THE MAIN COMPONENT OF THE TORIC HILBERT SCHEME

O. V. Chuvashova*

Abstract

Let \mathbb{X} be an affine toric variety under a torus \mathbb{T} and let T be a subtorus. The generic T-orbit closures in \mathbb{X} and their flat limits are parametrized by the main component H_{0} of the toric Hilbert scheme (whose existence follows from work of Haiman and Sturmfels). Further, the quotient torus \mathbb{T} / T acts on H_{0} with a dense orbit. We describe the fan of this toric variety; this leads us to an integral analogue of the fiber polytope of Billera and Sturmfels. We also describe the relation of H_{0} to the toric Chow quotient of Craw and Maclagan.

1 Introduction

The multigraded Hilbert scheme parametrizes, in a technical sense specified below, all homogeneous ideals in a polynomial algebra (or, more generally, in an arbitrary finitely generated algebra) having a fixed Hilbert function with respect to a grading by an abelian group. In [7] it was shown that the multigraded Hilbert scheme always exists as a quasiprojective scheme.

Let \mathbb{X} be an affine algebraic variety over an algebraically closed field k with an action of an algebraic torus T, so its algebra of regular functions $S:=k[\mathbb{X}]$ is graded by the group $\Lambda(T)$ of characters of T :

$$
S=\bigoplus_{\lambda \in \Lambda(T)} S_{\lambda},
$$

[^0]where S_{λ} is the subspace of T-semiinvariant functions of weight λ. Let
$$
\Sigma:=\left\{\lambda \in \Lambda(T): S_{\lambda} \neq 0\right\}
$$

This is a finitely generated monoid. Conversely, if S is a finitely generated algebra without nilpotent elements graded by $\Lambda(T)$, then we have a T-action on the affine algebraic variety $\mathbb{X}=\operatorname{Spec} S$.

The following definition was introduced in [7].
Definition 1.1. Given a function $h: \Lambda(T) \rightarrow \mathbb{N}$, the Hilbert functor is the covariant functor $H_{\mathbb{X}, T}^{h}$ from the category of k-algebras to the category of sets assigning to any k-algebra \bar{R} the set of all T-invariant ideals $I \subseteq R \otimes_{k} S$ such that $\left(R \otimes_{k} S_{\lambda}\right) / I_{\lambda}$ is a locally free R-module of rank $h(\lambda)$ for any $\lambda \in \Lambda(T)$.

In [7, Th. 1.1] it was proved that there exists a quasiprojective scheme $H_{\mathbb{X}, T}^{h}$ which represents this functor in the case when \mathbb{X} is a finite-dimensional T-module V. If the grading is positive (i.e., $k[V]_{0}=k$), then $H_{V, T}^{h}$ is projective (see [7, Cor. 1.2]). In the case of an arbitrary \mathbb{X} there exists a T-equivariant closed immersion $\mathbb{X} \hookrightarrow V$, where V is a finite-dimensional T-module. Then the Hilbert functor $H_{\mathbb{X}, T}^{h}$ is represented by a closed subscheme of $H_{V, T}^{h}$ (see [1, Lemma 1.6]).

We consider the following case. Let \mathbb{X} be an affine toric (not necessarily normal) variety under a torus \mathbb{T}. We have

$$
S=k[\mathbb{X}]=\bigoplus_{\chi \in \Omega} S_{\chi},
$$

where $\Omega \subset \Lambda(\mathbb{T})$ is a finitely generated monoid and S_{χ} is the subspace of \mathbb{T}-semiinvariant functions of weight $\chi\left(\operatorname{dim} S_{\chi}=1\right)$. Let $T \subset \mathbb{T}$ be a subtorus. We have a surjective linear map $\pi: \Lambda(\mathbb{T}) \rightarrow \Lambda(T)$ given by the restriction. The action of T on \mathbb{X} arising from the action of \mathbb{T} gives a grading

$$
S=\bigoplus_{\lambda \in \Sigma} S_{\lambda},
$$

where $\Sigma=\pi(\Omega)$. In this paper we consider the following Hilbert function:

$$
h(\lambda):= \begin{cases}1 & \text { if } \lambda \in \Sigma \\ 0 & \text { otherwise }\end{cases}
$$

Let $H_{\mathbb{X}, T}$ be the corresponding Hilbert scheme (we shall also denote it by $H_{S, T}$). It is the toric Hilbert scheme in the sense that it parametrizes all ideals in S with the same Hilbert function as the ideal I_{X} corresponding to the toric T-variety $X=\overline{T \cdot x}$, where $x \in \mathbb{X}$ is a point in the open \mathbb{T}-orbit (see [10]). We have a natural action of \mathbb{T} on $H_{\mathbb{X}, T}$.

There is a canonical irreducible component H_{0} of $H_{\mathbb{X}, T}$ which is the \mathbb{T} / T-orbit closure of I_{X} (see Prop. 3.1(2)). This component is called the main component of the toric Hilbert scheme $H_{\mathbb{X}, T}$. The scheme H_{0} parametrizes generic T-orbit closures in \mathbb{X} and their flat limits. In fact, H_{0} is a toric (not necessarily normal) \mathbb{T} / T-variety (see Prop. 3.1(1)). We describe its fan in terms of the fiber polyhedron for the map of monoids $\Omega \rightarrow \Sigma$ given by π (Theorem 3.8).

In the last section we consider the toric Chow morphism from the Hilbert scheme to the inverse limit $\mathbb{X} / C T$ of GIT quotients $\mathbb{X} / \lambda T$. This morphism was constructed in [7, Sect. 5] in the case when $\mathbb{X}=\mathbb{A}^{n}$ and $\mathbb{T}=\mathbb{G}_{m}^{n}$ acts by rescaling of coordinates. We generalize this to the case of a normal affine toric \mathbb{T}-variety \mathbb{X} (Theorem 4.5). The toric Chow quotient is a toric \mathbb{T} / T-variety arising as an irreducible component of $\mathbb{X} / C T$. The notion of the toric Chow quotient of a quasiprojective toric variety by a subtorus was introduced in [3]; this is a generalization of the toric Chow quotient of a projective variety studied by Kapranov-Sturmfels-Zelevinsky [9]. In [3] it was shown that the fan of the toric Chow quotient is the fiber fan, that is the normal fan to the fiber polytope of Billera-Sturmfels (see [2]) generalized to the case of a linear map of polyhedra. We show that the fan of H_{0} is an integral analogue of the fiber fan. If $\mathbb{X}=\mathbb{A}^{n}, \mathbb{T}=\mathbb{G}_{m}^{n}$ acts by rescaling of coordinates, and the grading of $S=k\left[x_{1}, \ldots, x_{n}\right]$ by the weights of T is positive, then the fan of H_{0} coincides with the normal fan to the state polytope of Sturmfels (see [11, Th. 2.5]).

The author is indebted to Michel Brion for posing the problem, numerous ideas and important comments. Thanks are also due to Ivan V. Arzhantsev for permanent support and useful discussions.

2 Terminology and notations

We consider the category of schemes over an algebraically closed field k. An algebraic variety is a separated integral scheme of finite type. Any scheme Z is characterized by its functor of points from the category of k-algebras to the category of sets:

$$
\underline{Z}: \underline{k-A l g} \rightarrow \underline{S e t}, \quad \underline{Z}(R):=\operatorname{Mor}(\operatorname{Spec} R, Z)
$$

where $\operatorname{Mor}(\operatorname{Spec} R, Z)$ is the set of morphisms of schemes over k from $\operatorname{Spec} R$ to Z (we denote the functor of points of a scheme by the corresponding underlined letter). Our main reference on schemes is [4]. If $\phi: Y \rightarrow Z$ is a morphism of schemes, then $\underline{\phi}(R)$ denotes the corresponding map of sets $\underline{Y}(R) \rightarrow \underline{Z}(R)$. We denote by \mathcal{O}_{Z} the structure sheaf of Z, and if Z is affine, then $k[Z]$ denotes the algebra of sections of \mathcal{O}_{Z} over Z. We denote by \mathbb{A}^{n} the affine space $\operatorname{Spec} k\left[x_{1}, \ldots, x_{n}\right]$.

