextension structure
from P to P is the same as the trivial biextension structure on SymZJ&E, described in
2.2. We use an explicit form of the biextension structure on P, explained by Deligne in
[8]. Namely we consider a pull-back of P on Jac(C) x Div(C)°, wich will be denoted

[~

by the same letter P for simplicity. There exists a canonical isomorphism ¢: P| p) =

®I€CC|§?OM’”(D), where L[, denotes a fiber at the point « of the bundle, corresponding to

the invertible sheaf £. Moreover, a natural structure of biextension on ®I€C£|§°rd”w)
induces a biextension structure on P. Note that the preimage D of this biextension to

(A%)? x (Af)Y is a trivial biextension with the trivialization given by elements
H a—xordx(D) S ®xEC(axox/mxaxox)®ordw(D) = 7r*[®x€0['|;®ordw(l))]a
zeC

where 7: (A%)" x (A%)? — Jac(C) x Div(C)? is a natural projection.

It turns out, that the pull-back of the isomorphism ¢ maps the trivialization on
Sym2A’é to the trivialization on D.

To see this recall the explicit form of the Deligne isomorphism ¢. First, suppose that
D is effective. Then the exact sequences of sheaves

0— L — L(D)— L(D)|p—0,
0—= O¢ = Oc(D) = Oa(D)|p =0
lead to the isomorphism
p: det RT(L(D))®det RT(L)™'®@det RT(O¢ (D)) '@det RT(O¢) = det(L(D)|p)@det(Oc(D)|p) "
Further, by induction on the degree of D we establish a canonical isomorphism
v: det(L(D)|p) ® det(O¢(D)|p) * = Qe L2,

Moreover, if s, € L, is a set of local sections, giving isomorphisms of the stalks of
sheaves s,: O¢ , = L,, then the determinant of the isomorphisms HI€|D| s.: Oc(D)|p —
L(D)|p will be mapped under v to the product [, 5,2%"), where 5, € L|, denotes
the value at the point z of a section s, € L., and |D| is a support of the divisor D.
The isomorphism ¢ is just a composition v o p.
Now consider the pull-back of all these constructions under 7*. The exact sequences
of sheaves will correspond to the exact sequences of complexes

0 — A(aO) = A(apfO) = (aO|apO) — 0,
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0— A(O) — A(BO) — (0|BO) — 0,

where the ideéle o corresponds to the sheaf £, and the idele /5 is such that div(5) = —D.
Moreover, the pull-back of the isomorphism p corresponds to such an isomorphism

(1) (Oap0) @ (0]a0) ' ® (0]B0) * = (a0|afO) ® (0|BO)

under which the natural trivializations of a right hand side part and a left hand side part
are mapped one to another. Here the trivialization of a right hand side part is given
by the determinant of the isomorphism a: (O|f0O) = (aO|afO). The pull-back of the
isomorphism v

™) : (a0]|aBO) @ (0|BO)~! =D,

does map this trivialization to the trivialization on D as described above, defining on it
a biextension structure. Thus we have treated the case of an effective divisor D.

The case of a negative divisor —F, E > 0 may be treated in an analogous way,
considering two exact sequences of sheaves

0— L(—F)— L— L|g—0,

0— Oc(—E) — Oc — OC|E — 0.

The pull-back of these constructions will be letter by letter the same as before (we should
take the idele 5 such that div(5) = E).

The case of an arbitrary divisor may be reduced to these two cases by mean of the
inclusions of sheaves L(—F) C £ and L(—F) C L(D — E) (resp. Oc(—E) C O and
Oc(—FE) C Oc(D — E)), whose pull-back under 7* will correspond to the choice of a
common subspace in the commensurable spaces «OQ and a0 (resp. O and fO) when
defining their bracket («O]afO) (resp. (O|50)). In this case also the pull-back of these
constructions will be letter by letter the same as in two previous cases. O

Corollary 2.17. If we apply the construction of a quotient biextension from 2.2 to the
restriction of the trivial symmetric biextension Sym?(A%) on A x A = (A%)° x (A%)°
and to the subgroups B = K*, C' = O*, and consider a pairing from 2.2 on Jac(C),, X
Jac(C)pm, obtained from this quotient biextension, then we get a “classical” Weil pairing
on the torsion of the Jacobian of the curve.

Proof. 1t follows explicitly from the definition of the Weil pairing in terms of the Poincaré
biextension over Jac(C') x Jac(C), see [20]. O

2.3 Coincidence of two pairings

Suppose we are given an extenxion G — A, and two subgroups B,C C A satisfying
conditions of proposition 2.12.

In section 2.1 there was constructed a pairing ¥, : VBx YB — N,,, while in section
2.2 there was constructed a pairing ¢,,: (B\A/C),, x (B\A/C)mm — Ny,.

Proposition 2.18. There is an equality ¥, = dm o p, where p: VB — (B\A/C),, is a
natural projection.
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Proof. We use notations of section 2.2. In particular, we use the section s, which defines
a trivialization of the biextension over the torsion points (see 2.2). Let us denote the re-
strictions of biextensions on the subgroups by the same letters as the initial biextensions.
Consider a commutative diagram

(Sym’G)em —s VB x /B
_ b

(Sym*G)®™ — (B\A/C)p x (B\A/C)pn.

Evidently, (Sym?G)®™ = Sym*(G®™). If we prove that p*(s) equals to a constant section
of a trivial biextension Sym?(G®™), then we get the proposition. Indeed, in this case for
a,b e VB we have

om(p(a), p(b)) = t(s(p(b),p(a)))/s(p(a),p(b)) =
= t(p"(5)(b), p*(5)(a))/(p"(s)(a),p"(5)(D)) = (a,D)™.

Now consider one more diagram

Sym’G —» B x VB
tr +p
Sym2G — {1} x (B\A/C),.

Both biextensions are trivial: the one “from below” is trivial since one of the multiples is
equal to {1}, while the one “from above” is trivial since it comes from a group extension.
Denote the constant “unit” sections, corresponding to these trivializations, by Sggw, and
syp Tespectively. Note that by definition of the Weil pairing from 2.2 we have the equality
(m, 1)*(Sdown) = s. Besides, (m, 1)*(s,,) coincides with the canonical section of the trivial
biextension Sym?(G®™) — /B x ¥/B. So, we have to check that p*(sgown) = Sup-

By general properties of biextensions it is clear that p*(sguwn) is equal to s,, over
{1} x ¥/B. Moreover, it follows from the explicit formula for the action of (B-C) x (B-C)
on Sym*G (see 2.2), that B x (¥/B N B - C) acts identically on s,,. Thus we get the
desired equality p*(Saown) = Sup- a

Remark 2.19. The last argument of the proof would not be true if the group /B were
replaced by a bigger group ¥/B- ¥/C. It is related to the fact that in general the pairing
(+,-)™ is not correctly defined everywhere on this group.

Combining the results of sections 2.1, 2.2 with proposition 2.18, we obtain the adelic
formula for the Weil pairing:

Corollary 2.20. If for two invertible sheaves £ and M from Jac(C),, there exist two
idéles o, B € AY, such that o™, ™ € K*, then the Weil pairing (£, M), of sheaves L
and M may be given by the formula

ordy (ag)ordy (Bg) . orde (Bz) p—orde(az)1\m
(['aM)m:(H N () /e[(—1) d(azJords (Bz) , 0rde (Be) gorda( )]) _

zeC
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If in addition the divisors D = div(f) and E = div(g) do not intersect, where f = o™,
g = ™, then (£, M),, = f(E)-g~ (D). The equivalence of this definition of Weil pairing
with usual one was first shown by Howe in [13]. The coincidence of this formula with the
definition of Weil pairing via biextensions was also directly explained by Mazo in [17].

3 Generalities on K-adeles

3.1 Adelic groups
Gersten resolution

Let X be a Noetherian separable scheme of Krull dimension d. Denote by X® the set
of all schematic points in X of codimension p, and let k(n) stay for the residue field of a
schematic point € X.

For an integer n > 0 consider sheaves of K-groups K,(Ox) and K] (Ox) associated
with the Zarisky presheaves given by U — K,(U) and U — K (U), respectively. Here
K, (U) and K, (U) are Quillen K-groups of the exact categories of locally free sheaves
and coherent sheaves on U, respectively. Zarisky cohomology of sheaves of K-groups
K, (Ox) are sometimes called K -cohomology.

For an integer p > 0 define a group (G, )? to be equal to the direct sum &, ¢y Kn—p(k(1)),
if p < d = dimX, and zero otherwise. Define also a flasque sheaf (G )? by formula
(GX)P(U) = (GY)?. In [26] there was constructed a complex of sheaves

0= (G = ... = (GH)" =0,
whose morphisms consist of canonical maps of type
vip: Kn(F) = K1 (f),

where F' is a quotient field of a one-dimensional local ring R (maybe not a regular one),
and f is the residue field of the maximal ideal in R. We refer the last maps as residue
maps of K-groups, and the described above complex as Gersten compler.

Remark 3.1. In particular, when R is a discrete valuation ring, the residue map coincides
with the discrete valuation for m = 1, and with Hilbert symbol for m = 2. If F'is an n-
dimensional local field and f denotes its last residue field, then, taking the composition of
maps mentioned above and restricting it on Milnor K-groups, we get two canonical maps
KM(F) - Ko(f) = Zand K | (F) — Ki(f) = f*, which coincide correspondingly with
the additive and the multiplicative higher symbols from higher-dimensional local class
field theory introduced by Parshin, see [25].

Remark 3.2. The fact that the square of the differential in Gersten complex equals zero
is a kind of reciprocity law. For instance, after we pass to global sections of sheaves in
Gersten complex and restrict the differential on Milnor K-groups it leads we get some
of Parshin’s higher reciprocity laws.
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There is a natural morphism from K] (Ox) (considered as a complex concentrated in
the zero term) to Gersten complex (G;)®. Quillen has proved in [26] that for a regular
scheme X of finite type over a field this morphism defines a flasque resolution of the
sheaf ! (Ox) = K,(Ox). In this case the complex of global sections of Gersten complex
is often called Gersten resolution. In fact, Quillen has proved that Gersten complex
is a resolution for regular semi-local schemes X of geometric type, i.e. arising from
regular schemes of finite type over a field. From Quillen’s result one also deduces that
H™(X, Kn(Ox)) = CH"(X).

An important feature of sheaves of K-groups is the product structure. It is natural
to construct flasque resolutions of sheaves of K-groups carrying this structure and also
having algebro-geometric nature. It can be easily shown that the Gersten resolution does
not carry the product structure. Indeed, this would mean that for any two cycles in an
arbitrary position there is a well-defined cycle of right codimension, which should be a
candidate for their intersection.

Definition of adeles

Let X be a separable Noetherian scheme of Krull dimension d. Denote by KX a zero
cohomology sheaf of Gersten complex (G )®. In particular, when X is integral, ¥ is a
subsheaf in the constant sheaf K, (k(X)) defined by the following condition:

KX(U) = {f € K,(k(X)) : vp(f) = 0 for any irreducible divisor D C U},

n

where we consider the residue map vp : K, (k(X)) — K, 1(k(D)). In what follows, we
always suppose X to be irreducible. Although everything can be stated for reducible
scheme as well, we do not need their consideration. However, it would be useful for us
to consider (irreducible) singular schemes (for instance, in proposition 3.12), that is why
we have introduced this type of sheaves. Recall that the natural morphism of sheaves
K! (Ox) — KX is an isomorphism for regular scheme X of finite type over a field.

When X is normal then (K. ), = NpK,(Op), where D runs over all irreducible
divisors in X containing n. It follows from regularity of all discrete valuation rings Op
and the exactness of Gersten resolution for these rings.

Let iy : U < X be an open embedding. We call sheaves of kind (iy).(KY) K-
sheaves of finite type. We will denote them by the same expression KU on the whole
scheme X. In fact such sheaves are uniquely defined by the set of irreducible divisors in
the complement X\U (this easily follows from definition).

For a closed subset Z C X and a point € X let Z(n) denote the set of irreducible
divisors on X, which are contained in Z and pass through 7 (as a subset in the set of
all irreducible divisors on X). For f € K, (k(X)) take div(f) to be equal to the set of
irreducible divisors D on X such that vp(f) # 0.

For any schematic point j, : Speck(n) < X consider the stalk-sheaf (j,).((KY),),
which we will also denoted just by (KY),. There is a canonical filtration on this sheaf by
K-sheaves of finite type in a natural way, namely,

(K), = tim kL,
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where the limit is taken over all open sets V' C X, containing 7. In other words,
() = im K

where the limit is taken over all open subsets W C X such that (X\W)(n) C (X\U)(n).
We use Beilinson’s simplicial approach to higher-dimensional adeles, first introduced

by Parshin, see [3], [24]. For a separable Noetherian scheme X of Krull dimension d let

P(X) be the set of all its schematic points, 77 be the closure of n € P(X), and let

SX)p={no,m---smp) i € P(X),mi €71}

For M C S(X),, n € P(X) denote by ,M the following set:

77M:{(771:---777p) GS(X)Pfl : (7777717--'777;0) GM}

We define inductively adelic groups in the following way. Consider a subset M C
P(X) = 5(X)p and a K-sheaf of finite type F. We put by definition

Au(F) = 1] 7

neM

For a subset M C S(X), we put

Au(F) = 1] Au(F),

neP(X)

and
An(Fy) = lim Ay (F)),
where F, = limJF; is the canonical filtration by K-sheaves of finite type. We refer
*)
elements of adelic groups as K -adeles.
Remark 3.3. It is a natural question whether the defined above adelic groups change

if one replaces a canonical filtration of stalk-sheaves with an arbitrary filtration by K-
sheaves of finite type. The answer is not known to the author.

Our main object is the adelic complex Ax(K.X)®, whose differential will be defined
later, and whose terms are defined to be

AX(K:nX)p - H Aio...ip(lcr)f)a

0<io<...<ip<d

where the expression i . . .7, in the index stays for the set of all flags 7 . . . 77, such that for
any 0 < j < p we have codim(n;) = i;. We will say that such flags are of type (io, ..., %p).
Also, for a set of increasing natural numbers (i ...7,) define the depth (i ...17,) to be
the maximal number [ such that (iy...4;) = (0...1), and put l(ig...3,) = —1 if §5 > 0.

Remark 3.4. The adelic groups do not change after we reduce the scheme X. Thus, in
what follows, we may always suppose the scheme X to be reduced.
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Ezamples 3.5. 1) The adelic group A,(K;}) equals to the direct product [, ¢ xo (K7 )y-
2) Suppose dimX = 1. Then

A (KX) = [ 'Kalk(X)),

zeX

where []' means that the we take a subset inside the corresponding direct product
consisting of all collections {fx,} for which fy, € K,(Ox,) for almost all x € X. This
is a natural generalization of classical adeles.

3) Suppose dimX = 2 and X is regular. Let us describe explicitly the arising adelic
groups. The adelic group Ay (K;) C H K, (k(X)) consists of all collection {fxc}

ccx
for which fxc € K,(Ox) for almost all irreducible curves C' € X. The adelic group

AL (KXY C H K, (Ox ) consists of all collections {fc,} for which fo, € K,(Ox.)
zeC
for almost all points 2 € C for a fixed C. The adelic group Ay (KY¥) C H K, (k(X))

zCX
consists of all collections { fx,} for which there exists a divisor D C X such that fx, €

K,(Ox . \D) for all closed points € X. The adelic group Ag;»(K;\) C H K,(k(X))

zeCCX
consists of all collections { fxc.} satisfying the following condition. There exists a divisor

D C X and for each irreducible curve C' C X there is a divisor D¢ such that Do (C) =
D(C), and fxcy € Ky(Ox\Dc) for all flags v € C' C X.
Basic properties of adelic groups
We will use the following explicit description of adelic groups.
Proposition 3.6. For any subset M C S(X), there is identity

X\Dy, ceTlp—1

An(Ky) = U [T o),
{Dno...nk}70§k<p no---Np

where { Dy, .} is a system of divisors on X parameterized by “left parts” of flags from
M such that for any 0 < k <p

D"O---nk—l(nk) 2 Dno---ﬂk—lﬂk (nk) (*)
for any flag ny ... my that can be prolonged to a flag from M. In particular, Dy, (1) = 0.
Proof. This follows immediately from the definition. O

Remark 3.7. It is far from being true that in general (ICnX\D)n = K,(Ox,,\D) for a any
regular scheme X, a divisor D C X and a schematic point n € X. In fact, any element
[ e (ICif\D),7 belongs to the group K,(Ox,\(D US)), where S is a closed subset in X
whose all components have codimension at least two in X (see the first part of section
4.2).
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Claim 3.8. Condition (x) implies that

DTIO---ﬂk (77j) 2 Dﬂo---le---le+z(77j)
forany0<7<k+1,0<I<p—Fk—-1.