An n-dimensional algebraic torus T is an algebraic group isomorphic to the direct product of n copies of the multiplicative group \mathbb{G}_{m} of the field k. For the lattices of characters and one-parameter subgroups of T, we use the notations $\Lambda(T)=\operatorname{Hom}\left(T, \mathbb{G}_{m}\right)$ and $\Gamma(T)=\operatorname{Hom}\left(\mathbb{G}_{m}, T\right)$. We denote by $\langle\cdot, \cdot\rangle$ the natural pairing between $\Lambda(T)$ and $\Gamma(T)$. For a lattice Λ, let $\Lambda_{\mathbb{R}}=\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$. If $\Sigma \subset \Lambda$ is a monoid, then $\Sigma_{\mathbb{R}}$ denotes the subspace in $\Lambda_{\mathbb{R}}$ generated by Σ, and $\Sigma_{\mathbb{R}_{+}}$denotes the cone in $\Lambda_{\mathbb{R}}$ generated by Σ. For subsets D_{1}, D_{2} of a vector space, we denote by $D_{1}+D_{2}$ the Minkovski sum.

By a toric variety under an algebraic torus T we mean an algebraic variety X such that T is embedded as an open subset into X and the action of T on itself by multiplication extends to an action on X. We do not require X to be normal.

We denote by \mathcal{C}_{X} the associated fan of a toric variety X, so $\mathcal{C}_{X} \subset \Gamma(T)_{\mathbb{R}}$ (see [6, Sec. 1.4]). The T-orbits on X are in order-reversing one-to-one correspondence with the cones of \mathcal{C}_{X}. If X_{σ} is the T-orbit corresponding to a cone σ in \mathcal{C}_{X}, then a one-parameter subgroup $\lambda \in \Gamma(T)$ lies in σ if and only if $\lim _{s \rightarrow 0} \lambda(s)$ exists and lies in the closure of the orbit X_{σ} in X. A toric variety is determined by its fan up to normalization.

3 Fan of a toric Hilbert scheme

Fix a \mathbb{T}-equivariant closed embedding $\mathbb{X} \hookrightarrow V$, where V is a finite-dimensional \mathbb{T}-module such that \mathbb{X} is not contained in a proper \mathbb{T}-submodule, and fix a basis of V consisting of \mathbb{T}-semiinvariant vectors. Let x_{1}, \ldots, x_{n} be the coordinates in this basis and let \mathbb{T} act on V by $t \cdot\left(x_{1}, \ldots, x_{n}\right)=\left(\chi_{1}(t) x_{1}, \ldots, \chi_{n}(t) x_{n}\right), \chi_{i} \in \Lambda(\mathbb{T})$ (so T acts on V by $t \cdot\left(x_{1}, \ldots, x_{n}\right)=\left(\lambda_{1}(t) x_{1}, \ldots, \lambda_{n}(t) x_{n}\right)$, where $\left.\lambda_{i}=\pi\left(\chi_{i}\right)\right)$. Up to rescaling of the basis vectors we can assume that $\mathbb{X}=\overline{\mathbb{T}} \cdot x$, where $x=(1, \ldots, 1)$. We denote by X the T-orbit closure $\overline{T \cdot x}$ and $I_{X} \subset k[V]$ denotes the corresponding ideal. The characters $-\chi_{1}, \ldots,-\chi_{n}$ generate the monoid Ω (and the characters $-\lambda_{1}, \ldots,-\lambda_{n}$ generate the monoid Σ). We have

$$
S=k[\mathbb{X}]=k\left[x_{1}, \ldots, x_{n}\right] / I_{\mathbb{X}}
$$

where $I_{\mathbb{X}}$ is generated by all the binomials of the form $x_{1}^{c_{1}} \ldots x_{n}^{c_{n}}-x_{1}^{b_{1}} \ldots x_{n}^{b_{n}}$ such that $\sum c_{i} \chi_{i}=\sum b_{i} \chi_{i}$ (see [11, Lemma 4.1]). Note that the $\Lambda(T)$-grading is positive if and only if the cone $\Sigma_{\mathbb{R}_{+}}$is strictly convex and $\lambda_{i} \neq 0$ for all $i=1, \ldots, n$. Notice also that in the case of a positive grading there exists a unique minimal system of generators of Σ.

We consider the Hilbert scheme $H_{\mathbb{X}, T}$ as a closed subscheme of $H_{V, T}$. For an algebra R the subset $\underline{H_{\mathbb{X}, T}}(R) \subset \underline{H_{V, T}}(R)$ consists of those ideals $I \subset R \otimes_{k} k[V]$ that $I \in \underline{H_{V, T}}(R)$ and $R \otimes_{k} I_{\mathbb{X}} \subset I$. We can also view $\underline{H_{\mathbb{X}, T}}(R)$ as a set of closed subschemes $Y \subset \operatorname{Spec} R \times \mathbb{X}$ such that the projection $Y \rightarrow \operatorname{Spec} \bar{R}$ is flat. All the ideals $I \in H_{V, T}(k)$ are binomial (see [5, Prop. 1.11]), and we have a special point $X \in \underline{H_{X, T}}(k)$.

Recall that the universal family is the closed subscheme $\mathbb{W}_{\mathbb{X}, T}$ of $H_{\mathbb{X}, T} \times \mathbb{X}$ corresponding to the identity map $\left\{\operatorname{Id}: H_{\mathbb{X}, T} \rightarrow H_{\mathbb{X}, T}\right\} \in \underline{H_{\mathbb{X}, T}}\left(H_{\mathbb{X}, T}\right)$. For any $Y \in \underline{H_{\mathbb{X}}, T}(R)$ (so Y is a closed subscheme in $\left.\operatorname{Spec}\left(R \otimes_{k} S\right)\right)$ we have $Y=\mathbb{W}_{\mathbb{X}, T} \times_{H_{\mathbb{X}, T}} \operatorname{Spec} \bar{R}$. In fact, the k-rational points of \mathbb{W} are those pairs (y, Y), where $Y \in H_{\mathbb{X}, T}(k)$ and $y \in \underline{Y}(k)$.

The group $\mathbb{T}(R)$ acts on $\underline{H_{\mathbb{X}, T}}(R)$ in the natural way. Namely, we have an action of $\mathbb{T}(R)$ on $R \otimes_{k} S:$ for $f \in R \otimes_{k} S_{\chi}$, where $\chi \in \Omega$, and $t \in \mathbb{T}(R)$ let $t \cdot f=\chi(t) f$. Hence for $I \in H_{\mathbb{X}, T}(R)$ let $t \cdot I=\{t \cdot f: f \in I\}$. These actions commute with base extensions, thus we have an action of \mathbb{T} on $H_{\mathbb{X}, T}$. Since T acts trivially, this yields an action of the torus \mathbb{T} / T. The universal family $\mathbb{W}_{\mathbb{X}, T}$ is invariant under the diagonal action of \mathbb{T} on $\mathbb{X} \times H_{\mathbb{X}, T}$.

Let H_{0} be the toric orbit closure $\overline{\mathbb{T} \cdot X} \subset H_{\mathbb{X}, T}$, and denote by \mathbb{W}_{0} its preimage under the projection

$$
p: \mathbb{W}_{\mathbb{X}, T} \rightarrow H_{\mathbb{X}, T}
$$

(we consider H_{0} and \mathbb{W}_{0} with their structure of reduced schemes).
Proposition 3.1. (1) The stabilizer of X under the action of \mathbb{T} on H_{0} is T, so H_{0} is a toric variety under the torus \mathbb{T} / T.
(2) The orbit $\mathbb{T} \cdot X$ is open in $H_{\mathbb{X}, T}$. Consequently, H_{0} is an irreducible component of $H_{\mathbb{X}, T}$.
(3) \mathbb{W}_{0} is a toric variety under the torus \mathbb{T} (and, consequently, \mathbb{W}_{0} is an irreducible component of $\left.\mathbb{W}_{\mathbb{X}, T}\right)$.