Proof. It is enough to show this for / = 1. Each irreducible divisor D € Dy, . meis (1)
contains 7,41 and thus belongs to D, (nk+1). Moreover, since D contains 7; it also
belongs to Dy, . (1;). O

It would be useful to always suppose that the system of divisors { D, _,, } also contains
all (finitely many) divisor components of singularities X4, since the local rings of all
other divisors are regular.

Consider two sets of indices Sy = {ig,...,i,} and Sy = {jo ..., J,} inside {0,1,...,p}
such that S; € S,. There is a canonical inclusion

H (’CnX)ﬂo — H (K:nX)ﬁoa

10---Np €o..-&q

where the flags 7y...7m, and & ...&, are of type (i, ...,7,) and (jo, ..., J,), correspond-
ingly. Namely, for two flags Fy = {ny...n,} and F, = {&...&} the corresponding
component of this map is the canonical inclusion (K),, — (Ki)g, if 1 C Fy, and
equals zero otherwise. In what follows we will always imply this inclusion when compar-
ing adelic groups with different indices.

Proposition 3.9. In the above notations the following equality holds true:

AiO---ip(’CT)L() = Ajo---jq (’CnX) N H (’CnX)ﬂo'

no---Np

Proof. First, consider an element (fy,. ) from the right hand side and a corresponding
system of divisors {E¢, ¢ } for 0 <1 < ¢. For each flag & . ..&, containing a flag ... 7,
we have

X\Eﬁo---ﬁq_l X\Eﬁo---ﬁlfl

fﬂo---ﬂp S (’Cn )§q C (’Cn )En
where & = 1, since Eg, ¢_, (&) 2 Egy..¢,_, (&). Define a system of divisors

Drg.n. = m Eey..q,
&o---&1

where the intersection is taken over all flags &, ... containing a given flag 1y . . . nx, such

that & = . We claim that for the system of divisors {D,,. ,, } the condition (x) is

X\D
satisfied, and f,,., € (lCn\ ety for each flag ng ... 7,. These two statements are

implied by the same argument. Namely, using notations as above, consider an irreducible
divisor
D e m Efo---§z—1(§l)
§o0--§1—1
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(recall that & = ). Suppose D ¢ D, . (n). In particular, D ¢ Dy, .. (7-1), and
also np_1 # &_1. Thus we can construct a flag & ... & _; such that it contains one of the
irreducible components of 7;,_; N D. Moreover, after we choose suitable &;...&;, we get
that Dg, ¢ _, (&) is not a subset inside Dy, ¢, (&), where & = m_;. So we are lead to
contradiction, hence D € D, , ., (n), and this ends the proof of the inclusion of the
right hand side part into the left hand side part from the statement of proposition 3.9.
Now suppose (fy,..,) belongs to the left hand side part and {D,,. ,,} is the corre-
sponding system of divisors. For a given flag & ...& let ng...n, be a maximal subflag

of type (ip...%). Then if £ < p define
Eey.cp =D

mno---MNk >

while for £ = p we put
Efo--fz = D770---7]p U div(fflo---ﬂp)'

It is a straightforward checking that the system {E¢, ¢} verifies condition (), and that
X\Eeg..¢0

frowmy € (Kn f0-fa "¢, for any flag & ... &, O

Now we can define the differential in the complex Ax(K;)*. In evident notations

the differential is given by a usual simplicial formula, which is correct due to proposition
3.9:

p

(df)no---np = Z(_l)kfno---ﬁk---ﬂp

k=0

for f € Ax(KX)P~! where the hat stays for the forgetting an element in the flag. As
usual, this formula defines a differential, i.e. d* = 0.

Proposition 3.10. For any subset M C S(X), the group ©,>0An (K ) carries a struc-
ture of a graded associative anticommutative ring, where the product is defined by formula

(f : g)no...np - {fno...npa gno...np}
for f € Ay (KX), g € Ay (KX) where {-,-} denotes usual product in K-groups.

Proof. Let {D,,. .} and {E,, , } be two systems of divisors, corresponding to f and
g, respectively. Suppose also that they contain all divisor components of X;,,. Then,
obviously, the union of two systems {F,,.n.} = {Dno..on U Eno..i } verifies condition ?7

and (f - 9)ng..pm € (Kili"o”'"p_l)np. It follows from the fact that vp(f) = 0 if and only if
f € K, (Op) when D is outside of Fy..n,—1» and the existence of the product on K-groups
K,.(Op). O

In what follows we define the differential in the tensor product A®* ® B* of two
complexes A® and B*® by formula d(a ® b) = da ® b+ (—1)%&% @ db.
Corollary 3.11. The group @ @ Ax(KX)? has a natural structure of an associative
0<p<dn=>0
dg-algebra, i.e. there are morphisms of complexes

prAx(Ko)® @ Ax(K)® — Ax(KX.)"
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such that this multiplication is associative. Fxplicitly, the product is given by formula

(/’l'(f ® g))ﬂO---np---np+q = {fno---np’gﬂp~~~77p+q}
for f € Ax(KX)P, g€ Ax(KX)e.
Proof. The correctness of this product follows from propositions 3.9 and 3.10. Indeed,
w(f ® g) = f-g, where we apply to f and g two natural inclusions Ay (KX)P <
A x (KXY and A x (KX) — Ax(K:X)PT4) respectively. Leibnitz rule for p can be easily
checked using the definition of differential in the adelic complex, and the associativity

follows from that of the usual product in K-theory. O
Proposition 3.12. For any 1 < k < d, k < i1 < ... < ip < d there ewists a well-
defined map
7 :Zl/ C AL iy () — @y, Ao o (KT )
0...k 70---Nk * 01...]€Zk+1...1,p n Tk O(Zk+1—k)...(lp—k) n—k

n0---Tk

(the right hand side part is the sum of the adelic product groups on each 1), i.e. the
sum of residue maps over flags is finite for each element in Ao1. iy, .., (’CnX)

Proof. We proceed by induction on k. The base and the induction step are provided by
the following argument.

For any element f,) . € Ao kiy,,..i (KX) the residue vy, (fo..m,) 18 zero for any
divisor 1, outside of D,,, because by claim 5.3 we have D, _, (11) C Dy, (m).

Now choose n; € D,,. For any flag & ...& of type (0,i, — 1,...,4, — 1) on the
scheme Y =7, take the divisor E¢, ¢, to be the intersection Y N (Dye,...e0 \Dnogo...cx (Y))-
The condition (x) is evidently satisfied for this family of divisors on the scheme Y, and
moreover Vyon, (foo..mp) € Ao(h_l)m(ip_l)(ICZQ?"“'"Z’). Indeed, for any irreducible divisor
E C Y\Em...np the only one divisor in X from D, . ,,, that could contain F, is Y =17;.
On the other hand by reciprocity law (which holds true for singular schemes as well)

Z VXDE(fﬂom...np) =0.

ECDCX

Hence vy, 2(froni..n,) = 0 and we get the desired statement. O

FEzample 3.13. Take i3, = ... =1, = 0. Then we get a map

Vi = Z Vno..mp + AOlk(K:nX) — ®neX(k)Kn—k(k(nk))-

n0---Tk

Remark 3.14. There are variants of propositions 3.9, 3.10 and 3.12 for arbitrary K-
sheaves of finite type, not just KX. The generalization of proposition 3.9 is straight-
forward. For proposition 3.10 we should consider product of adelic groups, associated
with sheaves K and K}, with values in the adelic group, associated with KV . For
proposition 3.12 the sum of residues from the adelic group, associated with KV, will take

values in the sum of the adelic groups, associated with ICg"’“, where U,, is defined as
follows: for each 7y take the union Z of all divisors from X'\U, which do not contain 7,
(i.e. not from (X\U)(7;)), let V= X\Z, and then take U,, =7, NV.
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3.2 Functorial properties of the adelic complex

Consider flasque sheaves associated to the adelic groups by a standard procedure. Namely,
consider the sheaf A (KX)? defined by A (K:X)P(U) = Ay(KY)? for any open U C X.

Contravariancy

Let ¢ : X — Y be a morphism of Noetherian separable schemes of finite Krull dimension
such that Y is regular. There is a canonical map ¢* : KY = K,(Oy) = ¢.(K,(Ox)) —
0. (Ko) = ¢.(K,(Ox)), and hence ¢* : (KY), — (K), forz € X,y €Y, p(z) = y.
Let us define a morphism of complexes

0" ALK = A (KT,
giving explicitly each flagwise component of it over each open subset U C Y. Let ng...17,
be a flag on @ H(U). If w(no) ... p(n,) is still a flag on Y, i.e. if p(n;) # ©(n;41) for all

0 <1 < p—1, then define the corresponding piece of the morphism of complexes just as
©* (KX ) ooy = (K )yo- Put ¢* to be zero for all other pairs of flags on X and Y.

Proposition 3.15. The defined above map
P" Ay (K))" = 0 A (K"

15 indeed a morphism of adelic complexes. Moreover, p* is the homomotphism of dg-
algebras of adeles.

Proof. First, we should check that for all open subsets U C Y, V = f~1(U) C X the
map ¢* @ Ay(KV)? — Ay (K))?P is well-defined, i.e. that the adelic condition holds
for p*(f) for all f € Ay(KY)P. Let Dy ey 0 < k < p—1, be a system of divisors
associated to f. Let Eg ¢ be the set of divisors in the closed subset ¢ *(Dy. .)
if p(&...&) = (no...mp) is a flag on Y, and let E¢ ¢ = 0 otherwise. Note that
© Y (Dyy...i) 1s never the whole scheme X since Dy, . (n0) = 0, and (&) = no (we
assume that Eg ¢ is non-empty). Also the condition Eg, ¢ (§p11) D Ego_"fkﬂ(gkﬂ)
is satisfied for 0 < k& < p — 1. Finally, for each pair ¢(&...&,) = no...m, there is a
well-defined map ¢* : K" — ¢, (KY'), where U' = Y\Dyy . 1, V' = Y\Eg,. ¢, ,. Hence
¢*(f) satisfies the adelic condition with respect to the system of divisors Eg, ¢,.

Now choose a flag F' = (ng...7,11) on f~1(U), and suppose first that p(F) is still
a flag on U. Then, evidently, the image ¢(F") of any subflag F” inside F' is also a flag
on U. Hence just by coincidence of all ingredients inside the defining formulas we see
that d(p*(f))r = ¢*(df ). Now suppose that ¢(F') is not a flag on U, thus ¢*(df)r = 0.
If the same holds for all its subflags F' consisting of p + 1 elements, then we still have
the needed equality, since both sides are zero. Finally, suppose there is a subflag F’
with p + 1 elements such that ¢(F”) is also a flag. Let F’ correspond to the number [,
0<I<p+1lie F'=(n...m-1M41-.-Mp+1). Then we see that ¢(n,) = ¢(m-1) or
©(m) = @(my1). In both cases we see that for another subflag F” of different “parity”
we have p(F") = ¢(F") and for all other subflags there images are not flags. Explicitly,
F'" = (no...m—an-..Mpy1) or F" = (no...mMi42 ... Mp+1), respectively. Hence do*(f)p
is also zero.

The fact that ¢* commutes with products of K-adeles is a straightforward check. [
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Gersten complex as a module over adelic complex

Let X be a regular Noetherian separable scheme of finite Krull dimension. As before,
let (GX)*® be Gersten complex and A x(KX)® be the adelic complex.

Proposition 3.16. There is a natural morphism of complexes
(G)" @ Ax(K7)* = (Grpn)®,

which makes the sum of Gersten compleves ®p>0(Giy)® to be a left dg-module over the
dg-algebra ©,>0A x (¥ )®.

Proof. Let us construct the product explicitly. Consider two elements f € (G:X)? and
g € Ax(K:X)9. We put

(f 'g)np+q = Z Vnp...np+q{fnpagnp...np+q}7

Mp---Np+q

where codim(n,) = k£ and the bar denotes taking modulo the ideal of 7,, i.e. the im-
age under the natural homomorphism (K;) ), = K,(Ox,) — K,(k(n)). It can be
easily checked that this really defines a structure of a dg-module over the dg-algebra
Snz0Ax (K)°. O

Ezample 3.17. Multiplication 1 € Ky(k(X)) = Z by the adelic complex coincides with
the morphism vy.

Remark 3.18. As before we could consider the complexes of flasque sheaves (G:*)* and
A (KX)®. The analogous reasoning as in the proof of lemma 6.13 leads to the fact that
the constructed above product induces the natural product and higher products (see
Appendix) on K-cohomology, when X is of finite type over a field.

The main property of this module structure is the product formula. Namely, consider
a proper morphism ¢ : X — Y of regular irreducible schemes of finite type over a
field. Let d = dim(y) = dim(X) — dim(Y"). Then there are two natural morphisms of
complexes:

e 1 (G)*ld] = (G, ),

and
(,0* : Ay(ICZ). — Ax(ICif).

Proposition 3.19. The morphism @, is a morphism of dg-modules over adelic dg-
algebras, i.e. the product formula holds:

e f 9" (9) = ¢:(f) - g
for all f € (GX)*, g € Ay (KY)".
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Proof. Let f € (GX)P*¢ g € Ay (KY)? and consider a point 1,,, € Y?*9. By definition
the following equality holds:

((P*(f) ’ g)"m—q = Z V’?p---’lp+q{(p*(f§p)7 ngp---’?zH—q}’

EpsMps->Tlp+q

where for each p < | < p+q we have n, € Y, ¢, € XP+) and p(£,) = 1, On the
other hand,

Px (f : 90* (g))ﬂp+q = Px Z V§p~~~§p+q{f§p7 ©* (gﬂp---ﬂp+q)} ’

§p---§p+q
where the sum is taken over all flags &, ... &, 14 such that (&,...&1q) = (M- Mptq) 1S
a flag on Y, and as before & € XU+ 5, c YO for all p <1 < p + ¢. Note that
gp* (gﬂp...anrq) - (p*gﬂp...ﬂp+q7

and also projection formula for K-groups implies that

Pe{ferr 07y mpr}) = {0(Fe), Ty -

Now the rest of the proof is lemma 3.20 applied to all pairs (&, 7,) such that p(&,) = n,,
flags 1 . .. Mp+q and h =A{fe,, "Gy, 1, O
Lemma 3.20. Let ¢ : X — Y be a proper morphism of irreducible schemes of finite

type over a field k, such that dim(p) = 0. Let h € K,,(k(X)) and no...n, be a flag on'Y
such that m, € YO for all 0 <1 <r. Then

Px (Z V§0~~~§r(h’)> = Vno..apy (90*(h))=

50---67“

where the sum is taken over all flags & ...& on X such that (& ... &) = (0. -nr)-

Proof. When r = 1 this is precisely the statement about the existence of the direct
image on Gersten resolution for proper morphisms (since v, and vy, correspond to
the differentials in Gersten resolutions for X and Y'). Next, there are only finitely many
& € XM such that (&) = m, and after replacing X and Y by €, and 7, respectively,
we repeat the same procedure. Thus step by step we get the result. O

Remark 3.21. For a proper morphism ¢ : X — Y of dimension d = dim(y) one can also
consider a composition Ay (KX)? =& (GX)? £5 (GY_,)P~¢. For instance, when X is
proper and regular of dimension d over a field k£ then we get the following formula:

(ID*([fTIO---"d]) = Z Trk(’?d)/k(yﬂo---nd(fTIO---"d)) € Kn_a(k),

n0---1d

where f,, .. € Ax(KX)% [fu..n,] denotes its class in K-cohomology and ¢, is the
natural direct image in K-cohomology.
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Comparison with Parshin-Beilinson adeles

Let X be a regular variety over a field k.

Proposition 3.22. There is a well-defined morphism of complezes
dlog : Ax(K:X)® — Ax(Q%)°,

where Ax (%) is the complex of rational adeles defined by Parshin and Beilinson (see
[24], [14]), whose local components for a flag no...m, are induced by natural maps
K, (O0,,) — 5,/ (see their definition in [4]).