Proof. (1) If $t \cdot X=X$ for $t \in \mathbb{T}$, then $t \cdot x \in T \cdot x$ and $t \in T$.
(2) We shall prove that $\mathbb{T} \cdot X$ is open in $H_{\mathbb{X}, T}$. Since the stabilizer of X in \mathbb{T} is T, it suffices to prove that $\operatorname{dim} T_{X} H_{\mathbb{X}, T} \leq \operatorname{dim} \mathbb{T} \cdot X=\operatorname{dim} \mathbb{T}-\operatorname{dim} T$, where $T_{X} H_{\mathbb{X}, T}$ denotes the tangent space to $H_{\mathbb{X}, T}$ at X. By [7, Prop. 1.6], we have

$$
\begin{gathered}
T_{X} H_{\mathbb{X}, T}=\operatorname{Hom}_{k[\mathbb{X}]}\left(I_{X}, k[X]\right)_{0}= \\
\operatorname{Hom}_{k[\mathbb{T}]}\left(I_{T}, k[T]\right)_{0}=\operatorname{Hom}_{k[\mathbb{T}]}\left(I_{T} / I_{T}^{2}, k[T]\right)_{0}
\end{gathered}
$$

where I_{T} is the ideal of functions in $k[\mathbb{T}]$ vanishing on T. We can choose coordinates on \mathbb{T} such that

$$
k[\mathbb{T}]=k\left[t_{1}, t_{1}^{-1}, \ldots, t_{m}, t_{m}^{-1}, s_{1}, s_{1}^{-1}, \ldots, s_{r}, s_{r}^{-1}\right]
$$

where $r=\operatorname{dim} \mathbb{T}-\operatorname{dim} T$, and the ideal I_{T} is generated by $s_{i}-1$ for $i=1, \ldots, r$. The linear space I_{T} is spanned by the elements $t_{1}^{a_{1}} \ldots t_{n}^{a_{n}} s_{1}^{b_{1}} \ldots s_{m}^{b_{m}}\left(s_{i}-1\right)$, where $a_{i}, b_{j} \in \mathbb{Z}$, and the projections of the elements $t_{1}^{a_{1}} \ldots t_{n}^{a_{n}}\left(s_{i}-1\right)$ span the linear space I_{T} / I_{T}^{2} (since $s_{i}\left(s_{j}-1\right)=\left(s_{j}-1\right)+\left(s_{i}-1\right)\left(s_{j}-1\right)$ and $\left.s_{i}^{-1}\left(s_{j}-1\right)=\left(s_{j}-1\right)-s_{i}^{-1}\left(s_{i}-1\right)\left(s_{j}-1\right)\right)$. Hence a homomorphism of $k[\mathbb{T}]$-modules from I_{T} to $k[T]$ is uniquely determined by the images of $s_{i}-1$. Thus the dimension of the vector space of such homomorphisms of degree zero is not greater then r.
(3) Consider the restriction p_{0} of p to \mathbb{W}_{0} :

$$
p_{0}: \mathbb{W}_{0} \rightarrow H_{0}
$$

This is a flat morphism. By Lemma 3.2 below and [8, Cor. 9.6], the dimension of any irreducible component Z of \mathbb{W}_{0} is equal to $\operatorname{dim} \mathbb{T}$. This implies that $p_{0}(Z)=H_{0}$ and $Z \subset \overline{p^{-1}(\mathbb{T} \cdot X)}$. Thus $\mathbb{W}_{0}=\overline{p^{-1}(\mathbb{T} \cdot X)}=\overline{\mathbb{T} \cdot(x, X)}$ is irreducible and $\mathbb{T} \cdot(x, X) \subset \mathbb{W}_{0}$ is dense and, consequently, open.

Lemma 3.2. For any point $Y \in H_{\mathbb{X}, T}$, the dimension of any irreducible component of its fibre $p^{-1}(Y)$ equals $\operatorname{dim} T$.

Proof. We denote by $k(Y)$ the residue field of $Y \in H_{\mathbb{X}, T}$. Then we have

$$
p^{-1}(Y)=\operatorname{Spec} k(Y) \times_{H_{\mathbb{X}, T}} \mathbb{W}_{\mathbb{X}, T}=\operatorname{Spec} L,
$$

where L is a coherent sheaf of Σ-graded $k(Y)$-algebras:

$$
L=\bigoplus_{\lambda \in \Sigma} L_{\lambda},
$$

and $L_{\lambda}:=k(Y) \otimes_{\mathcal{O}_{H_{\mathbb{X}}, T}}\left(\mathcal{O}_{\mathbb{W}_{\mathbb{X}}, T}\right)_{\lambda}$ is isomorphic to $k(Y)$.
Every point $Y \in H_{\mathbb{X}, T}$ gives us a subdivision of $\Sigma_{\mathbb{R}_{+}}$into subcones, namely two points $\lambda, \lambda^{\prime} \in \Sigma$ lie in the same cone if and only if $L_{\lambda} L_{\lambda^{\prime}} \neq 0$. The irreducible components Z of $p^{-1}(Y)$ correspond to the maximal cones C of this subdivision:

$$
Z=\operatorname{Spec}\left(\bigoplus_{\lambda \in \Sigma \cap C} L_{\lambda}\right)
$$

Let $\Sigma_{C}:=\left\{\lambda \in \Sigma \cap C: L_{\lambda}\right.$ is not nilpotent $\}$. Note that Σ_{C} is a monoid and $\left(\Sigma_{C}\right)_{\mathbb{R}_{+}}=C$. It suffices to prove that the dimension of $Z_{r e d}=\operatorname{Spec}\left(\bigoplus_{\lambda \in \Sigma_{C}} L_{\lambda}\right)$ is equal to $\operatorname{dim} T$. We can extend the action of T on $Z_{\text {red }}$ to an action of the torus $T \times \operatorname{Spec} k(Y)$ (over the field $k(Y))$. Thus $Z_{\text {red }}$ is a toric variety under the torus $T \times \operatorname{Spec} k(Y)$ and $\operatorname{dim} Z=\operatorname{dim} C=$ $\operatorname{dim} T$.

Our aim is to describe the fans of the toric varieties H_{0} and \mathbb{W}_{0}. Let

$$
\gamma: \mathbb{G}_{m} \rightarrow \mathbb{T}
$$

be a one-parameter subgroup. Consider the closed embedding

$$
\begin{aligned}
& \mathbb{G}_{m} \times X \subset \mathbb{G}_{m} \times \mathbb{X} \\
& (s, x) \rightarrow(s, \gamma(s) \cdot x)
\end{aligned}
$$

Let Ξ be the closure of the image of this embedding in $\mathbb{A}^{1} \times \mathbb{X}$ (so Ξ is an algebraic variety). Since the projection $\Xi \rightarrow \mathbb{A}^{1}$ is a flat morphism, we have a morphism $\mathbb{A}^{1} \rightarrow H_{\mathbb{X}, T}$ such that $\Xi=\mathbb{W}_{\mathbb{X}, T} \times_{H_{\mathbb{X}, T}} \mathbb{A}^{1}$. Thus the limit of X under γ is the fiber of Ξ over 0 (we denote it by Ξ_{0}). This limit exists if and only if Ξ_{0} is non-empty. Consider the commutative diagram:

$$
\begin{array}{ccc}
\Xi & \supset & \mathbb{G}_{m} \times X \\
\cap & & \cap \\
\mathbb{A}^{1} \times \mathbb{X} & \supset & \mathbb{G}_{m} \times \mathbb{X} .
\end{array}
$$

We have the corresponding homomorphisms of algebras:

where the vertical maps are surjective.
Denote by s the coordinate in \mathbb{A}^{1}, let $\gamma_{i}:=\left\langle\gamma, \chi_{i}\right\rangle$, and let I_{X}^{\prime} denote the ideal generated by $I_{X} \subset k\left[x_{1}, \ldots, x_{n}\right]$ in $k\left[x_{1}, \ldots, x_{n}, s, s^{-1}\right]$. Thus we obtain

$$
\Xi=\operatorname{Spec} k\left[s^{\gamma_{1}} x_{1}, \ldots, s^{\gamma_{n}} x_{n}, s\right] / I_{\Xi},
$$

where $I_{\Xi}=I_{X}^{\prime} \cap k\left[s^{\gamma_{1}} x_{1}, \ldots, s^{\gamma_{n}} x_{n}, s\right]$. Hence

$$
k\left[\Xi_{0}\right]=k\left[s^{\gamma_{1}} x_{1}, \ldots, s^{\gamma_{n}} x_{n}, s\right] /\left(I_{\Xi}, s\right) \simeq k\left[x_{1}, \ldots, x_{n}\right] / I_{\gamma},
$$

where I_{γ} denotes the following ideal : for $f \in k\left[x_{1}, \ldots, x_{n}\right]$ let $i n_{\gamma}(f)$ be the sum of all terms $c x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$ of f such that $\sum a_{i} \gamma_{i}$ is maximal, then I_{γ} is the ideal generated by the polynomials $i n_{\gamma}(f)$, where $f \in I_{X}$.

Example 3.3. Let $\mathbb{X}=\mathbb{A}^{n}, \mathbb{T}=\mathbb{G}_{m}^{n}$ act on \mathbb{A}^{n} by rescaling of coordinates, $T=\mathbb{G}_{m}$, and let the $\Lambda(T)$-grading of $k\left[x_{1}, \ldots, x_{n}\right]$ be positive.
(1) Consider the case $n=3$. It was proved by Arnold, Korkina, Post, Roelfols (see, for example, [11, Th. 10.2]), that any ideal $I \in \underline{H_{\mathbb{A}^{n}, T}}(k)$ is of the form $t \cdot I_{\gamma}$ for some $t \in \mathbb{G}_{m}^{n}$ and $\gamma \in \Gamma\left(\mathbb{G}_{m}^{n}\right)$. This means that in this case the toric Hilbert scheme is irreducible.
(2) Let $n=4$ and $\lambda_{1}=1, \lambda_{2}=3, \lambda_{3}=4, \lambda_{4}=7$. Then the toric Hilbert scheme is reducible. Moreover, in $H_{\mathbb{A}^{n}, T}$ there are infinitely many orbits of \mathbb{G}_{m}^{n} (see [11, Th. 10.4]).

We can also write

$$
k\left[\Xi_{0}\right]=\bigoplus_{\lambda \in \Sigma} k s^{n_{\gamma}(\lambda)} t^{\lambda}
$$

where

$$
n_{\gamma}(\lambda):=\min _{\chi \in \pi^{-1}(\lambda) \cap \Omega}\langle\gamma, \chi\rangle .
$$

Here $s^{n_{\gamma}(\lambda)} t^{\lambda}$ denotes the image in $k\left[\Xi_{0}\right]$ of the monomial $p\left(x_{1}, \ldots, x_{n}\right) \in k\left[\mathbb{A}^{1} \times \mathbb{X}\right]$ of weight $\chi_{\lambda} \in \Omega$, where $\chi_{\lambda} \in \pi^{-1}(\lambda) \cap \Omega$ is such that $\left\langle\gamma, \chi_{\lambda}\right\rangle$ is minimal. This image is a T semiinvariant function of weight λ. The product $s^{n_{\gamma}\left(\lambda_{1}\right)} t^{\lambda_{1}} s^{n_{\gamma}\left(\lambda_{2}\right)} t^{\lambda_{2}}=s^{n_{\gamma}\left(\lambda_{1}\right)+n_{\gamma}\left(\lambda_{2}\right)} t^{\lambda_{1}+\lambda_{2}}$ equals zero if and only if $n_{\gamma}\left(\lambda_{1}\right)+n_{\gamma}\left(\lambda_{2}\right)>n_{\gamma}\left(\lambda_{1}+\lambda_{2}\right)$. Consider the convex hull

$$
P_{\lambda}:=\operatorname{conv}\left(\pi^{-1}(\lambda) \cap \Omega\right) \subset \Lambda(\mathbb{T})_{\mathbb{R}}
$$

This is a convex polyhedron.
Definition 3.4. Let P be a convex polyhedron. For any face F of P the normal cone $N_{F}(P)$ is the cone in the dual vector space consisting of those linear functions w that F is the face of P minimizing w. The normal fan $N(P)$ of P is the fan whose cones are normal cones to the faces of P. (This definition is taken from [11], which we shall use as a general reference on convex polyhedra.)

Let $\mathcal{C}_{\lambda} \subset \Gamma(\mathbb{T})_{\mathbb{R}}$ denote the normal fan of P_{λ}. Note that any cone of \mathcal{C}_{λ} contains $\Gamma(T)_{\mathbb{R}} \subset \Gamma(\mathbb{T})_{\mathbb{R}}$.

REMARK 3.5. We can consider fans in $\Gamma(\mathbb{T} / T)_{\mathbb{R}}$ as fans in $\Gamma(\mathbb{T})_{\mathbb{R}}$ whose cones contain $\Gamma(T)_{\mathbb{R}}$. In particular, we view the fan of the toric \mathbb{T} / T-variety H_{0} as a fan in $\Gamma(\mathbb{T})_{\mathbb{R}}$.

Definition 3.6. A fan \mathcal{C}_{1} is a refinement of a fan \mathcal{C}_{2} if any cone of \mathcal{C}_{1} is contained in some cone of \mathcal{C}_{2}.

Definition 3.7. We say that two polyhedra $P_{1}, P_{2} \subset \Lambda(\mathbb{T})_{\mathbb{R}}$ are equivalent if they have the same normal fan.

Theorem 3.8. (1) The fan $\mathcal{C}_{H_{0}} \subset \Gamma(\mathbb{T})_{\mathbb{R}}$ of the toric \mathbb{T} / T-variety H_{0} is the maximal common refinement of the fans \mathcal{C}_{λ}, where $\lambda \in \Sigma$.
(2) The support of any \mathcal{C}_{λ} is the cone generated by those one-parameter subgroups γ that $\langle\gamma, \chi\rangle \geq 0$ for any $\chi \in \pi^{-1}(0) \cap \Omega$. In particular, the grading of S by $\Lambda(T)$ is positive if and only if this support is the whole space $\Gamma(\mathbb{T})_{\mathbb{R}}$, i.e., any polyhedron P_{λ} is a polytope. This holds if and only if H_{0} is projective.
(3) There are only finitely many non-equivalent polyhedra P_{λ} for $\lambda \in \Sigma$. Hence $\mathcal{C}_{H_{0}}$ is the normal fan of the Minkovski sum of representatives of the equivalence classes (we denote this sum by $P_{H_{0}}$).