Proof. Let us prove that for any subset M C S(X), and for any open U C X the natural
map dlog : Ay (KY) — A (QF) is well-defined. First we remark that as K-sheaves do,
the differential forms depend only on the divisor D in the complement X \U. This follows
from the fact that when codim(n) > 2 the local cohomology group H, (X, (%) vanishes
since Q% is locally free. Hence we may suppose that X\U = D is the divisor.

By definition

Av@p) = ] Ax@))= 11 lim A (25 0),

neP(X) neP(X)

where for each n € P(X) the limit is taken over all open subsets V' C X containing x
(for the second equality we use that the Parshin-Beilinson adelic functor commutes with
direct limits of quasicoherent sheaves). Since the same is true for K-sheaves of finite
type we see that by induction on p we have to treat the case when p = 0. In this case

AM(K:g) = H (KnU)x;

nemM
while
Au(p) = lim [ ] (% (D).
neM
where the limit is taken over [, and U = X\D. By lemma 3.23 we get the needed
result. O

The author is grateful to C. Soulé for the explanation of the proof of the following
lemma.

Lemma 3.23. Rational differential forms from the image of natural map K,(k(X)) —
QZ(X)/k have pole of order at most one along each irreducible divisor D C X.

Proof. Recall the construction of the map K,(R) — Q% ;. There are universal classes
¢n € lim H"(G Ly (R), Q2 7) (the limit is taken over m), which define canonical maps
(_

K.(R) = H,(GL(R),Z) - 2%/, Note that the map ¢, is trivial on H,(GLy—1(R), Z).
Moreover, the composition map R*X...xX R* — H,(GL1(R),Z)%...xH;(GL,(R),Z) —
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H,(GL,(R),Z) — H,(GL(R),Z) = = (2 7 1s given by formula (ry, ..., 7,) — dr—’;l A A
drn

" Since one may suppose that dimX > 0, the field F' = k(X) is infinite. By results
of Suslin, see [28], there is an isomorphism H,(GL,(F),Z) = H,(GL(F),Z), and the
constructed above natural map F* x...x F* — H,(GL,(F),Z) induces an isomorphism

KM(F) = H,(GL,(F),Z)/H,(GL,_,(F),Z). Since for all non-zero rational functions

fiy.ooy fn € E(X)* a differential form ‘j{—ll A... ‘j{" has pole of order at most one along
each irreducible divisor D C X, the lemma is proved. O

4 Quasiisomorphism with Gersten resolution

4.1 Main theorem
A-adelic groups

In what follows it would be useful to consider another adelic groups. Namely, fix the
type (io...4,) of depth [ and consider a subgroup inside the product

Aio---ip(lci{) - H (’CnX)ﬂm
70---Tlp
consisting of all elements for which, informally speaking, the map
Vp..i- Azo zp(ICX _) H 69771 ICn l)Tll)
M+1--Mp

is well defined. More precisely, for each flag 1, ..., of type (i, ...1,) each sum inside the
following expression should be finite:

Z Vni_ym Z Uni—ami—y | -+ Z Vnomns (fno.my) | -+ )

nM—127; M—23M_1 71372

and the result of all summations should be zero for almost all 7, when we fix 71 ... 7.
We will call these new adelic groups A—groups, while the old ones will be called A-groups.
This adelic condition is a very “rough” one. In particular, Aio,,_ip (ICnX ) coincides with
the whole product, when ¢y > 1. In fact, the restricted product condition involves only
(0...1)-type part of flags of type (ig...17,), where [ is the depth of this type.

One may easily see that by reciprocity law in evident notations there is an inclusion
Ag (KYX) < Ag,(KX) when S; C S,. However, the analog of proposition 3.9 is not
true for these new adelic groups. In addition, we may form an analogous adelic complex
Ax(KX)*. Tt occurs that there is no any nontrivial product structure on this complex.

Main theorem and its consequences
By proposition 3.12 there is a natural inclusion of complexes

iX: Ax(’CnX). — Ax(’Ci{).
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Also there is a natural morphism of complexes
ix: Ax(K))" = (G)°,

which is equal to the map v, = v on the (0...k)-type components and is equal to zero
on all the other components of the adelic complex. We will denote by vy the composition
le (6] ix.

Theorem 4.1. Suppose X is a smooth variety over an infinite ground field k or X =

Spec(Oy,y) for some regular variety Y over a field k and a schematic pointy € Y. Then
the morphism vy, the inclusion iy, and hence vy are quasiisomorphisms.

Remark 4.2. The additive analogue of this theorem for Parshin-Beilinson adeles was
proved by Huber in [14].

Let us state several important consequences of theorem 4.1.

Corollary 4.3. Let X be a smooth variety over an infinite field k. Then the complex of
sheaves (Ax (K:X))® is a flasque resolution of the sheaf Ki = K, (Ox).

Proof. This follows immediately from theorem 4.1 and lemma 4.4 applied to the mor-
phism vy : A (KY)* — (G;)" .

Lemma 4.4. Suppose f : F* — G* is a morphism of complexes of sheaves of abelian
groups on the topological space X such that for all open subsets U C X the induced mor-
phisms of complezes of abelian groups fy : U(U, F*) — T'(U,G*) is a quasiisomorphism.
Then the map f is a quasitsomorphism of complexes of sheaves.

Proof. Almost by definition one has
W (F), = lim H(D(U, 7))

H(G*), = lim H(D(U, G*)),

where the limit is taken over all open subsets U C X containing x. Thus we see that the
stalks of cohomology sheaves of F* and G* are isomorphic, and we are done. O

Let ¢ : X — Y be a morphism of smooth varieties over an infinite field. From the
general properties of resolutions of sheaves and corollary 4.4 one deduces the following
result.

Corollary 4.5. The defined above in section 3.2 contravariant morphism ¢* : Ay (KY)* —
0 A (KCX)® induces a canonical map on K-cohomology ¢* : H(Y,KY) — HY(X, KX

after we pass to cohomology of adelic complexes.

Suppose in addition that ¢ is proper. As a consequence of theorem 4.1 and proposi-
tion 3.19 we get a product formula for Massey higher products on K-cohomology using
remarks 3.18 and 6.12.
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Corollary 4.6. Let p : X — Y be a proper morphism of smooth varieties over an infinite
field. Let ay € HP(X,K)), a; € HP(Y,K)), 2 < i < k be classes in K-cohomology
groups for which the k-th higher product mg (a1, *(az), ..., p*(ag)) is well-defined. Then
my(p.(ar), as, ..., a) is also well-defined and there is an equality

pu(mi(ar, 9*(a2), -, 9% (ar))) = mi(pe(ar), as, - -, ax)

Remark 4.7. A product structure described in corollary 3.11 makes ®,>0A x (K} )*® to be
a multiplicative resolution of the algebra sheaf @,>0/;\ by theorem 4.1 (see Appendix).
Hence, by lemma 6.13 Massey higher products on the adelic complex induce Massey
higher products on K-cohomology. This allows to compute (higher) products explicitly
in some particular cases, see part ?77.

Proof of theorem 4.1. We will transform Gersten resolution into both adelic complexes
in the same way using several intermediate complexes.
Consider for each number 0 < £ < d a complex C} defined by

Cr 0= JJAKY) = ... = [ Awus () = o= Ag k(KY) —

i<k 0<ig<...ip<k

- 69T]EX(’erl)-Kvnflcfl(k(n)) — . EBT]EX(GI)I(nfd(k(n))'

The differential in the “left part” of this complex coincides with that of the adelic com-

plex, the differential in the “right part” — with that of Gersten resolution, and the

“middle” map Ay _x(KY) — ®pext+n Ky k1(k(n)) is the composition of the map vy

and the differential in Gersten resolution. One may form the analogous complex C’,;

starting with A-groups. Thus C§ = C§ = (GX)*, O3 = Ax(KX) and C3 = Ax(KX).
In addition, for 1 < k < d there are natural morphisms of complexes

or: Cp = Ciyy @ Cf = Gy

which are equal to v, on the k-th term of Cf, and are identical on all the others. Ob-
viously, these morphisms commute with the inclusion of A-groups inside A—groups. In
particular, ¢, o...0@s = vyx. Thus it is enough to prove by induction on £ that all ¢
and ¢, are quasiisomorphisms.

It is easy to show that ¢, and ¢, are surjective. Indeed, since any given schematic
point 1, € X®) is regular on X, we may choose a flag 7o . .. 7 such that 7; is regular in
m,_, for all 1 <1 < k. Hence the residue map

Vg * Kn(K(X)) = Kk (K ()

is surjective. So to obtain a surjectivity of ¢ (and consequently of @) we may choose a
suitable adele f € Ay _,(KX), that will vanish on all flags except of a finite set of them.

So we need to show that the kernels of ¢, and ¢, are exact complexes. Obviously,
Ker(py) is equal to the complex

0= A(KY) = [ A= ... []  Aw.ar(K)) = ... = Ker() — 0.

0<i<k 0<i0<...<ip<k
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For each € X consider the local scheme Spec(O,). By induction the complex C’,;_l
is qusiisomorphic to Gersten resolution, and by Quillen result for regular local rings we
see that the complex

0= K, (0) = [[ Au(K)) = ... = I Aieign(K) = -
0<i<k 0<ip<...<ip<k
o= Mg ey () 1 Kne(k(1)) = 0

is exact for each point n € X*). Here the expression in the indices (io...4,7) denotes
the set of all flags 7y ...7,n on X of type (iy...i,k). Now we take the product of these
complexes over all points 1, € X*). More precisely, we consider an exact complex

By: 0= [ KaOp)—...— ]] I Avim®E)|—...

nkeX(k) nkeX(k) 0§1,0<<7/p<k

.= H A0...(Icfl)mc (KCy) =5 B exw Kn-w(k(n)) = 0,

nreX *)

where the symbol [ denotes the restricted product, i.e. a subset inside the usual Carte-
sian product consisting of all elements (f,,) such that for almost all points 7, € X
the component f,, belongs to the kernel Ker(r,, ). The point is that by definition the
complex Ker (@) is equal to

T<k—1)(By) — Ker(vg)[—k],

where 7<;_1) denotes the usual truncation of a complex. In other words, we consider a
canonical filtration on Bj. So we get that the complex Ker(¢y) is exact, and by induction
Uy is a quasiisomorphism.

Now to show that iy is also a quasiisomorphism note that the complex Ker(yy) is
a subcomplex inside the exact complex Ker(¢g). Thus theorem 4.1 follows from lemma
4.9. O

Remark 4.8. In the proof of theorem 4.1 for small n the group @,cxw Ky,—i is equal to
zero by definition, when k£ > n. However, all the statements in the proof hold true, and
it remains correct.

Several technical lemmas

Lemma 4.9. Consider an element

fe H Aio...ipk(’CnX)a

0<io<...<ip<k

where p < k — 2. Suppose that

df € H Ajo...jp+1k(K§)'

0<jo<...<Jp+1<k
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Then there exists

ge JI Ak

0<io<...<ip<k

such that df = dg.

Proof. The adele f has several components with respect to codimensions of elements of

flags:
F=Y" Fioipk:

10...lp
Let [ be the maximal depth of indices of the nonzero components f;; ;,x 7 0. We will
prove the assertion of lemma by induction on [.

Suppose [ = —1. Then for any set 1 < iy < ... <14, < k the (0i...7yk)-component
of df is equal to fj,. ik, and thus by proposition 3.9 fi i« € Aio_,,ipk(lef).

Now we prove the induction step from [—1 to [. Consider a maximal degree component
fo..1..i,k- More precisely, if ¢, > [ then 4,4y > [+ 2, and if 5, = [, then [ = p < k — 2.
Anyway, we may consider the (0...1,/ 4+ 1...i,k)-component of the differential df. Let
us apply the map vy ;41 to df. We also may apply it to each component of f by definition
of A—groups. By reciprocity law we get

Vo..i41(for g2 st ipk) =0

for 0 < 7 <1+ 1. For 7 = 0 the vanishing is trivial and so we obtain the equality

V0.1 (forteipk) = Vot ((df )o..ais1.i,k)

since [ is the maximal possible depth of indices of the components of f. By the approx-
imation lemma 4.11 there exists an adele go._;..i,x € AO__,l,_,ipk(ICif) of the same type as
Jo.....i,k Such that

Vo...z+1(fo...z...¢pk) = l/o...z+1(f6,,,z,,,¢pk)-
By lemma 4.10 there exists h € BY such that
(dh)[]...l...ipk = fO...l...ipk — 9o...l...ipk-

Moreover, the components of h are nonzero only for type (0...7,7 +2...1...4,k), 0 <
j < I. Hence f—g—dh has strictly less nonzero components of depth [, and its differential
still belongs to A-groups. Thus we are done by induction on [. O

Lemma 4.10. Suppose that for [ € Aio_,_ipk(lCi() of type of depth |

vo.a41(f) =0

Then there exist h € []oc < AO,_,j,jH_"l_"ipk(lCX) such that

n

f: E h[]...j,j+2...l...z'pk-

0<j<l
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Proof. In fact this is the only one place where we really use the A-complex. Possibly it
could be overcome, but it seems that technically it would be of the same complexity.
Fix a flag 41 ... mpk of type (141 ... 1mpk) (for [ = p just choose a schematic point 7

of codimension k). Varying the flag 7o .. .7 of type (0...1) we may treat fy,. nm....n S

an element in AU,“;(ICTSLpeC(Om“)). By the condition of lemma vy _,;(f) is a cocycle in the

Gersten resolution for Spec(O,,,,). Hence by Quillen result this is a coboundary, and by

surjectivity of 7 there exists ho..i—1,i,,...i,k € Ao..1=1,i14,...ip,k SUch that
Vo.d(f = ho.a=t1,i1.ipk) = 0.

In fact this is the place where we use that the restricted product condition on A—groups
is very rough.

We have shown in the proof of theorem 4.1 that Ker(¢;) is exact for any smooth
variety or its localization. Hence there are ho._j y2..1...i;k € AO...j,j+2...l,il+1...ipk for
0 <j <1[—1 such that

f— hO...l—l,il+1...ipk = E h/U...j,j-l—Z...l...ipk;

0<5<i-1
and we get the desired statement. O

The essential part of the proof of the quasiisomorphism of 7 x is the following approx-
imation type lemma (there is a pun here).

Lemma 4.11. Consider f € Ay, x(KX) of type of depth | and suppose that

l/o...z+1(f) = Vo...z+1(f’)

for certain f' € Ay x(KCY). Then there exists an adele g € Ay i x(K;)) of the same type
as f, such that

Vo...l+1(f) = Vo...l+1(9)-

The proof of this lemma is quite long and is the content of section 4.3.

4.2 Technical support for approximation

In this section we develop some technique needed for the proof of approximation lemma
4.11 in the next section.

Strongly locally effaceable pairs

First, let us recall several well-known facts. Quillen showed in [26] (see also theorem
4.15) that for a local regular scheme Y of geometric type there are exact triples

0 — Ky (MP(Y)) = @yeyw Ka(k(n)) = Kot (MPFY)) = 0,
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where MP(Y') denotes the exact category of coherent sheaves on Y whose support codi-
mension is at least p. Recall that

K, (MP(Y)) = lim K,,(2),

where the direct limit is taken over all closed subsets Z inside Y whose components have
codimension at least p. The map K,(MP(Y)) = ©,cyw Kn(k(n)) associates to each
element o € K/ (Z) the sum of restrictions of o on the generic points of all components
of Z which have codimension p in Y. The differential in Gersten complex for Y is just
the composition of corresponding arrows in the exact triples from above, thus Gersten
complex for local regular rings of geometric type is exact, providing a resolution for the
group K, (Y).

Remark 4.12. If { f,,} is a cocycle in Gersten resolution, then the collection { f,,} is defined
by an certain element « from K, (MP(Y)). From what we said above it follows that in

fact o € K] (Z). Suppose Zy C Z is a codimension p component in X, which is not
in the support of {f,}. Then, since K, (k(Zp)) = lim K}, (U), where U C Z, are open
H

subsest, which may be chosen to be open in Z, we see that in fact a belongs to K/ (Z'),
where Z' C Z has the same components as Z besides Z,, which is replaced by a proper
closed subset. Hence, we may choose Z such that the union of all its codimension p
components equals to the support of {f,}.

Let X be a regular variety over a field k. For each (not necessary closed) point € X
there is a corresponding local Gersten resolution defined for the scheme X, = Spec(Ox ;).
Let us denote the differential in this complex by d,. For any closed subset C' C X,
containing x, there is an equality

K'(C,) =limK.(CNV),

where the limit is taken over all open subsets V' C X, containing x.

Consider an equidimensional cycle Z C X of codimension p, and an equidimensional
cycle Z O Z of codimension p — 1. Suppose for each (not necessary closed) point z € Z
and for any open subset & € V' C X there exists a smaller open subset © € W C X such
that the natural map B

K (VNZ) = K,(WnZ)
is zero for all n > 0. Suppose, in addition, that for any ¢ > 0 there exists an assignment
R — A(R), where R is an equidimensional cycle of codimension ¢ in Z, A(R) is an
equidimensional cycle of codimension ¢ in Z, R C A(R), and for any (not necessary

closed) point x € Z, for any open subset x € V' C X there exists a smaller open subset
x € W C X such that the composition

K, (VN (Z\R)) = K,(V N (Z\A(R))) = K, (W N (Z\A(R)))

is zero for all n > 0 (in fact, this condition makes sense when = € R). We will say that
such pair of cycles (Z, Z) is strongly locally effaceable (developing the terminology from
[7]). The existence of the assignment A is needed to show the relation between locally
strongly effaceable pairs and Gersten resolution. Namely, the following holds true.
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Proposition 4.13. Let (Z, Z) be a strongly locally effaceable pair of cycles in a smooth
variety X over an infinite field, where Z is of codimension p in X. Choose an arbitrary
(not necessary closed) point x € Z and consider a collection

e @ Kik(2),

zEZ,EO)

which is a cocyle in local Gersten resolution, i.e. d.({f.}) = 0. Then there exists a

collection
{9z} € B Kui(k(2))
zez0
such that

d:({9z}) = {/fa}-

Proof. First, replace X by its open affine subset containing x. It follows from remark
4.12 that the collection {f,} may be represented as an element « from K/ ((Z U S),),
where S is a certain closed subset in X whose all components are not contained in Z
and have codimension at least p+1in X. In fact, v is an element from K| (VN (ZUS))
for some open subset x € V C X. Moreover, from the codimension condition we get
that the intersection Z N S is contained in certain equidimensional cycle R C Z of
codimension at least two in Z. Also, by enlarging S one can choose R and S such that
S is equidimensional and dimR = dimS — 1. By the existence theorem 4.15 there is an
equidimensional cycle S of codimension at least p in X such that the pair (A(R)US, S) is
strongly locally effaceable. Consider the following commutative diagram, which is exact
in the middle column in the middle term:

K,(AR)US)  — K(9)

{ {
K\(ZUS) — K (ZU&S) — K'(ZUS)
! )

K(Z\R) — K, (Z\(A(R)U5))

Here the last map is the composition K/ (Z\R) — K’ (Z\A(R)) — K’ (Z\(A(R) U S)).
Since the pairs (Z, 2) and (A(R)U S, §) are strongly locally effaceable, for any point
x € Z and any open subset x € V' C X there exists a smaller open subset z € W C X
such that the map L

K (VNn(Zus)) — K, (Wn(ZUS))
is zero. Therefore « is a coboundary of an element 5 € K,’HI(WH((ZUg)\(ZUS))) in the

excision exact sequence associated to the closed embedding WN(ZUS) < Wn(ZUS).
In particular, 5 defines a collection

(e @ Kunlh(3).
ez

Note that all components of ZU g, which have codimension p — 1 in X, are contained
in Z, and all codimension p components of Z U S are in Z. Therefore, d,({gz}) = {f.},
and we are done.
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Existence and addition of strongly locally effaceable pairs

Let (Z, Z) be a strongly locally effaceable pair. Suppose that for any irreducible sub-
variety C' C X and an equidimensional cycle R C Z of codimension ¢ > 0 in Z, which
does not contain C' one can choose an equidimensional cycle A¢(R) C Z of codimension
q in Z , which does not contain C, contains R, and has the following property. For any
f irreducible subvarieties C1,...,Cy C Z and f equidimensional cycles Ry,..., Ry C Z
(maybe of different codimension) such that R; does not contain C; for all 1 < i < f,
and for any x € Z and an open subset x € V C X there exists a smaller open subset
x € W C X such that the map

K, (VN(Z\(RiU...URy))) = K, (Wn (Z\(ACI(RI) U...UA¢(Ry))))

is zero for all n > 0. We call such pair of cycles (Z, 2) strongly locally effaceable pair with
a freedom degree f. Let us also say that a strongly locally effaceable pair has freedom
degree 0.

Remark 4.14. The second condition of a strongly locally effaceable pair is a particular
case of the freedom degree one condition, if one takes C' outside of Z.

Here is the existence theorem for such pairs.

Theorem 4.15. Consider an equidimensional cycle Z of codimension p > 2 in the affine
smooth variety X over an infinite ground field k and a closed subset T C X, none of
whose irreducible components is contained inside Z. Then for any natural number f > 0
there exists a cycle Z O Z that does not contain any irreducible component of T', and
such that the pair (Z,Z) is strongly locally effaceable with a freedom degree f.

Corollary 4.16. Suppose in notations of theorem 4.15 that codimensions of all irre-
ducible components of T are at most p — 1, and that X is an arbitrary (not necessary
affine) smooth variety over an infinite field k. Then there exists Z such that the pair
(Z, 2) is strongly locally effaceable.

Proof. Let us cover X by affine open subsets: X = U,U,. For each o use theorem 4.15
for the intersection of all data with U,, and get certain closed subsets Z C U,. Now

take the union of their closures Z = U, Z,. Evidently, Z does not contain any irreducible
component of 7" due to the assumption on codimensions. Also, the pair (Z, Z) is strongly
locally effaceable, where A(R) can be taken to be the union of closures of A, (R N U,)
for an equidimensional cycle R C Z. O

Proof of theorem 4.15. The way we prove this theorem decomposes into two steps.

Step 1.

During this step “a point” always means “a closed point”. Choosing a (closed) point
for each irreducible component of 7" outside of Z we may suppose T to be a finite set of
points in X outside of Z.

Let us say that a morphism 7 : X — A% ! (recall that d = dimX) resolves a point
x € Z if w is smooth of relative dimension one at x, the restriction ¢ = 7|z is finite,

o p(x)) = {z}, and 7(T) N7 (Z) = 0.
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The following geometric result is a globalization of Quillen’s construction used in his
proof of Gersten conjecture, see [26], Lemma 5.12 and [7], Claim on p.191.

Proposition 4.17. Under above assumptions there is a finite set X of morphisms 7 :
X — A" such that for any f points yi,...,y; € X and a point x € Z there emxists
7w € ¥ which resolves x and such that 7(y;) ¢ 7(Z\{vy:}) foralli=1,..., f.

Proof. Let X be a complement to a hyperplane H of the projective variety X C P*. In
what follows let the bar denote a projective closure. For a moment let us take for grant
the following statement.

Claim 4.18. For any f points y ...,y € X\Z and f+1 closed subsets Zy, ..., Z; C Z
there are non-empty open subsets U; C Z;, i =0,..., f and a morphism 7 : X — A4"1,
which resolves all point x from Uy (with respect to Z) and such that 7(y;) ¢ 7(Z\{v:})
for any point y; € U; and 7(y}) ¢ n(Z) for alli=1,...,f.

Using claim 4.18, we prove by decreasing induction on e, —1 < e < f, that for
any e + 1 irreducible subsets Zy...,Z, in Z there are non-empty open subsets U, C
Zy,..., U, C Z, and a finite set of morphisms ¥ such that the statement of proposition
4.17 is true for all collections of points consisting of x € Uy, y; € U; for 1 <1 <e,y; € Z
fore+1<i< f,and y, € X\Z for0<i< f.

First, when e = f we choose f points yj,...,y; € X\Z and apply claim 4.18 for
Zy,...,Zy and {y}}. Since the condition y; ¢ 7 (7 (Z)) is open, we may cover (X\Z)/
by a finite set of open subsets such that all collections {y,...,y}} from the same subset
fit the same morphism 7. After we take a (finite) intersection of corresponding open
subsets in Zy,...,Z; we get the needed open subsets Uy, ...,Uy and the needed finite
set of morphisms.

Now let us show the induction step from e to e — 1. Choose any irreducible com-
ponent C; of Z. By induction there is a finite set of morphisms ¥; and open subsets
Upy...,Uc1,U; in Zy ..., Z, ,C}, respectively, satisfying the discussed above proper-
ties. Let Cy be one of the irreducible components of Z\U, (we may suppose U, to be
also open in Z). Again, by induction we get finite set of morphisms Y, and different
open subsets in Zy,...,Z._1,C5. We repeat the same step until we come to the end of
the obtained (finite) stratification of Z by open subsets in C;. After this we intersect all
(finitely many) obtained open subsets in each Z;, 0 < j < e — 1, take the union of all
(finitely many) ¥; and thus we get the needed open subsets Uy ...,U. 1 and a finite set
of morphisms .

Finally, when e = —1 we get the needed statement of proposition 4.17. 0

Proof of claim 4.18. First, let us enlarge T' by y; ..., y}. Also, without loss of generality
replace Z; by their irreducible components. Choose smooth points x; € Z;, 0 < i < f.
We have the following dimension conditions: dim(HNZ) < d—3, dim(HN(TxZ)) < d—2
(here “star” denotes a join), dim(H NTy X) = d — 1, and dim(H N m) <d -3 for
all 0 < ¢ < f. Since the field & is infinite there exists a projective subspace L' C H of
codimension d—2 in H such that L’ does not intersect Z, nor any of m, intersects T2

in a finite set of points and intersects all 7,y X in a line. Note that the projection 7z, with
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the center at L' defines on Z a finite morphism ¢r,. Consider Z! = ¢, (o (Z;)) C Z
for 0 < ¢ < f. For each 0 < i < f choose a point z; € Z; C Z] which is smooth on Z;,
and such that T, Z; does not intersect L', while T, X intersect L' in a line. We claim
that all intersections L' N (z; * Z]) are finite sets of points. Indeed, each join consits of
a tangent space which does not intersect L', and of lines passing through z; and other
points from Z;, whose intersection with L’ corresponds to the fiber of x; under the finite
morphism ¢r,. Hence, there exists a hyperplane L C L' which does not intersect the
joins T % Z and x; * Z! for all 0 < i < f and which intersects the tangent spaces Ty, X
in one point. Evidently, the projection 7, with the center at L can not glue points from
Z! with points from Z\Z! for all 0 < i < f. Therefore, by lemma 4.19 used with Y = Z!
there are non-empty open subsets x; € U; C Z; such that 7y, resolves all points x from
Us, and ¢, *(¢(y;)) = {y;} for all points y; from U;, 1 < i < f, where ¢ = 7|z. In
addition, 7(7") does not intersect with 7(Z), and 7(y}) ¢ n(Z) for all 1 <i < f. O

We have used the following fact from projective geometry.

Lemma 4.19. Let Y C PV be a projective variety, x € Y be a smooth point on Y.
Suppose a projective subspace M C PN does not intersect the join y x Y. Then there
exists an open subset v € W C'Y such that ¢ (p(y)) = {y} for all y € W, where ¢ is
the restriction of the projection my to Y.

Step 2.
We still suppose that the field % is infinite and perfect. Apply construction from
proposition 4.17. We use notations from its formulation. Let Z = Ur~!(7(Z)) where the

union is taken over all 7 € ¥. Then by construction Z does not contain any component
of T'.

Proposition 4.20. The pair (Z, 2) 15 strongly locally effaceable of a freedom degree f.

Proof. Essentially, we repeat the proof of [26], Theorem 5.11 with minor modifications.
First, we note that after we choose a suitable closed point on 7 C Z we may suppose
that the given open subset x € V is in fact an open neighborhood of this closed point.
Thus we may suppose = to be closed.

Choose 7 € ¥ which resolves x, and, as before, put ¢ = 7|;. Following the construc-
tion of Quillen, consider the Cartesian square:

y 5 X
i Iy

Z 2y AL

Note that ¢’ is finite onto its image, ¢'(Y) = 7~ }(n(Z)) is a closed subset in Z, and
(¢")7!(x) consists of one point z. Besides, the morphism 7’ is smooth at 2z and admits
a canonical section o : Z — Y (with o(z) = z). During the proof of Theorem 5.11,
[26] it was shown that is implies that the composition K/ (Z) = K!(Y) — K/ (Y") is
zero for all n > 0, and for some suitable open subset Y’ C Y containing z. Hence the
map K] (Z) — K (ZNU) is zero as well for all n > 0 for some suitable open subset
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U C X containing z such that (¢')™"(U) C Y’ (such U exists since ¢’ is finite and
()7 (x) = {z}).

Now take an arbitrary open subset z € V' C X. Since ¢ *(¢(x)) = {z} and ¢ is finite,
one may find an open subset D C A?"! such that z € o }(D) C V. After we restrict the
Cartesian diagram from A~ on D we get that the natural map K (VNZ) — K/ (WNZ)
is zero for all n > 0 for some suitable open subset W C V' containing z.

Further, consider an irreducible subset C' C X and an equidimsnional cycle R C Z
of codimension ¢ in Z, which does not contain C'. We put

Ac(R) = Uyec\r(Us, 7~ (7(R))),

where ¥, is the set of all = such that 7(y) ¢ n(Z\{y}). For example, if C' is not
contained in Z then Ac(R) = Ur !(w(R)) where the union is taken over all 7 € 3. Now
for irreducible subsets C1,...,Cy in X and cycles Ry, ..., Ry in Z satisfying the needed
conditions one chooses closed points y; € C;\R;. By construction, for any closed point
x € Z there is a morphism 7 € X such that it resolves x and belongs to X, N...N %, .
Thus, the same argument with a corresponding Cartesian diagram as before leads to the
needed result. O

Theorem 4.15 is now proven. O

As a consequence of theorem 4.15 and proposition 4.13 we get the following statement,
which could be considered as a uniform version of Gersten conjecture for smooth varieties,
and has interest in its own right.

Corollary 4.21. Let X be a smooth variety over an infinite field k. Then for any
equidimensional cycle Z C X of codimension p in X there exists an equidimensional
cycle Z O Z of codimension p — 1 in X with the following property. For any (not
necessary closed) point x € Z and a collection

.y e @ Kalk(=),

zEZ,EO)

which is a cocycle in local Gersten resolution at xz, i.e. d.({f.}) = 0, there exists a

collection
{9z} € P Knia(k(2))

A
such that d,({gz}) = {f.}

The following proposition allows add strongly locally effaceable pairs.

Proposition 4.22. Consider two equidimensional cycles Zy and Zy of codimensionp > 2
inside an_ affine smooth variety X over an infinite ground field k. Suppose we are given
a cycle Zy O Zy such that the pair (Z1,Zy) is strongly locally effaceable with a freedom
degree f > 2. Consider a closed subset T C X, whose all irreducible components are
of codimension at most p — 1 in X and are not contained inside Zy, and an irreducible
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subvariety F' C X which is not contained inside Zy. Then there exists a cycle Zg that does
not contain any irreducible component of T and F', and such that the pair (Z,UZy, Z1UZ5)
15 strongly locally effaceable with a freedom degree f — 1.

Proof. If F' is not contained inside Z; then the statement of proposition follows directly
from theorem 4.15 after we enlarge 7" by F' (in this case the freedom degree does not
decrease).

Suppose that C' C Z;. We use the same construction as in the proof of proposition
4.13. One can choose a codimension one cycle Z) in Z; which does not contain F' and
contains the intersection of Z; with all irreducible components of Z5, which are not in
Zy. Let Z3 = Ap(Z}). Note that Zy U Z3 does not contain any irreducible component
of T' due to the codimensions assumption. Hence, by theorem 4.15, there exists a cycle
Zy such that the pair (Zy U Z3, Z,) is strongly locally effaceable with a freedom degree
f—1, and Zs does not contain any irreducible component of 7" and F. We claim that
the pair (Z; U Zy, Z1 U Z5) is strongly locally effaceable with a freedom degree f — 1.

Indeed, the first condition of strongly locally effaceability holds by the following
commutative diagram, which is exact in the middle column in the middle term:

K'(Zy U Zs) —  K'(Z)

| i
! |

K, (Z0\Z}) — K, (Z)\(Z:U Zs))
Here the last map is the composition
K}, (20\Z}) = K}(Z1\Z5) = K},(Z)\(22 U Z3)).

Since the pairs (Z7, Z) and (Z,UZ;3, Zg) are strongly locally effaceable, for any x € Z,UZ5
and any open subset x € V C X there exists a smaller open subset x € W C X such
that the map L

K (VN (Z,UZy)) = K, (WnN(Z,UZy))
is zero for all n > 0.