Proof. Statement (1) immediately follows from the description of limits under oneparameter subgroups given above.
(2) First note that P_{0} is a cone and its normal cone \mathcal{C}_{0} is generated by those oneparameter subgroups γ that $\langle\gamma, \chi\rangle \geq\langle\gamma, 0\rangle=0$ for any $\chi \in \pi^{-1}(0) \cap \Omega$. Further note that the recession cone of any P_{λ} is P_{0} (the recession cone of a polyhedron P is the set
of those vectors v such that $u+v \in P$ for any $u \in P$). Indeed, S_{λ} is a finitely generated S_{0}-module. Let $\mu_{1}, \ldots, \mu_{d} \in \Lambda(\mathbb{T})$ be the weights of a set of \mathbb{T}-semiinvariant generators. Then

$$
P_{\lambda}=\operatorname{conv}\left(\bigcup_{i=1}^{d}\left(\mu_{i}+P_{0}\right)\right)=\operatorname{conv}\left(\mu_{1}, \ldots, \mu_{d}\right)+P_{0}
$$

It follows that the support of \mathcal{C}_{λ} is \mathcal{C}_{0}.
If the support of $\mathcal{C}_{H_{0}}$ is not $\Gamma(\mathbb{T})_{\mathbb{R}}$, then H_{0} is not complete and, consequently, is not projective. Conversely, if the grading is positive, then the Hilbert scheme $H_{\mathbb{X}, T}$ is projective, and H_{0} is projective.
(3) There are only finitely many fans \mathcal{C} such that $\mathcal{C}_{H_{0}}$ is a refinement of \mathcal{C} and the supports of \mathcal{C} and $\mathcal{C}_{H_{0}}$ coincide.

Since $\mathbb{W}_{0} \subset H_{0} \times \mathbb{X}$, it follows that the fan of \mathbb{W}_{0} is the maximal common refinement of the fans $\mathcal{C}_{H_{0}}$ and $N\left(\Omega_{\mathbb{R}_{+}}\right)$. This is the normal fan of the Minkovski sum $P_{H_{0}}+\Omega_{\mathbb{R}_{+}}$.

Remark 3.9. By [11, Th. 7.15], it follows that in the case when $\mathbb{X}=\mathbb{A}^{n}, \mathbb{T}=\mathbb{G}_{m}^{n}$ acts by rescaling of coordinates, and the $\Lambda(T)$-grading of $k[\mathbb{X}]$ is positive, the polytope $P_{H_{0}}$ is equivalent to the Minkovski sum of P_{λ} corresponding to the weights λ of the elements of the universal Gröbner basis of $I_{\mathbb{X}}$.

Let \mathbb{X} be normal. Now we are going to give a precise description of those characters $\lambda \in \Sigma$ having equivalent polyhedra P_{λ}. Recall that we have a homomorphism of lattices $\pi: \Lambda(\mathbb{T}) \rightarrow \Lambda(T)$, a finitely generated monoid $\Omega \subset \Lambda(\mathbb{T})$ such that $\Omega=\Omega_{\mathbb{R}_{+}} \cap \Lambda(\mathbb{T})$, and we put $\Sigma=\pi(\Omega)$. To any point $\lambda \in \Sigma$ we associate the polyhedron $P_{\lambda}=\operatorname{conv}\left(\pi^{-1}(\lambda) \cap \Omega\right) \subset$ $\Lambda(\mathbb{T})_{\mathbb{R}}$. Two points $\lambda, \lambda^{\prime} \in \Sigma$ are said to be equivalent if the corresponding polyhedra P_{λ} and $P_{\lambda^{\prime}}$ are equivalent. The question is to describe equivalence classes constructively.

First consider $\pi_{\mathbb{R}}: \Lambda(\mathbb{T})_{\mathbb{R}} \rightarrow \Lambda(T)_{\mathbb{R}}$, the linear map induced by π. Let $\mathcal{C}_{\lambda}^{\mathbb{R}}$ denote the normal fan to the polyhedron

$$
P_{\lambda}^{\mathbb{R}}:=\pi_{\mathbb{R}}^{-1}(\lambda) \cap \Omega_{\mathbb{R}_{+}}
$$

Consider the cell decomposition of $\Sigma_{\mathbb{R}_{+}}$induced by π (see [3]). Namely, the characters λ and λ^{\prime} lie in the interior of the same cone of this decomposition if and only if the set of those faces of $\Omega_{\mathbb{R}_{+}}$whose images under $\pi_{\mathbb{R}}$ contain λ coincides with the set of such faces for λ^{\prime}.

Fix a cone σ of this decomposition. Note that if λ lies in the interior of σ and $\lambda^{\prime} \in \sigma$, then $\mathcal{C}_{\lambda}^{\mathbb{R}}$ refines $\mathcal{C}_{\lambda^{\prime}}^{\mathbb{R}}$. In particular, the polyhedra $P_{\lambda}^{\mathbb{R}}$ corresponding to interior points λ of σ are equivalent. Let $P_{\mathbb{R}}$ denote the Minkovski sum of $P_{\lambda}^{\mathbb{R}}$ for representatives of interior points for all cones of the cell decomposition and let $\mathcal{C}_{\mathbb{R}}$ denote the normal fan to $P_{\mathbb{R}}$ (note that in the Minkovski sum it suffices to take representatives of interior points for the maximal cones of the cell decomposition).

REmARK 3.10. In [3] the fan $\mathcal{C}_{\mathbb{R}}$ is called the fiber fan by analogy with the normal fan of the fiber polytope for a linear projection of polytopes (see [2]).

Consider a point λ lying in the interior of σ and the corresponding polyhedron $P_{\lambda}^{\mathbb{R}}$. For any vertex v of $P_{\lambda}^{\mathbb{R}}$ there exists a unique minimal face F of $\Omega_{\mathbb{R}_{+}}$such that $F \cap P_{\lambda}^{\mathbb{R}}=\{v\}$ (indeed, since $P_{\lambda}^{\mathbb{R}}$ is the intersection of the cone Ω with the affine subspace $\pi_{\mathbb{R}}^{-1}(\lambda)$, it follows that any face of $P_{\lambda}^{\mathbb{R}}$ is the intersection of $\pi_{\mathbb{R}}^{-1}(\lambda)$ with some face of $\left.\Omega\right)$. Let $v_{1}^{\lambda}, \ldots, v_{l(\sigma)}^{\lambda} \in \Lambda(\mathbb{T})_{\mathbb{R}}$ be the vertices of $P_{\lambda}^{\mathbb{R}}$ and let $F_{1}^{\sigma}, \ldots, F_{l(\sigma)}^{\sigma}$ be the corresponding faces (the set of such faces does not depend on a point λ in the interior of σ). For two vectors $\chi, \chi^{\prime} \in \Lambda(\mathbb{T})_{\mathbb{R}}$ we say $\chi \prec \chi^{\prime}$ if $\chi^{\prime}-\chi \in \Omega_{\mathbb{R}_{+}}$.

Definition 3.11. (See [7, Def 5.4].) A character $\lambda \in \Sigma$ is integral if the inclusion of the convex polyhedra $P_{\lambda} \subseteq P_{\lambda}^{\mathbb{R}}$ is an equality.

We shall denote by $\Sigma_{\mathbb{X}}^{i n t}$ the set of integral characters. Note that $\sum_{V}^{i n t} \subset \Sigma_{\mathbb{X}}^{i n t}$, where V is considered as a toric variety under the torus \mathbb{G}_{m}^{n} acting by rescaling of coordinates.

Lemma 3.12. Let $\lambda_{0} \in \sigma$ be integral, $\lambda \in \sigma$, and let $v_{i}^{\lambda} \succ(l(\sigma)-1) v_{i}^{\lambda_{0}}$ for any $i=1, \ldots, l(\sigma)$. Then $P_{\lambda+\lambda_{0}}=P_{\lambda}+P_{\lambda_{0}}$.

Proof. The inclusion $P_{\lambda}+P_{\lambda_{0}} \subseteq P_{\lambda+\lambda_{0}}$ is evident. Denote by D_{μ} the convex hull of the $v_{i}^{\mu}, i=1, \ldots, l(\sigma)$, where μ is a point in the interior of σ. By Theorem 3.8 (2), $P_{\mu}=D_{\mu}+P_{0}$. Thus it suffices to prove that $D_{\lambda+\lambda_{0}} \subseteq P_{\lambda}+P_{\lambda_{0}}$. Let χ lie in $D_{\lambda+\lambda_{0}}$, i.e., $\chi=\sum_{i=1}^{l(\sigma)} q_{i} v_{i}^{\lambda+\lambda_{0}}$, where $q_{i} \geq 0$ and $\sum_{i=1}^{l(\sigma)} q_{i}=1$. There exists i such that $q_{i} \geq 1 / l$. Hence $\chi \succ q_{i} v_{i}^{\lambda+\lambda_{0}}=q_{i}\left(v_{i}^{\lambda}+v_{i}^{\lambda_{0}}\right) \succ v_{i}^{\lambda_{0}}$. Thus $\chi-v_{i}^{\lambda_{0}} \in \Omega_{\mathbb{R}_{+}} \cap \Lambda(\mathbb{T})=\Omega$.

Let μ_{1}, \ldots, μ_{r} be generators of the monoid $\sigma \cap \Sigma$ and let $c_{1}, \ldots, c_{r} \in \mathbb{N}$ be such that $c_{i} \mu_{i}$ are integral, $i=1, \ldots, r$. By Lemma 3.12, it follows that taking P_{λ} for $\lambda=\sum_{i=1}^{r} d_{i} \mu_{i}$, where $0<d_{i}<l c_{i}$, we obtain representatives of all equivalence classes of points in σ up to the Minkovski sum with $P_{\lambda}^{\mathbb{R}}$. Hence $P_{H_{0}}$ is the Minkovski sum of such representatives for all (maximal) cones σ of the subdivision of $\Sigma_{\mathbb{R}_{+}}$induced by $\pi_{\mathbb{R}}$.

Example 3.13. Let $\mathbb{X}=\mathbb{A}^{n}, \mathbb{T}=\mathbb{G}_{m}^{n}$ act be rescaling of coordinates, and let $T=\mathbb{G}_{m}$ act on \mathbb{A}^{n} with characters $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{Z}$. Then $\Omega \subset \mathbb{Z}^{n}$ is the set of vectors with integral non-positive coordinates, and $\Sigma \subset \mathbb{Z}$ is the monoid generated by $-\lambda_{i}$. Moreover, $\Sigma=\left(\Sigma \cap \mathbb{Z}_{+}\right) \cup\left(\Sigma \cap \mathbb{Z}_{-}\right)$is the subdivision of Σ induced by π. Let n_{+}and n_{-}be the numbers of positive and negative λ_{i} respectively. A number $\lambda \in \mathbb{Z}_{+}$(resp. \mathbb{Z}_{-}) is integral (in the sense of Definition 3.11) if and only if λ is divisible by any $\lambda_{i}<0$ (resp. >0). Let λ_{+}(resp. λ_{-}) be the least common (positive) multiple of all positive (resp. negative) λ_{i}. Then $P_{H_{0}}$ is the Minkovski sum of polyhedra P_{λ} for $-n_{+} \lambda_{+}<\lambda<n_{-} \lambda_{-}$.

4 Toric Chow morphism

We are going to describe the toric Chow morphism from the Hilbert scheme to the inverse limit of GIT quotients $\mathbb{X} / \lambda T$. In [7, Sect. 5] the toric Chow morphism was constructed in the case when $\mathbb{X}=\mathbb{A}^{n}$ is a T-module. We generalize this to the case of a normal affine toric \mathbb{T}-variety \mathbb{X}.

We use the notations of the previous sections. Let

$$
S^{(\lambda)}:=\bigoplus_{r=0}^{\infty} S_{r \lambda},
$$

and let

$$
\mathbb{X} /_{\lambda} T:=\operatorname{Proj} S^{(\lambda)}
$$

be the GIT quotient. In particular, $\mathbb{X} / 0 T=\mathbb{X} / / T=\operatorname{Spec}\left(S_{0}\right)$. Notice also that $\mathbb{X} /_{\lambda} T=$ $\mathbb{X}_{\lambda}^{s s} / / T$, where

$$
\mathbb{X}_{\lambda}^{s s}:=\left\{x \in \mathbb{X}: f(x) \neq 0 \text { for some homogeneous } f \in S^{(\lambda)}\right\}
$$

If λ lies in the interior of $\Sigma_{\mathbb{R}_{+}}$, then $\mathbb{X} / \lambda_{\lambda} T$ is a normal toric \mathbb{T} / T-variety whose fan is $\mathcal{C}_{\lambda}^{\mathbb{R}}$, the normal fan to the polyhedron $P_{\lambda}^{\mathbb{R}}$.

We are going to define the toric Chow quotient of a toric variety \mathbb{X} by a subtorus T (see [3, Sect. 3.2]). If a fan \mathcal{C}_{1} is a refinement of \mathcal{C}_{2}, then we have a projective morphism $Y_{\mathcal{C}_{1}} \rightarrow Y_{\mathcal{C}_{2}}$ between the corresponding normal toric varieties (see [6, Th. 2.4]), so the varieties $\mathbb{X} / \lambda T$, where $\lambda \in \Sigma$, form an inverse system. Consider the inverse limit

$$
\mathbb{X} / C T:=\lim _{\leftarrow}\left\{\mathbb{X} /_{\lambda} T: \lambda \text { lies in the interior of } \Sigma\right\}
$$

Note that $\mathbb{X} / C T$ is a closed subscheme in $V / C T$. By [3, Prop. 3.8], it follows that $\mathbb{X} / C T$ has an irreducible component that is a toric variety under the torus \mathbb{T} / T. Moreover, this component is the toric Chow quotient in the sense of the following definition.

Definition 4.1. (See [3, Def. 3.9].) The toric Chow quotient of a toric \mathbb{T}-variety \mathbb{X} by a subtorus T is the irreducible component $\operatorname{Chow}(\mathbb{X}, T)$ of $\mathbb{X} / C T$ such that
(1) $\operatorname{Chow}(\mathbb{X}, T)$ is a toric \mathbb{T} / T-variety;
(2) given a \mathbb{T} / T-variety Y containing an irreducible component Y_{0} such that Y_{0} is a toric \mathbb{T} / T-variety, and given \mathbb{T} / T-equivariant morphisms $\phi_{\lambda}: Y \rightarrow \mathbb{X} / \lambda T$, where λ lies in the interior of Σ, such that the ϕ_{λ} induce birational morphisms $Y_{0} \rightarrow \mathbb{X} /_{\lambda} T$ and the ϕ_{λ} are compatible with the morphisms of the inverse system (so the ϕ_{λ} give a morphism $\phi: Y \rightarrow \mathbb{X} / C T)$; then restricting the morphism ϕ to Y_{0} we have a birational morphism of toric \mathbb{T} / T-varieties $Y_{0} \rightarrow \operatorname{Chow}(\mathbb{X}, T)$.

Remark 4.2. By [3, Prop. 3.10], it follows that the fan of $\operatorname{Chow}(\mathbb{X}, T)$ is $\mathcal{C}_{\mathbb{R}}$, the maximal common refinement of all the normal fans to the polyhedra $P_{\lambda}^{\mathbb{R}}, \lambda \in \Sigma$. Since every character $\lambda \in \Sigma$ has some integral positive multiple $c \lambda \in \Sigma_{\mathbb{X}}^{i n t}(c \in \mathbb{N})$, the fan $\mathcal{C}_{H_{0}}$ is a refinement of the fan $\mathcal{C}_{\mathbb{R}}$.