Now consider an irreducible subvariety C' C X and an equidimensional cycle R C
Z1UZ; of codimension ¢, which does not contain C'. Let R’ be the union of all components
of R which are not contained in Z, U Z,. Let A, (R') be the union of all components of
Ac(R'), which are not contained in Zy U Z3. Then one may choose an equidimensional
cycle R" of codimension ¢ in Z, U Z3, which contains the intersection (AL (R') U R) N
(Zy U Z3) and does not contain C. Consider A¢(R"), where A¢ is taken with respect to
the strongly locally effaceable pair (Zs U Z3, Zg) of a freedom degree f —1. We can take
AL(R') U Ac(R") to be Ac(R) with respect to the pair (Z, U Zs, Z1 U Z,). This follows
from the commutative diagram analogous to the previous one, which is composed of two
diagrams:

K.((% Ufz)\{Ri}) — K,(Zv Zz)\if\’ci(Ré) U R;})
K (Z\(Z5 U{R:}) — KL (Z\(Z2 U Z3 U {A (RD)}),
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K (22U Z3)\EA’01-(R§) UR}) — Ké(gz\{i\ci(Ri)})
K, (Z U Z)\{AG(R) URY) — KL((Z1U Zo)\{Ac, (R))),

which we glue by the following exact sequence in the middle term:

K, ((Z0Z3)\{Ag, (RDURY) = K, ((Z10Z:)\{ A, (R)UR,}) = K (Z\(Z2UZ5U{ A, (R))Y)).
Here {O;} means the union of objects O; over all i = 1,..., f — 1, and the horizontal
maps in the diagrams are compositions of direct images under closed embeddings and
restrictions on open subsets. The diagrams are used in the same way as the previous
one. O

Remark 4.23. For p = 1 by Quillen result the only possible pair (Z, X) is strongly locally
effaceable. However, there can be no analogue of theorem 4.15 and proposition 4.22 for
non-empty 7" and F'.

4.3 Approximation
Reduction to the affine case

Till now during the proof of theorem 4.1 we did not use any special properties of the
scheme X at all. In fact, “geometrical” properties of X are needed only for lemma 4.11,
which uses results from section 4.2. We do several reductions of lemma 4.11.

Proposition 4.24. If lemma 4.11 s true for a scheme X, then it is true for Y =
Spec(Ox,) for any schematic point v € X .

Proof. Recall that the canonical morphism j : Spec(Ox ;) — X is an embedding at the
set-theoretical level and also preserves the codimension of points. Thus, evidently, for

any type (i ...i,) the group
1T (<

70---Tlp

is a direct summand inside the group

H (ICnX)§07

£o---£p

where codimy (n;) = ¢; and codimy (§;) = i; for 0 < j < p.

Moreover, it easily follows from definitions, that A and A condition are preserved by
the corresponding embedding and projection. Indeed, for A-adeles remark that we may
restrict any system of divisors, encountered in the definition, from X to Y, or oppositely,
take its closure inside X, if it is given on Y. As for A-adeles, remark that taking the
residue along the flag on Y is the same as taking the residue along its closure on X.

Hence both A and A adelic groups associated to Y are direct summands, respectively,
in A and A adelic groups associated to X with the same indexes, and from this one
deduces proposition 4.24. O
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Proposition 4.25. If lemma 4.11 is true for any affine scheme then it is true for any
scheme X which admits a finite open affine covering.

Proof. Take a finite covering

by affine open subsets. The same reasoning as before leads to the fact that for any open
subset U C X again both A and A adelic groups associated to U are direct summands,
respectively, in A and A adelic groups associated to X.

Apply lemma 4.11 to U; and to restrictions f|y,, f'|v,. Thus we get an element g,
from A adelic group on U and we may extend it by zero on the whole X and get an
element ¢; from the corresponding A adelic group on X such that

Vo...z+1(91) = VO...Z+1(f)|U1-

Now do the same for U; and get a certain element gy, from the A adelic group on Us,.
We may truncate this element. Namely, put zero values on all its components in flags
Mo ... Nk such that n, ¢ Uy\U; and preserve the component otherwise. Evidently, this
will be still an element from A adelic group on U, and then we extend it by zero to an
element g, from the corresponding A adelic group on X such that

l/o...z+1(92) = VU...l+1(f)|U2\U1;

where the restriction |y, ¢y, is in the sense that we consider only flags which end up
with a point from Us\U;. Then we repeat the same for Uz and Us\(U; U Uy), ...,
U \(ULU...U,_1), and we get elemets {g,...,g,} from A-adelic groups such that

Vo..1+1 (Z gi) = Vo..i+1 (f),

and we are done. O
Thus we have reduced the problem to the case when X is an affine smooth variety

over an infinite field.

Patching systems

Choose an equidimensional cycle Z of codimension p on a (not necessary affine) smooth
variety X. Suppose we are given a system of equidimensional cycles {Z}?}, 1 < m < p—1
of codimension m on X with the following properties:

(i) the cycle Z is contained inside both Z)_, and Z2_, and Z, U Z;, is contained in
both Z! , and Z2_, for2<m <p-—1;

(ii) all the pairs (Z, Z;_l), (Z, Zg_l), (zh oz zL ), (Z) uZE Z2 ) for2<m <
p — 1 are strongly locally effaceable with a freedom degree f;
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(iii) the cycles Z} and Z?2 have no common irreducible components for 1 < m < p—1.

We will call such system of cycles a patching system for the cycle Z with a freedom degree

f.

Proposition 4.26. For arbitrary number f and for any equidimensional cycle Z on an
affine smooth variety X over an infinite field there exists a patching system for Z with
freedom degree f.

Proof. Suppose Z is of codimension p on X. Apply theorem 4.15 first with empty 7" and
get an equidimensional cycle Z of codimension p — 1 in X. Then apply theorem 4.15
with T = 221, and get an equidimensional cycle 222 of codimension p—1 in X. Note that
Z} have no common components with Z2. Put Zy, = Z} and Z: = Z2.

Now repeat the same procedure for the cycle ZILl Uszl and get two equidimensional
cycles ZILZ, Z]%*Z of codimension p — 2 in X without common components such that the
pairs (Z, U Z2 |, Z! ,) are strongly locally effaceable for i =1, 2.

Repeat this inductively until we get two divisors Z; and Z? without common irre-
ducible components. O

Remark 4.27. By the same method using corollary 4.16 instead of theorem 4.15 one
shows that for any equidimensional cycle Z on a (not necessary affine) smooth variety
X over an infinite field there exists a patching system with freedom degree 0.

Proof of approximation lemma

Now we prove lemma 4.11. We use the same notations as in its formulation and we
suppose X to be an affine smooth variety over an infinite ground field k. During the
proof 7, denotes a schematic point on X of codimension p. By proposition 3.12 and
proposition 3.9 the residue vy ;41(f") belongs to the finite sum of A-adelic group:

Vo..041(f") = Ohuivsy —1-1)..(ip—t-1)(k-1-1) € Byex @1 oGy —1-1).(ip—t-1)(k—1—1) (K1)

Let Z;,; = U7 be the union of closures of the finite set of schematic points n € X (¢+1
for which hn(iH_l,lfl)_._(ip,lfl)(k,lfl) is not zero.

Step 1.

Reciprocity law for f implies that for any flag n;_, ...n;,m and for any schematic
point 742 2 7;,,, we have

E : Unig1smiga (hm+1m,+1mmp77k) = 0.

M+10M1+2

On the other hand, d%k(hnmm,ﬂmmpm) = 0 for a fixed flag 417, - - - 13, 7. We deduce
that after we fix a flag n;,,, ...7;,m the collection

Ji+2 = Z dﬂk({hﬂz+1m,+1---m‘pﬂk}) o Z 1/771+1:77l+2(h771+177il+1---77ip77k:) S

M+1 M+22Mip 4
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€ B Koialklmi2)
T]l+ZEZl(i)1

is a cocycle in Gersten resolution with respect to d,, (this collection is defined for the
flag i, ... 1, M). In other words, for each flag n;,,, ...7;,me We consider the sum over

all g € Zl(i)l of residues of h on divisors in 7,11 through 7, which are not

M1y - Tip Tk
irreducible components from the divisor D
D

mer C Ty in notations from section 3.1 (here
msr... denotes a system of divisors arising from the adelic conditions on 7;,,).

Now we want to express this as a coboundary in local Gersten resolution at 7 of a
certain element, controlling its support, namely, we want its support to be a system of
divisors in the sense of section 3.1, associated with a flag ;. ...7;,m. To do this we
use the technique from section 4.2.

We will use the sign “—” for two arbitrary equidimensional cycles C and C; of equal
dimensions in the following sense: C; — C5 is an equidimensional cycle of the same
dimension, which consists of all components of C';, which are not contained inside Cs.

Choose 7;,,, and consider the union

U (Dm+1ni,+1 - Dm+1)7

0
M+1 eZl(Jr)l

which is an equidimensional cycle of codimension [ +2 in X. It does not contain 7;,,, by
properties of the system of divisors Dy, .. Apply theorem 4.15 for f =p—1, T =7,
and Z being the cycle from above. Thus we get a certain equidimensional cycle Ztiimiy,
of codimension [ + 1 in X, such that it does not contain 7, and verifies a certain
strongly locally effaceable condition with a freedom degree p — .

Now choose a flag 7, 7;,,, and consider the union

U ‘D7H+177il+17]il+2 o DTH+1Th‘,+17
0
’7l+1€Zz(+)1

which is again an equidimensional cycle of codimension [ + 2 in X. It does not contain
Mii+, Dy properties of the system of divisors D . Now apply proposition 4.22 for Z; =

(D

MA41--
Um+1€Z,(i)1 miimi,, — Pmis)s Z1 = Ziviny,, Z2 is the cycle from above, and €' = 7; ;.
Thus we get a certain equidimensional cycle 2 Limiy iy
As before, it does not contain 7, ,, and At timg,, Y2
locally effaceable condition with a freedom degree p — [ — 1.

We continue this procedure inductively for longer flags n;,,, ...7;;, [+1 < j < p, and
we get a system of equidimensional cycles {zlﬂ;mmmmj} of codimension [ + 1 in X with
the following properties: if we put

= Z of codimension [+1 in X.
verifies a certain strongly

22+1mq+lmnﬁ ::22+4LJ LJ Zb+hnq+lnﬂun
I+1<m<j

then

Zl+1;77il+1"'77ij ('rh]) = Zl+1;77i1+1"'77i]‘—1 (7]1])
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forl +2 <7 <p,and
ZlJrl;m-,+1 (77iz+1) = Zl+1(77i1+1)-

In addition, the pair of cycles
- D

(Umﬂez(o) D’?H—l’?iH_I . M1 Zl+1;7h,+1m,+z---77ip - Zl+1)

I+1

is strongly locally effaceable with a freedom degree one.
Now fix a flag 7, , ... 7;,mx and consider the constructed above collection g;1o. It has

support on
U Dm+1m‘,+1 iy Dm+17

0
M+1 EZ1(+)1

and thus by proposition 4.13 there exists a collection g;, ; with support on Z;,
Zy11, such that dy, (9], 1) = gi+o.
Finally, we obtain a collection

Mgy Mip

gi+1 = {h771+1771+27hl+2---77ip77d} + (_gll+1)

with support on Zl+15"il+1---7h‘p which is a cocycle in the local Gersten resolution associated
to Nk -

Thus we have modified the collection {hnl+l771+277il+2---77ip77k} into a cocycle in local
Gerten resolution at 7, controlling the support of the difference. In particular, this
support does not contain 7, , .

Step 2.

By proposition 4.26 there exists a patching system {Z}?} 1 < j <[ for Z;, of a
freedom degree p—[+1. Now we should extend this patching system to patching systems
for each cycle ZZH;%H,,,% using proposition 4.22.

Namely, first we define le;ni,+1 as the result Zl U Zg of proposition 4.22 applied to
Zy = Zip, Z) = 2, =2}, C =T, Za = 241,
Zl - Zl+17 Z]_ — ZlZ, T - Zl1+1U21

I+Limiy 0
as Z1 U ZQ.

Then we repeat the same until we obtain two divisors le?"iz+1 and Zi’?im such that

Miggy Then we repeat the same for

— M —_— 1 2
C =m0, Za= At tim,, and we obtain Zl;mm

(le UZI2 )(nizH) = (ZIIUZIZ)(nizH)?

Mgy Mgy
and Z,%fn_l K 1 <m <[ is a patching system for Zl+1;m-+1 of a freedom degree p — [.
b A2 + 3
Then we pass to the flag ;7 , and in the same way we define the patching system
1,2
Zm;m,ﬂmm such that
1 2 _ (ol 2
(Zl;ni,+1ni,+2 U Zl;ﬂil+177il+2)(,r/il+2) - (Zl;m,+1 U Zl;ni,+1)(77iz+2)'
Then we continue this until we get a patching system Zrln’?n-m g L < m < U for
st =Thip

Zl+1;m,+1---mp of a freedom degree one.
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Now fix a flag m;,_, ...7;,m and consider a collection g;y;, obtained at the end of
Step 1. By proposition 4.13 there are two collections

gll S @ anl(n)

and

912 S @ Kn—l(n)

ne(Z}’milewp)(o)
such that their local differentials at 7, are equal to g;11. Hence for g, = g} @ (—g?) we
have d,,(g;) = 0.

Repeat this until we get two collections gi and ¢ with support on Z}

Ly g Mip
12.,7_1+1 .- By induction, dy,(g1) = 0 for gy = g © (—g7), and we get an element
3Tl = Mip

g0 € K, (k(X)) such that d,,(g0) = ¢1-
Having fixed the flag n;_, ... 7, n, put

and

Inony..mniyy -nipme = Y0
if n; € (Z})© forall 1 < j <1, and

=0

Gnony iy -1pa

otherwise. We see that by construction

...l (9) = VO...l(f):

therefore we are done if we show that ¢ verifies an adelic condition in terms of certain
system of divisors E,,..;; on X. Let us describe this system of divisors explicitly.
Note that the support of

dh, (9770771...771%+1 i )

is contained inside

1 2

Limiy gy - Mip J Liniy g Mip

Define
Er = le U le

for any flag F' = (no...n;) on X such that j <[ and 1, € (Z})©® forall 1 < ¢ < j, and

_ 7l 2
Ep = Zl;ni,+1---nik J Zl;ni,+1---nik
for any flag F' = (no...mni,, - - ;) on X such that [ +1 < j < p, and 5, € (2])
for all 1 < ¢ < [. By construction this system of divisors on X satisfies the condition
(%) from proposition 3.6, and thus we see that Irioms ey iy belongs the adelic group
Ao1. diy,..ipk- S0, approximation lemma 4.11 and, hence, theorem 4.1 are now proved.
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5 Products in K-cohomology

5.1 Explicit classes

In this section we describe explicitly cocyles in the adelic resolution corresponding to
that of Gersten resolution.

Examples

Consider a smooth variety X of dimension d over an infinite field k. Let D be a (not
necessary reduced and effective) divisor on X. For each schematic point n € X consider
the local equation s, € k(X)* of D in Spec(O,). Evidently, s¢/s, € Oy when £ € 7.
Thus we get a l-cocycle [D] € Ax(K:)!, whose (Xn)-component is s, for n # X,
and (n)-component is s¢/s, for n # X, £ € 7, €& # n. It turns out that this cocycle
satisfies the adelic condition described in the beginning of section 3.1. This is easy to
check for the case of divisors, while for higher codimension cycles the situation becomes
more complicated, see below. By construction, the class of [D] in H'(Ax(K{*)*) =
CH*'(X) coincides with the class of D in the first Chow group. In [10] and [12] it was
proved that the intersection product in Chow groups coisides with the natural product
in corresponding K-cohomology. Combining this with remarks 4.7 and 3.21 we get an

adelic formula for the intersection index of divisors Dy, ..., D, when X is proper:
(Dh R Dd) = Z [k(nd) : k]”ﬂo---nd{sl,m: 32,772/32,7717 R Sdﬂld/sdﬂld—l} =
To---Nd
= Z [k(nd) : k]yﬂo---ﬁd{sl,ma 5225+ - s Sdﬂld}v
no---Nd

where the last identity is obtained by use of reciprocity laws. This formula was first
proved for d = 2 by Parshin in see [24], and then for arbitrary d by Lomadze in [15].
However, their proofs are different from the present approach, which considers adelic
complex as a multiplicative resolution of sheaves of K-groups.

The next example is the intersection of a 1-cycle C' and a divisor D in the three-
dimensional variety X over a field k. We describe explicitly a 2-cocyle in the adelic
complex A x(K3)* corresponding to C. Let us choose an effective reduced divisor F
with the following properties: for each schematic point 7 of codimension at least two
there exists an element ¢, € Ky(k(X)) and a subdivisor E, C E such that div(t,) C E
and d,(vxg,(t,)) = Cy,. Here vxg, denotes the residue from the field £(X) to the sum
of fields of rational functions of all components of E,, C, is the cycle inside Spec(O,)
defined by C, and d,, stays for the differential in the Gersten resolution for Spec(Q,).
Proposition 4.13 and remark 4.27 imply the existence of such divisor E.

Next, define adeles fo1o and fo13 such that fxg, , = t, € Ko(k(X)) and equals to an
arbitrary element from K,(0O,) otherwise. For each flag n¢ of type (23) we have

dy(vxg, (te)/vxE, (t,) =0,

46



hence there exists an element ¢, € K5(k(X)) such that

dy(tne) = vxe (te) /vxe, (ty).
This defines an adele fy3. Finally, one sees that for each flag uné of type (123) the
product anﬁf);;ltngun belongs to (K3'), and is also an adele. Thus we have defined a
cocycle f € A x(K5)?, which represents the class of C'in C H?(X) by construction. From
this one gets the intersection formula:

(D,C) = Z[k(f) L kX e Sus fune} = Z[k(f) Lk x e Sus e b

Hné uné

where s, is the local equation of the divisor D (see above). Here again one uses reciprocity
laws to obtain the last equality.

The class of a cocycle in Gersten resolution

Let Y C X be an equidimensional cycle of codimension p in X. Consider a collection

{1y e B Knlk(y),

yey (©

which is a cocyle in (global) Gersten resolution (G,,,,)*. Generalizing what we have done

for a curve on a threefold, we construct explicitly a cocyle f = [{f,}] in Ax(K,,,,)? such
that v,(f) = {f,}-

Choose a patching system Y12 1 < r < p— 1 for the cycle Y of a freedom degree
zero, see remark 4.27. We define the adele f inductively starting from flags 7y ... 1,_17
of type (0,1,...,p — 1,4) for some i > p. If n; does not belong to ¥ then we put the
corresponding component of f to be equal to zero (we speak about K-groups in the
additive way). If 7; belongs to Y then we choose a “local equation” of { f,} with respect
to the patching system Y,'2 as it was done at the end of section 4.3, Step 2 (where
it was denoted by go). Namely, we choose an element ﬁh € Kyip(k(X)) such that
div(f,) C Y} UYE and

dTliVXYIIY21...YI}71(f7]i) = {fy}n“
where d,, is the differential in the Gersten resolution for X, = Spec(O,,), and vgr
denotes a part of the differential in (global) Gersten resolution wich correspond to the
generic points of irreducible components of S and T' (provided that S and 7" have suit-
able dimensions), and the index n; by the collection means the restriction on X, =
Spec(Ox,y,). Then we put fy,. ., _,n = hif 7, is a component of Viforalll <r<p-1,
and fyq..n,_1n; = 0 otherwise.

Now for each pair iy > 4; > p—1 consider a flag 1y ... m,_2m;, 1, of type (0,1,...,p—
2,11,1). If ;, does not belong to Ypﬂ1 then we put the corresponding component of f
to be equal to zero. If n;, does belong to Yplfl, then we take ﬁilmz € Ky m(k(X)) such
that div(h) C Y] UY? and

dTh'l VXYIIYZI...YPI_Z(fm'lmZ) - fol(f[]l...pflni2 - fOl...pflnil)nil S @ Km+1(k(77))7

(p—1)
nEXn;|
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where fo1.p 15, stays for the sum over all flags of type (01...p—1,4;) ending by n;, (the
same for 7;,), and for the definition of 1,_; see example 3.13. Now we put Jno-mip_ami miy

to be equal to ﬁhl% if 7, is a component of Y;! for all 1 < < p— 2, and zero otherwise.
We see that for any triple i3 > iy > 7, > p — 2 the following equality holds true:

dm.ll/p—Q (fOl.--P—2m2m3 - f01~~~p—2m1m3 + fOl...p—lem2) =0.

Next, we repeat inductively the same procedure. More precisely, we proceed by the
following formula (using the same type of notations as before):

r
dm‘l Z/XYll...YTl (fml"'”ipr) = Vr41 (Z(_l)]+1f01"'r+1nil"'nij—lnij+l"'nip7‘) )
7=0 i

while defining the component of f corresponding to flags no...n:m; ...m;,_, of type
(0,1, ... 71,y ipr).

At the end we define the components of type (0¢y...4,) for i, > ... > i > 1, and
one sees that )

dm‘o <Z(_1)]fXﬂiO---ﬂij_lﬂij+1~~~77ip) =0
j=1

for any flag n;, ...n;,, %0 > 0. Therefore, the alternated sum in brackets belongs to
Ky1m(Oy,) and, putting this to be a 7, ...7;,-component of f, we finally get a cocycle
fin Ax(K,')P. The adelic condition is satisfied since div(f,, ., ) is in ¥}' UY? for all
flags n;y ... 7,
Remark 5.1. From this explicit construction it can be easily deduced by induction on
r that one may choose the adele f = [{f,}]| such that the necessary condition for the
non-vanishing of f on the flag 7, ...7;, is that 7; belongs to Y;! forall 1 <r <p—1,
and 7;, belongs to Y.

Remark 5.2. For a flag n;, ...n;, satisfying this condition, but for which 7; does not
belong to le+1 for 0 < r < p—2, and 7;,_, does not belong to ¥, we may choose the
adele f = [{f,}] such that

Fongeits, = Fny € Kpim(k(X)),

where as before fmp is such that dy, vyyp y1 | (ﬁp) = {fy}n,, and depends only on n;,.
Indeed, this follows by induction from the explicit formula defining the class [{ f, }], using
the previous remark 5.1, which provides a lot of cancellations.

In the proof of theorem 5.16 we will also need the following technical integrality
condition on the adele [{ f,}].

Claim 5.3. Suppose in addition that for certain schematic pointn on'Y there correspond-
ing local cocyle {f,}, in Gersten resolution is represented by an element o € K, (Y,).

Then the element f, € Kpin(k(X)) from remark 5.2 may chosen such that the collection
ngXYll...le_l(ﬁl) € Kp+mfr(k((le U Yr2)77q))
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is actually represented by an element o, € K, ((Y;'UY}?),) forall1 <r < p—1,

and is represented by « for r = p. Moreover, the restriction of o, on K[, . ((Y,')y\Y;?)

is in fact an element from K. (V),\(Y,h, UY2,))). In particular, f, = ay €
Ky (X \ (Y U YD) = K (X \ (Y U YY),

pt+m

Proof. We use a decreasing induction on 7, 1 < r < p — 1. First, since Y% is a patching
system of freedom degree zero, by definition we have that locally around 1 the maps
K, (Y,) = K, (Y, 1)) and K], (Y;) = K}, ((Y,? 1)) are both zero. Therefore, after we
take elements af_, € K7, ,,((Y,_,),\Y), i = 1,2 whose coboundary is « € K, (Y), they
both are restrictions from an element oy, € K}, (Y~ UY;”),). The last fact follows
from the excision sequence associated to the closed embedding (Y, , NY} , — Y U
Y? 1). Next, we proceed in the analogous way replacing Y with Y, ,UY;? |, and so on until

we come to Y;'UY2, and, thus, define a suitable element f, = ag € K], (X \ (Y UYD)),
which satisfies by construction all needed properties. O

Remark 5.4. In particular, the condition of claim 5.3 is satisfied for all n € X®. Indeed,
in this case a = f, € Kn,(k(n)) = K,,(Yy).

We will call classes [{f,}] satisfying all properties from remarks 5.1, 5.2 and claim
5.3 good classes. In particular, there is a good class [Y] = [{1y}] € Ax(K,)? for any
equidimensional cycle Y of codimension p in X, where {1y} denotes a collection from
®,cx»Z which is a “delta-funtion” of Y.

Corollary 5.5. Let Y C X be an equidimensional cycle of codimension p in X. Then
there is an explicit construction of its class in Parshin-Beilinson adelic group A x ()P,
which is the image under dlog of the (good) class of [Y] in Ax(KX)? (see proposition

5.2 K-theoretical background

The following results, needed in the proof of theorem 5.16 in the next section, are without
doubt not new and follow, for example, from Waldhausen K- theory of perfect complexes,
developed in [29]. However, the author did not find a reference for a simpler construc-
tion which would use only Quillen K-theory, and hence here is the description of such
construction.

Let f: (X,z9) — (Y,y) be a continious map of pointed topological spaces. We
denote by QS the loop space of a pointed space (S, sp). Consider the mapping path
fibration

M(f) ={(z,9)lx € X,p: 1 =Y, 0(0) = f(z)},
where I = [0, 1], and the homotopy fiber F(f), which is the fiber over y, of the natural
map M(f) =Y, (z,¢) — ¢(1). Note that F(f) and M(f) are pointed spaces with the
point (zy, ©o), where ¢ is the constant map to y,. Recall that there is a natural map
QY — F(f), defined by v — (z9,7). Moreover, the composition QX — QY — F(f) is
canonically homotopic to the constant map to (zg, po) € F(f). Indeed, the homotopy

G: QX x I — F(f)

49



is given by
(77 t) = (V(t)a (pt)a

where p.(s) = (f ov)(t + s(1 —t)).

Let M be an exact category, £ be the exact category of exact triples of objects
in M. A well-known result of Quillen ([26], Theorem 2) stays that two natural maps
BQE; — BQM x BQM, BQM x BQM — BQE;, induced by

{0=>M —-M—M"—0}— (M, M")

and
(M' M"Y —{0—> M — M eM"— M"},

correspondingly, are homotopy inverse. In fact, one may also consider two different exact
subcategories M' and M"” in M and let & be the category of exact triples in M such
that M'isin M', M" isin M". Then BQE; is homotopy equivalent to BQM' x BQM".
The proof remains the same.

In what follows we suppose for simplicity that M is in fact an abelian category (which
holds true in further application).

Lemma 5.6. Let C, be the exact category of complexes of length n of objects in M, &,
be the subcategory in C, consisting of all exact complezes. We put B = Im(M*™' — M?)
for a complex M*. Then the natural maps BQC, — BQM"™ BQE, — BQM™ induced
by the exact functors

{0 M — ... M" =0} (M°,...,M")

and
{0 M"— ... M"— 0}~ (B',...,B"),

respectively, are homotopy equivalences. Moreover, the following diagram commutes up
to homotopy:
BQE, —  BQM™
\J b
BQC, — BQM"™!,

where the horizontal maps are as defined above, the left vertical arrow is the natural
inclusion, and © 1s given by

(B,...,B") — (B, B'® B%,...,B" '@ B", B").

Proof. We follow a part of the proof of Theorem 1.11.7, [29]. The only difference is that
we are not speaking about K-theory spectra of Waldhausen categories and do not use
results about them.

Consider the natural inclusion &£,_; — &, defined by

{0—-M— .. M" ' =50} —{0—M—...—» M+ =00}
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and the natural inclusion M — &,,, defined by
M—{0—0...0— M — M — 0}.

One may treat &, as the category of exact triples in C,, which start with an object from
En_1, and end with an object in & = M. Indeed, the explicit equivalence is given by

M®* = {0 = 7<(n_1)(M*) = M* — {0 = B" = B" — 0}},

where 7<; is the usual truncation functor associated to the canonical filtration on com-
plexes. Thus, applying the modified above result of Quillen we get that BQE, is ho-
motopy equivalent to BQE,_; x BQE, and from the explicit view of this homotopy one
deduces the desired result for &, by induction on n. The analogous reasoning leads to
the needed result for C,,. In this case we should use “béte” filtration instead of canonical
one, and the inclusion M — C,, defined by

M—{0—...>0—M— 0}
Finally, the exact sequences
0Bt M =B =0

for all 0 <7 < n lead to the needed homotopy equivalence in the diagram of the lemma,
see [26], §3, proof of Corollary 1. O

Let F' be a homotopy fiber for the natural inclusion BQE,, — BQC,. Recall that by
definition KN = QBQN for an exact category N.

Corollary 5.7. The inclusion of categories M — C,, M — {0 = M — 0 — ... — 0}
induces a map KM — KC,, — F', and the composite is a homotopy equivalence.

Proof. Let us compute the induced map on homotopy groups. By lemma 5.6 for all ¢ > 0
there is a commutative diagram

mi(KE) —  min(BQM)"
3 b
Wl(KCn) — Tit1 (BQM)TH—I

where the horizontal arrows are canonical isomorphisms, induced by maps described in
lemma 5.6. Thus there is a canonical isomorphism 7;(F) = 7;,1(BQM) given by the
alternate sum homomorphism 7, (BQM)"*" — 7, (BQM). Moreover, the composi-
tion m; 11 (BOQM) = m(KM) — m(KC,) — m(F) & m 1 (BQM) is the identity map
and we conclude by Whitehead theorem (see [30]), since KM has the homotopy type of
a CW-complex by Milnor’s result (see [19] and also [27], Appendix A). O

For a scheme S denote by M(S) the abelian category of coherent sheaves on it, and

let £,(S) = En, Ca(S) = Cp, F(S) = F, K(S) = KM for M = M(S).
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Proposition 5.8. Let S be a (not necessary reduced) closed subscheme in the scheme
T, Co(T,S) be a full subcategory in C,(T) of complexes whose cohomology sheaves are
supported on S, i.e. complexes, whose restriction on T\S is in E,(T\S). Then there
exists an “Buler characteristic” map x : KC, (T, S) — K(S), which is well-defined up to
homotopy, with the following properties:

(i) the induced homomorpshim x. : Ko(Cn(T,S)) = K\(S) equals to
[Pl ) (-1)'H(F)

where F* is in C(T,S) (here we use the isomorphism K} (S) = K}(S), induced by
the closed embedding, where S is any closed subscheme in T, containing S and with
the same support);

(ii) x commutes with closed embeddings; namely, consider a closed subset i : T' — T,
S"= SxpT". Then the following diagram of spaces is commutative up to homotopy:

KC,(T,S) X K(9)
Ty Ty
KC,(T',5") X K(9);

(iii) x commutes with restriction on open subsets; namely, consider an open subset
j:U—=T,U =UxypS. Then the following diagram of spaces is commutative up
to homotopy:

KC,(T,S) = K(9)
LJ* LJ°
KC, (U, U 2 K(U).

Proof. The natural map KC,(7,S) — F(T\S), induced by following diagram
KC,(T,S) — KE&,.(T\S)

\ 1
KC,(T) —s KC,(T\S)
! 1

F(T)  —  F(I\9),
is canonically homotopy trivial. Thus there is a well-defined map
KC,(T,S) - F{F(T) — F(T\S)},
and this defines the needed map Y, since the diagram

K(I) — K(T\S)
! 1
F(T) —s F(T\S)

induces a map K(S) — F{F(X) — F(T\S)}, which is a homotopy equivalence.
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Now we prove (i), i.e. we compute explicitly x, on my-groups. Consider a point [F°|
in KC, (T, S) corresponding to a loop in BQC,(T,S) defined by a complex F*. There
exists a homotopy inside BQC, (T, S) between the loop [F*] and the sum of loops

T<m-1F']+ {0 —= ... = B" = B" — 0}] + [H"(F*)[-n]].
In addition, [H™(F*)[—n]] is homotopic inside BQC, (T, S) to the sum

—_

(=D)"[H"(F*)] + 3 (—1Y[{0 = H"(F*) — H"(F*) — 0}{[—j]],

<.
Il

where the short complexes have support in degrees 0 and 1. Continuing, we show by
induction that the initial loop may be homotoped inside BQC,(T,S) to a the sum of
S (=1)[H*(F*)], and a sum of loops inside BQE,(T). The points in KC, (T, S), corre-
sponding to loops in BQE,(T), evidently have zero image under v, on my-groups, and
we are done.