The following example shows that $\mathcal{C}_{H_{0}}$ and $\mathcal{C}_{\mathbb{R}}$ do not always coincide.
EXAMPLE 4.3. Let $\mathbb{X}=\mathbb{A}^{3}, \mathbb{T}=\mathbb{G}_{m}^{3}$ act by rescaling of coordinates, and let $T=\mathbb{G}_{m}$ act by $t\left(x_{1}, x_{2}, x_{3}\right)=\left(t x_{1}, t x_{2}, t^{2} x_{3}\right)$.

$$
\Lambda(\mathbb{T})
$$

$$
\Lambda(T)
$$

The Hilbert scheme $H_{\mathbb{A}^{3}, T}$ is the closed subscheme in $\mathbb{P}^{1} \times \mathbb{P}^{3}$ defined by the equations $z_{1} w_{3}-z_{2} w_{1}=0$ and $z_{1} w_{2}-z_{2} w_{3}=0$ (where z_{1}, z_{2} and $w_{1}, w_{2}, w_{3}, w_{4}$ are homogeneous coordinates in \mathbb{P}^{1} and \mathbb{P}^{3} respectively). The integral (in the sense of Definition 3.11) degrees are even. The fan $\mathcal{C}_{H_{0}}$ consists of the following cones:

$$
\begin{aligned}
& \mathbb{R}_{+}\left(e_{1}+e_{2}\right)+\mathbb{R}_{+} e_{2}, \\
& \mathbb{R}_{+}\left(e_{1}+e_{2}\right)+\mathbb{R}_{+}\left(-e_{2}\right), \\
& \mathbb{R}_{+}\left(e_{2}-e_{1}\right)+\mathbb{R}_{+} e_{2}, \\
& \mathbb{R}_{+}\left(e_{2}-e_{1}\right)+\mathbb{R}_{+}\left(-e_{2}\right),
\end{aligned}
$$

where $e_{1}=\chi_{1}^{*}+\chi_{3}^{*}, e_{2}=-\chi_{3}^{*}$ is a basis of $\Gamma(\mathbb{T} / T)$. The toric Chow quotient is $\mathbb{A}^{3} / c T=$ Proj $k\left[x_{1}, x_{2}, x_{3}\right]$ (where $k\left[x_{1}, x_{2}, x_{3}\right]$ is graded by the weights of T), and its fan $\mathcal{C}_{\mathbb{R}}$ consists of the following cones:

$$
e_{2}^{\mathcal{C}_{\mathbb{R}}}
$$

$$
\begin{aligned}
& \mathbb{R}_{+}\left(e_{1}+e_{2}\right)+\mathbb{R}_{+}\left(-e_{2}\right), \\
& \mathbb{R}_{+}\left(e_{2}-e_{1}\right)+\mathbb{R}_{+}\left(-e_{2}\right), \\
& \mathbb{R}_{+}\left(e_{1}+e_{2}\right)+\mathbb{R}_{+}\left(e_{2}-e_{1}\right) . \\
& \mathcal{C}_{H_{0}} \\
& e_{2}-e_{1}
\end{aligned}
$$

By Lemma 3.12, it follows that if a character $\lambda \in \Sigma$ is integral, then there exists r_{0} such that $S_{(r+1) \lambda}=S_{\lambda} S_{r \lambda}$ for all $r \geq r_{0}$. The statement of the following lemma was given in [7, Sect. 5] with a proof for algebras generated by elements of degree 1. For the convenience of the reader we give a complete proof here.

Lemma 4.4. Let P be an \mathbb{N}-graded algebra: $P=\bigoplus_{r \geq 0} P_{r}$, and
$(*)$ there exists r_{0} such that $P_{r+1}=P_{1} P_{r}$ for any $r \geq r_{0}$.

Then the Hilbert scheme H_{P} of the graded algebra P for the Hilbert function

$$
h(r):= \begin{cases}1 & \text { if } r \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

is isomorphic to Proj P.
Proof. We shall show that Proj P represents the Hilbert functor $\underline{H_{P}}$. For this we prove that the tautological bundle over $\operatorname{Proj} P$ is the universal family.
(1) Consider the open subscheme in $\operatorname{Spec} P$ that is the complement to the subscheme defined by the ideal $\bigoplus_{r>0} P_{r}$:

$$
(\operatorname{Spec} P)_{0}=\left\{p \in \operatorname{Spec} P: p \nsupseteq\left(\bigoplus_{r>0} P_{r}\right)\right\}
$$

and the natural morphism

$$
\psi:(\operatorname{Spec} P)_{0} \rightarrow \operatorname{Proj} P
$$

Locally ψ is given by the embeddings of algebras $\left(P_{f}\right)_{0} \subset P_{f}$, where $f \in P$ is homogeneous, $\operatorname{deg} f>0$ (it is clear that the corresponding morphisms of affine schemes satisfy the compatibility conditions). Note that ψ is a locally trivial bundle with fiber \mathbb{G}_{m}. Indeed, by the condition $\left(^{*}\right)$, it follows that Proj P is covered by open affine subschemes $\operatorname{Spec}\left(P_{h}\right)_{0}$, where $h \in P_{1}$, and for any $h \in P_{1}$ we have $P_{h}=\left(P_{h}\right)_{0}\left[h, h^{-1}\right]$.
(2) The grading of P defines an action of \mathbb{G}_{m} on $\operatorname{Spec} P$ and on $(\operatorname{Spec} P)_{0}$. Consider

$$
E:=(\operatorname{Spec} P)_{0} \times_{\mathbb{G}_{m}} \mathbb{A}^{1}
$$

Here $(\operatorname{Spec} P)_{0} \times_{\mathbb{G}_{m}} \mathbb{A}^{1}$ denotes the categorical quotient $\left((\operatorname{Spec} P)_{0} \times \mathbb{A}^{1}\right) / / \mathbb{G}_{m}$, where \mathbb{G}_{m} acts on \mathbb{A}^{1} as follows: $t \cdot s=t^{-1} s, t \in \mathbb{G}_{m}, s \in \mathbb{A}^{1}$ (locally we have $E_{f}=\operatorname{Spec} \bigoplus_{r \geq 0}\left(P_{f}\right)_{r}$, where $f \in P$ is homogeneous of positive degree). Then ψ gives a morphism

$$
E \rightarrow \operatorname{Proj} P
$$

which is a locally trivial bundle with fiber \mathbb{A}^{1}.
(3) Now we are going to prove the universal property for E. Let $Z=\operatorname{Spec} R$ be an affine scheme and $Y=\operatorname{Spec}\left(R \otimes_{k} P / I\right) \in \underline{H_{P}}(R)$. Consider $Y_{0}=Y \cap\left(Z \times(\operatorname{Spec} P)_{0}\right)$. We have the morphisms

$$
Y_{0} \xrightarrow{\rho} \operatorname{Proj}\left(R \otimes_{k} P / I\right) \xrightarrow{\delta} Z .
$$

Since $R \otimes_{k} P / I$ satisfies the condition $\left(^{*}\right)$, by (1), it follows that ρ is a locally trivial bundle with fiber \mathbb{G}_{m}. So δ is an isomorphism. Consider the following morphism from Z to $\operatorname{Proj} P$:

$$
Z \cong \operatorname{Proj}\left(R \otimes_{k} P / I\right) \subset Z \times \operatorname{Proj} P \xrightarrow{p} \operatorname{Proj} P
$$

where p is the projection. We shall show that $Y=E \times_{\operatorname{Proj} P} Z$.
(a) Note that $Y_{0}=(\operatorname{Spec} P)_{0} \times_{\operatorname{Proj} P} Z$. Indeed, locally we have

$$
R \otimes_{k} P_{f} / I_{f} \simeq P_{f} \otimes_{\left(P_{f}\right)_{0}}\left(R \otimes_{k}\left(P_{f}\right)_{0} /\left(I_{f}\right)_{0}\right)
$$

where $f \in P$ is homogeneous of positive degree.
(b) As in (2), consider $Y^{\prime}=Y_{0} \times_{\mathbb{G}_{m}} \mathbb{A}^{1}$ and the natural morphism $\eta: Y^{\prime} \rightarrow Y$, which is locally given by the homomorphisms

$$
R \otimes_{k} P / I \rightarrow \bigoplus_{r \geq 0}\left(R \otimes_{k} P_{f} / I_{f}\right)_{r},
$$

where $f \in P$ is homogeneous of positive degree. So we have a commutative diagram:

Since $Y, Y^{\prime} \in \underline{H_{P}}(R)$, likewise, η is an isomorphism.
(c) Thus we have $Y=Y_{0} \times_{\mathbb{G}_{m}} \mathbb{A}^{1}=\left((\operatorname{Spec} P)_{0} \times_{\operatorname{Proj} P} Z\right) \times_{\mathbb{G}_{m}} \mathbb{A}^{1}=E \times_{\operatorname{Proj} P} Z$.