The proof if (i) and (ii7) is a trivial check, which uses the following facts: for (i7)
the natural map

TN\S' =T xp (T\S) = T\S

is a closed embedding, for (7i7) the natural map
U\U' = U xq (T\S) < T\S

is an open embedding, and if in the commutative diagram of topological spaces

X — Y
) )
Z — W

the vertical arrows are homotopy equivalences, then after taking the homotopy inverse
to them the diagram remains commutative up to homotopy. O

Now consider a finite complex P* from C, (7, S) of flat sheaves on 7. Then there
is a well-defined map - P* : K(T7') — K(S), which is unique up to homotopy and is
the composite of the map induced by *®ep, : M(T) — C,(1,S),F — F Qo, P* and
x : KC,(T,S) — K(S). For a class [F| in K{(T) we have by proposition 5.8, () the
equality [F]-P* =Y (—1)'H(F Qo, P*) € K}(9).

Proposition 5.9. Suppose P° is a finite flat resolution of Ogs on Or (here we suppose
that the complex P* has support in non-positive terms), T admits an ample line bundle
(e.g. T is quasi-projective). Then x - P* is homotopic to the map f*, where f : S — T
is the closed embedding (see [26], §7, 2.5).

Proof. By Quillen resolution theorem ([26], §4, Corollary 1) BQM(T) is homotopy equiv-
alent to its subspace BQF(T"), where F(T') is the exact category of coherent sheaves,
which are Tor-independent with Og. For BQF(T) we have an exact sequence

0—)T§0(*®0T P.) — * Qo P — * Qo Os —0
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of functors from F(7T') to C,(7,S), where by definition
AN ={.. o4 5. A 5Im{4A > A} >0}

for a complex A®. Thus for the induced maps on K-spaces the map K(7°(x ®¢,. P*)) +
K(* ®0, Og) is homotopic to K(* @, P*), where the sum is taken with respect to the
natural H-structures on BQ-spaces of exact categories, see [26], §3, proof of Corollary
1. Moreover, the first map is in fact a map to K(&,(T")), the second one equals to f* on
K(F(T)), and the proposion is proved. O

Remark 5.10. For the elements from K, (7) the map - P* is just the composition of the
usual restriction on S with multiplication by x.([P*]) € K{(S).

Proposition 5.11. Suppose we are given a closed embedding i : T' — T, and put
S'=8SxyT',j:U=T\T" = T,U" =Ux¢S. Consider arbitrary elements v € K,(S),
ye K/ (U), myn>0, m+n>1. Then in the above notations

v(e-(y-P*)) =z (wy) - i"P%) € Ky i ()
where v : K (U) — K|_,(1") denotes the usual boundary map (the same for S" and U').

Proof. Both squares in the following diagram of spaces are commutative up to homotopy
by proposition 5.8, (i), (ii7):

KT AK(P(S)) 22" K()

Vi, xid i,
K(I)AK(P(S)) &2 K(9)
1j"xid L

K(U)AK(P(S) &2 K@),

where P(S) denotes the exact category of locally free Og-modules of finite rank, and
“A” denotes the wedge product of pointed topological spaces. Writing explicitly the
boundary map in the corresponding long homotopy sequences we get the result. O

Remark 5.12. The last reasoning is a particular case of a more general Theorem 2.5, [12]
in which in fact we need the diagrams involved to be commutative only up to homotopy.

Let us also mention the following simple fact:

Lemma 5.13. Let S — T be a closed embedding, S,.q be the reduced scheme, j : Speq —
S be a natural embedding. Then j. o Vyeq = v, where v : K, (T\S) — K ,(S) is the
boundary map (analogously for Vyeq).

Proof. This follows immediately from the commutativity of the diagram of C'W-spaces

BQM(Sred) L) BQM(S)

\ 1
BOQM(T) —» BQM(T)
\ 1

BOQM(T\S,ed) —» BQM(T\S)
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after passing to long homotopy sequences, associated to the vertical sequences, which
are fibrations up to homotopy. O

Lemma 5.13 immediately implies the following statement.

Corollary 5.14. Proposition 5.11 remains true after we change schematic intersections
by their reduced parts.

Ezample 5.15. Let T" be a local scheme A%o,o) with coordinates (z,y), 7" = {zy = 0},

S ={z+y =0} P = {0 Z% Or}. Choose two rational functions f(z), g(y) on
the corresponding components of S having the opposite valuations at the origin. They
define an element o € K{(1"). Then «-i*P* = a/b € K;(k), where a and b are the main
parts of f(x) and g(y) in = and y, respectively, and i : 7" < S is a closed embedding.

5.3 Formula for a product of adelic cocyles

Let X be a smooth variety over an infinite field £, Y, Z be two equidimensional cycles
in X of codimensions p and ¢, respectively. Consider two cocycles in Gersten resolutions

(Gnyp)? and (G;, )%, respectively,
{f,} € P Kulk(y)),
yey (0)
and

{9:} € D Kulk(2)).

2€Z(0)

Suppose that Y and Z intersect properly. In addition, suppose that for any irreducible
component w of the intersection W =Y N Z the collection { f,},, may be represented as
an element from K,(Y,,), which will be denoted by «,,, while the collection {g,}, may
be represented as an element from Kj(Z,), which will be denoted by j3,, (here as above
the index w by a collection means restriction on X,, = Spec(Ox y)).

Let f € Ax(K),,)" and g € Ax(K7,,)? be good classes corresponding to the collec-
tions {f,} and {g,} defined by certain patching systems ¥,'*, 1 <r < p—1 and Z}?
1 < s < g —1, respectively (see section 5.1). Moreover, we may choose the patching
system Z1? in such a way that no component of Z! N'Y is contained inside Z? for all
1 < s < q—1. In fact, to do this one should use theorem 4.15 in the affine case, since the
codimension condition from corollary 4.16 are no more satisfied. What we do is choosing
a patching system on the whole X such that for each irreducible component w of W
there exists a patching subsytem satisfying the above condition locally around w (the
existence of such patching system on X can be shown by the same method as in the
proof of proposition 4.26). Then, defining the parts of the adele g corresponding to flags
ending up by w we will use the latter patching subsystem. This will be always implied
in what follows.
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Theorem 5.16. Let P* — Oy be a finite projective resolution of Oy on X. Under the
above assumptions the following relation holds true:

Vp+g(f + 9) = {ow - (Buw -3 P*)} € @ Kppyn(k(w)),

wew ()
where iy : Z — X is a closed embedding (considered locally around w in each summand,).

Proof. First, according to remark 5.1 for the computation of the p 4+ ¢ part of the adele
J - g one may consider only components f,,. . of f for which 7, is one of the irreducible
components of ;! for all 1 < r < p — 1, and 7, is one of the irreducible components
of Y. Analogously, on may consider only components g, ., .. of g for which 7, is one
of the irreducible components of Y, 7,4, is one of the irreducible components of the
intersection Y N Z! for all 1 < s < ¢ — 1, and 1,,, is one of the irreducible components
of the intersection Y N Z. Choose one flag 7, ... 1,4 satishying the above condition.

Note that since Y and Z intersect properly, the intersections of ¥;'* and Y with
Zb and Z are also proper for all 1 < r < p—1,1 < s < ¢— 1. Consequently,
since the classes f and g are good we have fy , = fo € Kumip(X, \(Y; U YR)), and
It = Inpey € Kgin (X, (21 U Z7)).

We claim that the residue v,((f - 9)o..p—1np.miprq) € Kmtqin(k(7p)) depends only on
np and 114, and equals to f,, iy Gy,., € Kpygin(k(1np)), where 4, : Speck(n,) — X, is
the closed embedding. This can be shown using proposition 5.11 first with S =T = X,
P* = Og, " = (Y UY}P),,, and then inductively with S = 7" = (V!), , P* = Os,
T = (Y}, UY2,)y,, for 1 <s < p—1 (more precisely, for the induction step we use that
classes are good and satisfy properties from claim 5.3).

Further, note that in fact v,((f - )o..p—1n,..mp4,) 15 Tepresented by an element

Xnpyg i;gmﬁq S Km+‘1+n(Y;7p+q\(le U 212))7

where 7y : Y < X is the closed embedding. In what follows we consider all varieties
locally around 7, denoting them by the same letter. Put Z; = X, Z; = Z and let
is : Z} — X denote a closed embedding for 1 < s < ¢ — 1.
By proposition 5.8 and corollary 5.14 the following diagram commutes for all 0 <
s<q—1:
Kl

*+m

(Y'n (Zi\i(ziﬂ UZZ,))) «— KL(ZSI\(Z%EA UZ2,))
K, (YN (Zs,1+1\Z3+1)) A Ki—l—m—l(Zsl—l—l\ZsZ—l—l))a

where vertical arrows are compositions of coboundary maps with restrictions on open
subsets, and horizontal arrows are compositions of - i;P* (respectively, * - i}, ,P*) with
multiplication by a . € Kp(Y). Therefore, since we required that Z? contains no
irreducible components of the intersection Z! NY for all 1 < s < ¢ — 1 (locally around
Np+q), We get by induction on s that

V’?p---’?p+q (anp+q ’ i’{’gﬂm—q) = V’?p---’?p+q (anp+q ’ (gﬂp+q ’ P.)) = aﬂp+q ’ (VTIp---Tlp+q (gnp+q) ’ Z}P.)
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Now take the sum of these expressions over all flags 7,...1n,+, such that 7, is an
irreducible component of Y N Z} for all 1 < s < g — 1, 1 is a component of Y and 7, is
a component of Y N Z, and get the desired identity. O

Suppose {f,} € (G;})P and {g,} € (G;)? are two Gersten cocyles satisfying all above
properties and an additional one: the collection {h, },, may be represented by an element
fw € Kn(Z,) for all irreducible components w of W.

Corollary 5.17. Under the above conditions the product in K-cohomology of classes of
{9y} and {h,} is represented by a cocycle

{i(Y, Z; w)aw'gw} S @ Km+n(k(w))a

weW (0)

where i(Y, Z;w) is the local intersection index of Y and Z at w, and the bar denotes nat-
ural homomorphisms Kp,(Yy) = Kp(k(w)) and K, (Zy,) — K, (k(w)). In particular, the
intersection product in Chow groups coincides with the natural product in K-cohomology
(the last assertion have beed already proved in [10] and [12]).

Proof. Recall that

(Y, Z,w) = Z(—l)il(TOr?X’w(OY,w, Ozw))

i>0

where [(-) is the length of an Ox,-module (i.e. a length of filtration whose adjoint
quotients are one-dimensional spaces over the field k(w)). Thus, the lemma follows
directly from theorem 5.16 and remark 5.10. O

Remark 5.18. The conditions of corollary 5.17 are satisfied, in particular, if each schematic
point w is regular on Y and Z.

Remark 5.19. To prove theorem 5.16 we do not need theorem 4.1. Indeed, since the
composition of morphisms K, (Ox) — A (K,)* — (G:)* is identity, what we only
need is the explicit construction of good classes (which uses, nevertheless, the notion of
strongly locally effaceable pairs).

6 Triple products

6.1 Zero-cycles and divisors

As it is explained in section 6.3, the existence of the multiplicative adelic resolution
for the sheaves ;¥ gives rise to some explicit (adelic) formulas for their Massey higher
products.

57



The case of a curve

Let X be a projective nonsingular curve over a field k. Consider elements £, M €
HY(X, K, = Jac(X); and | € H*(X,K{) = Z. The triple (£, 1, M) verifies the condi-
tion £ -l =1- M =0 in K-cohomology groups, hence one may define a triple product

ms(L, 1, M) € HY(X, K3/ (k* - Jac(X)).

Note, that k* - Jac(X) is in the kernel of the direct image map H(X,K5) — k*, so
one obtains a well-defined element m3(L,l, M) € p; C k*. The explicit formula is as
follows. Choose two adeles (in fact, ideles) fo1, go1 € Ax(K{)", corresponding to £ and

M, respectively. Then there are two adeles f,§ € Ax(K:¥)° such that df = flfo_l = b,
dg = 19y * = gb,. By definition, we have

mis(L, 1, M) = > vxo({ Fx, gxa{ Fxar o},

zeX

where {-,-} denotes the product in K-groups. In particular, when fx =g, = 1 for all
x € X (which can be always obtained if & is algebraically closed), this is the adelic
formula for the Weil pairing of £ and M. Thus, by corollary 2.20 we get the following
statement.

Proposition 6.1. The direct image of the triple product ms(L,l, M) coincides with the
Weil pairing (L, M) of L and M.

The case of arbitrary dimension

Let X be a smooth variety of dimension d over an infinite field k. Let [ be a natural
number, and take elements o« € H(X,K ), = CHYX),, £L € H'(X,K"), = CHY{(X),.
Then there is a well-defined triple product

ms(a,l, L) € HY(X,Kgp1)/(a- H(X,K) + H7HX,K) - L).

Suppose that X is proper, and that «, £ are homologically trivial, i.e. deg(a) = 0 (in
fact, this is automatically satisfied) and £ € Pic’(X).

Proposition 6.2. The subgroup o - H*(X, K{¥) + HYX, KF) - L lies in the kernel of
the direct image map H* (X, KY) — k*.

Proof. We use corollary 5.17 to compute the products in K-cohomology explicitly. Thus,
the pairing
HY(X,KY) x HY(X,K)) — HY(X,K},,) = k*

occurs to be ¢4 where ¢ € k* = H°(X,KY), a € CHYX) = HYX,K5). Hence
when « is a homologically trivial this is trivial as well. Further, without loss of generality
we may suppose that the field & is algebraically closed. The pairing

() HY(X,KY) x HYYX,Kf) = HY(X,K),,) — k*
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defines a function (-, 8) : Pic’(X) — k* for each f € H" (X, KF). We claim that this
is a regular map from Pic’(X) to k* and, thus, is a constant unit function. To show
this let us represent 3 € H (X, Ky) by a Gersten cocycle Y . f;{C;], where C; are
irreducible curves on X, f; € k(C;)*, and let the divisor D C X be a representative for
L € H'(X,K%). Suppose that D intersects properly C' = U;C; and does not pass through
the finite set U;div(f;) U C*™. This can be always achieved by moving the divisor D in
its linear system. Then by corollary 5.17 we have (L, 5) = H f"=(z), where f denotes

zeDNC
fi for the unique C; which contains the corresponding x, and n, is the multiplicity of the

intersection of D with C' at . To show the algebraicity of the map (-, #) take a rational
section of the Poincaré line bundle on the product X x Pic’(X) (after any choice of a
closed point on X). This defines locally on Pic’(X) a correspondence of degree r with
C; C X, where r is the locally defined number of points in the intersection of D with Cj.
Hence, locally on Pic’(X) we get a regular map to Sym’(C;), whose composition with
Sym"(f;) defines a Cj-part of the pairing (-, 5), proving its regularity. O

Thus, there is a well-defined number
ms(a, [, L) € uy C k¥,
or in other words we get a pairing
¢ : CHY' (X)) x CHY(X)] — .

Theorem 6.3. Suppose the X is a smooth projective variety of dimension d over an
algebraically closed field k, (chark,l) = 1. Then the constructed above pairing ¢, coincides
with the Weil pairing 1, on the [-torsion of Albanese and Picard varieties of X.

Proof. Suppose X is not a curve. Let i : C' — X be a general (d — 1)-th hyperplane
section of X. Recall that the map CH'(C); — Alb(X), is surjective. Indeed, there is an
exact sequence (arising from Kummer sequence)

0 — Pic®(X); — HL(X, (1)) = NS(X); — 0,

[

Dualizing one gets a surjective map
HEH (X, m(d)) — Alb(X),,

Weak Lefschetz theorem for étale cohomology (see [18], Chapter VI, §7) asserts that the
composition of two natural maps (namely, inverse and direct image maps)

Hy (X, (1)) — Hy(C, (1)) — HEHX, pu(d))

is an isomorphism. Hence the second (direct image) map is surjective. Finally, H},(C, (1)) =
CH'(C),;, and we get the desired statement.

Remark 6.4. In fact, by a theorem of Roitman (e.g. see [5]) there is an isomorphism
CHYX), = Alb(X),;, therefore the natural map CH'(C), — CH%(X), is surjective as
well, however we need it only for Albenese torsion.
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Consider two elements M € CH'(C),;, L € CH'(X);. The product formula for Weil
pairing (arising from that for étale cohomology, for example) implies that

(i (M), £) = py(M, i*(£)).
On the other other hand, the product formula for higher Massey products, see corollary
4.6, implies that

Gi(ix(M), £) = d1(M,i* (L))
Thus, the surjectivity of the direct image map together with proposition 6.1 give the
needed result. O

Theorem 6.3 and Proposition 6.7 imply the following fact.

Corollary 6.5. Let the O-cycle Y, n;[x;] be the representative for « € CHY(X), D be
a representive for L € CH'(X); such that x; ¢ D for all i. Suppose d(3_; f;(Cj]) =
> i) where d is the differential in Gersten resolution, and ([D] = div(g) where
g € k(X)*. Suppose that the proper intersection of D with the curve C = U;C; does not
contain the finite set U;div(f;) U C*™. Then the following formula for the Weil pairing
of a and L holds true:

e, )= 1] fw)-1]o '@

yeDNC

Further, suppose that H%(X, K4,1) = k*. For example, by a classical result of Moore
this holds when £ is a subfield in the algebraic closure of a finite field. Then the forth
product my defines a map

my : (AIb(X); x Pic® (X))o — H* (X, Kap1)/1,

where the index “0” denotes that we consider only the part consisting of all («, £) such
that ¢;(c, £) = 1. It can be checked that this pairing commutes with multiplication by
[ and thus we get a pairing

(Ty(Alb(X)) x T;(Pic® (X))o — lim H"H X, K/

It is an interesting question to find the image of this pairing and also to compute its
image in H2(X,Z(d + 1)) under the [-adic regulator map. For example, when d = 1
one could compare this with a result of Tate, see [2], Théoréme 8.

6.2 General case

Let X be a smooth variety of dimension d over an infinite field k. Let [ be a natural
number, p, ¢ be non-negative integers such that p +¢ = d + 1, and take elements Y €
HY(X,K)X) = CHP(X),, Z € HY(X,K)), = CHY(X);. Then there is a well-defined
triple product

ms(a,1,0) € HY(X, Kgyr)/(Y - HITHX, /cgf) + HP7Y(X, /cjf) - 7).

Let us compute this product explicitly. For this purpose we will need the following
lemma, which illustrates the freedom of choice in computations with adeles.
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Lemma 6.6. Let X be a smooth variety over an infinite field k. Let the collection
{f,} € (GX)P be a couboundary in Gersten resolution with support in an equidimensional
cycle Y C X, and let {f3} € (GX)P~1 be such that d({f3}) = {f,}. Supose we are given
a cocycle f € Ax(KX)? such that vx(f) = {f,}, and whose restriction on U = X\Y is
zero in the adelic group Ay(K;,)P. Then there exists an adele f e Ax(KX)P=! such that
d(f) = f, vx(f) = {fs} and fly is a good adelic class on U with respect to a Gersten
cocyle {ngU (see section 5.1 for the definition of a good class).

Proof. Let B* = Ker(vy : Ax(KX)* — (GX)*). Since vy is surjective, by theorem 4.1
the complex B* is exact.

Choose f; € Ax(KX)?! such that vy (f;) = {f3}. The cocyle d(f;) — f belongs to
BP, hence there exists h € BP~! such that d(h) = d(f,) — f. The adele f, = f1 — h
requires all needed properties except from being good on U.

If p =1 we are done. Otherwise, choose fy € Ay (KUV)P! to be a good class with
respect to the Gersten cocycle {fm}|U Since f|y=0, by the same reason as above there
is hy € By, 2 such that dy(hy) = fU — f2|U Here by definition B}, = ker(vy) and
dy denotes the differential in the adelic complex on U. Now let hj, be the extension
of hy by zero to X. This means that for all flags in U we keep the same value as hy
has and we put zero at the other flags on X. Though this operation does not commute
with differential, it commutes via v with the analogous operation on Gersten complex.
Hence, hy, € BP~2. Moreover, the restriction of hj; on U is again hy. Finally, the adele
F=fa+d(hl) € Ax(KX)P~! satisfies all required properties. O

Consider two non-intersecting equidimensional cycles Y, Z in X whose classes are
in CH?(X); and CHY(X),, respectively, p + ¢ = d + 1. Let {fz} € (G,;)", {gz} €
(G;')? be two collections such that d({fz}) = 1Y, d({gz}) = [Z and whose supports are
equidimensional cycles Y and Z respectively. Suppose also that the rational functions
f7 and gz are regular at all points from the intersections YNZandY N Z respectively
(the latter intersections are automatically proper). Then the following formula holds
true.

Proposition 6.7. The triple Masey product ms(Y,l,Z) is represented by a Gersten

cocycle
Y @+ Y g @] € (G

zeYNZ TeYnZ

where f(x), g(x) mean the values of fj and gz whose corresponding components contain
x.

Proof. Choose two good adelic classes [Y] and [Z] for Y and Z, respectively. By lemma
6.6 there are adele f € Ax (K, )P™!, g € Ax(K))?™" such that df = I[Y], dg = l[Z] and
the restrictions fy and gy are good with respect to the corresponding Gersten cocyles
on open subsets U = X\Y and V = X\Z. Moreover, we may also require that the
patching systems defining [Z] and ¢ satisfy the additional intersection condition from
theorem 5.16 with respect to the patching systems of f and [Y] (this may be achieved by
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the same method as in the proof of lemma 6.6). By definition, m3(Y, [, Z) is represented
by a Gersten cocycle vy (f - [Z] — [Y] - g). Since vx(f - [Z]) = vu((f - [Z])|v) and
vx([Y]-9) =vv(([Y] " 9)|v), we are done by theorem 5.16. O

Now suppose that X is proper, and that the cycles Y, Z are homologically trivial.
For the case when char(k) = 0 this means that the cycle map images of Y and Z in
Betti cohomology H:¥(X¢,Z)) and H2Y(X¢,Z), respectively, are trivial (as usual, after
we choose any model of X defined over C). For the positive characterictic case one
should consider the same for étale cohomology groups H2*(Xz, Zi(p)) and H ! (X, Zi(q)),
respectively, for any prime [ # char(k), where k is the algebraic closure of k. Recall
that for all m > 0 there are canonical homomorphisms H™(X,KX) — CH™(X,0),
H™(X,K).) — CH™(X,1) of K-cohomology groups to higher Chow groups (the
first one being isomorphism while the second one is isomorphism modulo torsion), which
commute with products and direct image maps (for example, this follows from [10],
Proposition 1.7). Thus, the following result is proved by Bloch in [6], Lemma 1, being a
generalization of proposition 6.2.

Proposition 6.8. When Y and Z are topologically trivial the subgroup
Y-H" Y X, K+ H™ (X, K2) - Z € H(X, Kgr1)
lies in the kernel of the direct image map HY(X, K7, ) — k*.

Corollary 6.9. There is a well-defined pairing
Yt =y CHY (X ), x CH{(X), — u
given in notations from proposition 6.7 by formula
WY.2)=fYn2) g7l (Y N 2),
where CHF(X) denotes a subgroup of topologically trivial cycles.

Recall that higher Chow groups equal to motivic cohomology by formula CHY(X,m) =
HY™(X,Z(i)). The last groups could be defined as Zarisky hypercohomology of a com-
plex of sheaves Z(i) on X, e.g. see [16]. Moreover, there are canonical morphisms of
complexes Z(i) ® Z(j) — Z(i+ j) defining Massey higher products on motivic cohomol-
0gy.

It seems that the following conjecture seems can be checked by explicit computations.

Conjecture 6.10. The natural maps H™(X,KX) — H*™(X,Z(m)) commute with triple
products and H™(X, K, ) — H*" (X, Z(m+1)) commute with Massey higher products
which preserve this type of indices.

On the other hand for complex varieties there is a regulator map from motivic coho-
mology to Deligne cohomology which preserves Massey higher products. Thus, conjec-
ture 6.10, lemma 6.11 and corollary 6.9 imply the following formula. Let Y, X be two
equidimensional cycles on a smooth complex projective variety X of codimensions p and
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q, respectively, p+qg=d+1, d = dimX. Suppose Y and Z are topologically trivial and
their classes belong to [-torsion in Chow groups. Then in notations from proposition 6.7
we have

WY, Z2)=fYnZz)-¢g"'(Y n2),

where ¢, denotes Weil pairing between [-torsion in corresponding Griffiths intermediate
Jacobians. This last formula, which seems not to appear before, should have a direct
explanation in classical terms.

Lemma 6.11. Let X be a smooth complex projective variety. Consider classes a €

JP(X), C HP(X,Z(p)), and b € J4(X), C HY(X,Z(q)); where p+q = 2d+1, d = dimX,

and J*(X) denote Griffiths intermediate Jacobians. Then the image ms(a,l,b) of the

triple product ms(a,l,b) € H2" (X, Z(d+1)) under the direct image map HX (X, Zp(d+
1)) = H}(Spec(C),Z(1)) = C* equals to the Weil pairing v;(a,b) of a and b considered

as l-torsion elements in the dual complex tori.

Proof. We choose suitable classes representing a and b in Chech resolutions C'(X, Z(-)p)
of the corresponding Deligne complexes Z(-)p. Namely, since a is topologically trivial
its classe may be represented by a cocycle {w;} in the bicomplex C(X,Q®)*, where
wi € C(X, Q)71 0<i<p—1. Let {w} = (d+ 9)(z + {@;}), where d denotes
de Rham differential, 0 denotes the differential in Chech complex, and z is a cocycle
in C(X,Z(p))* 1. After we substract d(}{@;}) from {w;} the class a occurs to be
represented by a “constant” cocycle f € C'(X,C)?~! such that [f = z € C(X, Z(p))* L.
We may repeat the same for b and get, analogously, g € C'(X,C)%*~!, such that lg = u €
C(X,Z(q))? . Tt follows from the explicit formula for product in Deligne cohomology
that ms(a,l,b) =2-9g— f-u= %(z -u) € C(X,C)%, where a dot stays for the product
in Chech complex. The direct image of this class in H},(Spec(C),Z(1)) = C* equals to
exp(m(z -u)), which is by definition the Weil pairing ;(a, b) between [-torsion points
in dual tori J?(X) and J7(X), which are quotients of suitable spaces over the dual lattices
H?*~Y(X,Z) and H*""Y(X,Z), respectively (after we divide the corresponding Deligne
cohomology by (27i)? and (274)?, respectively). O

6.3 Appendix: Massey higher products

Let A*® be a dg-algebra. By definition this means that A® is a complex (whose differential
will be denoted by d) and there is a morphism of complexes

A @ A - A,

satisfying the associativity property. Let M*® be a left dg-module over A°®, i.e. there is a

morphism of complexes
M*® A®* — A°,

satisfying natural properties of the module structure. Consider a bicomplex C'** with
Crt = (M* @ (A*)®P=1))7, The differential 9 : CP»¢ — CP~19 is defined by a usual
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formula
p—1

(MR Q. . .®@ap_1) = ma;as . . .®ap_1+2(—1)zm®a1 e ®0i_1®a0 41 @41 . . . Bap_1,
i=1

while the differential C?? — CP4*! is induced by the differentials in A® and M®.
The bicomplex C** defines a spectral sequence EP? with EP'? = HY(M*®(A*)®P~1),
The higher differentials in this spectral sequence define Massey higher products

my (Hu (Mo) ® sz(Ao) ®...0 sz (Ao))o N (Ef’il+"'+ik)o N E]l:,i1+...+ik N
— E£;i1+---+ik—k+2 — O(Hil+---+ik—k(M°))7

where (G)° denotes that we take a certain subgroup inside G, and °(G) denotes that
we take a quotient of the group G. More precisely, the condition on the definition
domain of my is the following: the product my is well-defined for such classes (in co-
homology groups) m = ag, a1, ...,a,_1 that forall 1 <1 < k, 0 < i < k — [ we have
my (@i, @iy - .., ai+) = 0. See more details in [9].

In particular, we could take M*® = A*® and obtain higher products on cohomology
groups H*(A®). For instance, my is just multiplication in cohomology groups. The
operation ms is defined as follows: take a € H'(M®), b € H/(A®) and ¢ € H*(A®).
Suppose that a -b = 0, b- ¢ = 0 (the product is taken in cohomology groups). Let a,
l~)~ and ¢ be representatives of classes a, b and c, respectively. Then there exist elements
ab € M1 be € A7HF=1 such that d(ab) = - b and d(bc) = b - & Then

ms(a,b,c) = [a-bc — ab- ],
where bracket [—] means the class in the group
Hi+j+k72(Mo)/(a . Hj+k71(Ao) + Hz'+j71(Mo) . C).

Remark 6.12. Let ¢ : A* — B*® be a homomorphism of dg-algebras. Then Massey higher
products commute with the induced map on cohomology groups ¢ : H'(A*) — H'(B*).
Let f : M®* — N*® be a morphism of left dg-modules over A®. Then Massey higher
products commute with the induced map on cohomology f : H'(M*®) — H*(N°®).

Now consider a sheaf of associative algebras A on the topological space X. Let
C(A)*® be its Godement resolution (see [11], section 4.3 and also section 6.6, where this
resolution is called “canonical resolution”). It is multiplicative in the sense that there is
a morphism C'(A)* ®@ C(A)* — C(A)® such that the following diagram is commutative:

AA — C(A)°*@C(A)°
3 3
A  — C(A)°.

Then we obtain a dg-algebra A®, where A? = I'(X, C(A)P), whose cohomology groups
are equal to H*(X, A). What we said before implies that in such a manner we get higher
Massey products on H'(X, A).
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Suppose now that we are given another multiplicative resolution Z* of the sheaf A.
Then the canonical diagram

CA* = CI) T

provides the analogous diagram of dg-algebras after taking I'(X, —) (where arrows are
homomorphisms of dg-algebras due to functoriality of Godement resolution). Moreover,
the first homomorphism is a quasiisomorphism, hence we get that the canonical map
HY(T'(X,Z°)) — HYX,A) commutes with Massey higher products. This reasoning is
just a copy of the proof of Theorem 6.6.1 from [11]. Thus we get the following result:

Lemma 6.13. The Massey higher products structure on cohomology groups H'(X, A)
does not depend on the choice of a flasque multiplicative resolution of A.

7 Remarks and open questions

There are several open questions around the adelic complex of sheaves of K-groups.

In section 3.2 we had to consider (covariant) Gersten resolution as a module over
the adelic resolution, since there is no way to construct a direct image map on the
adelic complex as defined here. This can be already seen in the simplest examples with
closed embedding (of a point in a curve, for example) or with finite morphisms. Both
situations seem to be overcome if one considers a complete version of K-adeles. Also,
this considering should correspond to global class field theory of schemes, see [23]. Some
particular cases were treated in [21]. However, the “complete” theory is still to be built.

The other possible development is the study of singular schemes. Note, that the
additive version of the main theorem 4.1 is valid for any Noetherian schemes, see [14].
The adelic complex might always provide a resolution for the sheaves KX, even in the
non-geometric case (the easiest examples of singular curves yield this property). We also
did a strong restriction on the ground field to be infinite and on the scheme to be smooth
of finite type over a ground field. In fact, the only one place where we have used the
infinity of a field was a geometric proof of claim 4.18. It seems possible to prove the same
result over an arbitrary field for smooth varieties, and then to extend to arbitrary regular
varieties choosing their models over a field finitely generated over a prime (finite) field.
Note, that Quillen’s result is true in this generality. Let us note, that when dimX < 3
one can prove theorem 4.1 over an arbitrary field, avoiding claim 4.18.

Another remark to make is that during the proof of theorem 4.1 we have treated
K-groups as a black box. The only one non-trivial property we have used was in the
proof of proposition 4.20. Namely, for a smooth morphism 7 : £ — B having a section o
the direct image map o, on K'-groups is zero. Hence, the same construction of the adelic
resolution should work if one replaces the sheaf KX by any sheaf of cohomology theory
with support in the sence of Bloch—Ogus, see [7], or even by any homotopy invariant
sheaf with transfer in the sense of Voevodsky. Note that for such sheaves Voevodsky
has established Gersten resolution, e.g. see [16], and the same construction of the adelic
resolution seems to be valid in this case as well. It would be also interesting to construct

65



the adelic complex for motivic cohomology, by doing this for the sheaves involved in
Suslin—Voevodsky complexes Z(n). These sheaves are not homotopy invariant, but there
is still some hope for the existence of the adelic resolution in this case (note, that the
additive adelic resolution resolves a non-homotopy invariant sheaf of differential forms).
The existence of such resolution could give rise to some explicit formulas for Massey
higher products on motivic cohomology, see also [9].

Finally, there could be a higher-dimensional analogue of the biextension from section
2.2 over the product of corresponding groups of K-adeles, related to the one constructed
in [6]. Maybe there is even an analogue of the central extension of ideles on a curve for
the group Ax(K¥)? where 2p = d+ 1, d = dimX, see also [22].
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