This lemma implies that

$$
H_{S^{(\lambda)}, T}=\operatorname{Proj} S^{(\lambda)}=\mathbb{X} /_{\lambda} T
$$

for any $\lambda \in \Sigma_{\mathbb{X}}^{i n t}$.
For any subset $D \subset \Sigma$ we can consider the restriction of the Hilbert scheme $H_{X, T}$ on degrees D, that is, the quasiprojective scheme $H_{\mathbb{X}, T}^{D}$ representing the covariant functor

$$
\underline{H_{\mathbb{X}, T}^{D}}: \underline{k-A l g} \rightarrow \underline{S e t}
$$

such that $H_{X, T}^{D}(R)$ is the set of families $\left\{L_{\lambda}\right\}_{\lambda \in D}$, where $L_{\lambda} \subset R \otimes_{k} S_{\lambda}$ is an R-submodule, such that $\left.\overline{\left(R \otimes_{k}\right.} S_{\lambda}\right) / L_{\lambda}$ is a locally free R-module of rank 1 and $f L_{\lambda_{2}} \subset L_{\lambda_{1}}$ for any $\lambda_{1}, \lambda_{2} \in D$ and any $f \in S_{\lambda_{1}-\lambda_{2}}$ (see [7]). In particular, $H_{\mathbb{X}, T}^{\perp}=H_{\mathbb{X}, T}$ and $H_{S^{(\lambda), T}}=H_{\mathbb{X}, T}^{D^{\lambda}}$,
where $D^{\lambda}:=\left\{c \lambda: c \in \mathbb{Z}_{+}\right\}$. Note also that $H_{\mathbb{X}, T}^{D}$ is a closed subscheme of $H_{V, T}^{D}$. For any $D \subset \Sigma$ we have a degree restriction morphism $H_{\mathbb{X}, T} \rightarrow H_{\mathbb{X}, T}^{D}$. In particular, we have canonical morphisms

$$
\phi_{\mathbb{X}}^{\lambda}: H_{\mathbb{X}, T} \rightarrow \mathbb{X} /_{\lambda} T
$$

The following theorem was proved in $\left[7\right.$, Th. 5.6] for the case when $\mathbb{X}=\mathbb{A}^{n}$ and $\mathbb{T}=\mathbb{G}_{m}^{n}$ acts by rescaling of coordinates.

Theorem 4.5. Let $H_{\mathbb{X}, T}^{i n t}:=H_{\mathbb{X}, T}^{\sum_{X}^{i n t}}$ be the toric Hilbert scheme restricted to the set of integral degrees. Then there is a canonical morphism

$$
\phi_{\mathbb{X}}^{i n t}: H_{\mathbb{X}, T}^{i n t} \rightarrow \mathbb{X} / C T
$$

which induces an isomorphism of the corresponding reduced schemes. In particular, composing $\phi_{\mathbb{X}}^{\text {int }}$ with the degree restriction morphism, we obtain a canonical Chow morphism from the toric Hilbert scheme to the inverse limit of the GIT quotients

$$
\phi_{\mathbb{X}}: H_{\mathbb{X}, T} \rightarrow \mathbb{X} / C T
$$

Proof. As in [7, Lemma 5.7], we see that the morphisms $\phi_{\mathbb{X}}^{\lambda}$ satisfy the compatibility conditions for $\lambda \in \Sigma_{\mathbb{X}}^{i n t}$ and, consequently, give a canonical morphism

$$
H_{\mathbb{X}, T} \rightarrow H_{\mathbb{X}, T}^{i n t} \xrightarrow{\phi_{\mathbb{X}}^{i n t}} \mathbb{X} / C T
$$

Futher, note that for any algebra R the morphism

$$
\underline{\phi_{\mathbb{X}}^{\mathrm{int}}}(R): \underline{H_{\mathbb{X}, T}^{i n t}}(R) \rightarrow \underline{\mathbb{X}} / c_{c} T(R)
$$

is injective (since $H_{S(\lambda), T}=\mathbb{X} / \lambda T$, we view any element of $\mathbb{X} / \not / T(R)$ as a family of ideals $\left\{I^{(\lambda)} \in \underline{H_{S^{(\lambda)}, T}}(R)\right\}_{\lambda \in \Sigma_{\mathbb{X}}^{\text {int }}}$ satisfying the compatibility conditions of the direct system). Hence to prove that $\phi_{\mathbb{X}}^{\text {int }}$ induces an isomorphism of the reduced schemes, it suffices to show that $\underline{\phi_{\mathrm{X}}^{\text {int }}}(R)$ is surjective for any reduced R.

Note that $\phi_{\mathbb{X}}^{\lambda}$ coincides with the restriction of ϕ_{V}^{λ} to $H_{\mathbb{X}, T} \subset H_{V, T}$ for any $\lambda \in \Sigma_{V}^{i n t} \subset$ $\sum_{\mathbb{X}}^{i n t}$. By [7, Th. 5.6], the map $\underline{\phi_{V}^{i n t}}(R)$ is surjective for any reduced R, and it follows that any element $\left\{I^{(\lambda)} \in \underline{H_{S(\lambda), T}(R)}\right\}_{\lambda \in \Sigma_{\mathbb{X}}^{i n t}}$ in $\mathbb{X} / c T(R) \subset \underline{V / c} T(R)$ gives an element $\left\{I^{(\lambda)} \in \underline{H_{S(\lambda), T}}(R)\right\}_{\lambda \in \Sigma_{V}^{i n t}} \overline{\underline{H_{V, T}^{i n t}}}(R)$, i.e., $f I^{\left(\lambda_{2}\right)} \subset I^{\left(\lambda_{1}\right)}$ for any $\lambda_{1}, \lambda_{2} \in \Sigma_{V}^{i n t}$ and any $f \in S_{\lambda_{1}-\lambda_{2}}$. We have to prove that this condition holds for any $\lambda_{1}, \lambda_{2} \in \Sigma_{\mathbb{X}}^{i n t}$. There exists $c \in \mathbb{N}$ such that $c \lambda_{1}, c \lambda_{2} \in \Sigma_{V}^{i n t}$. For any $f^{\prime} \in I^{\left(\lambda_{2}\right)}$ we have $f^{c}\left(f^{\prime}\right)^{c} \in I^{\left(\lambda_{1}\right)}$. Applying paragraph (3) of the proof of Lemma 4.4 to the algebra $P=\left(R \otimes_{k} S^{\left(\lambda_{1}\right)}\right) / I^{\left(\lambda_{1}\right)}$, we see that the projection of $\operatorname{Spec}\left(\left(R \otimes_{k} S^{\left(\lambda_{1}\right)}\right) / I^{\left(\lambda_{1}\right)}\right)$ to $\operatorname{Spec} R$ is a locally trivial bundle with fiber \mathbb{A}^{1}. Consequently, $\left(R \otimes_{k} S^{\left(\lambda_{1}\right)}\right) / I^{\left(\lambda_{1}\right)}$ is reduced and $f f^{\prime} \in I^{\left(\lambda_{1}\right)}$.

Remark 4.6. Note that restricting $\phi_{\mathbb{X}}$ to the main component H_{0}, we obtain a birational morphism of toric \mathbb{T} / T-varieties from H_{0} to the toric Chow quotient $\operatorname{Chow}(\mathbb{X}, T)$.

Example 4.7. Let $V=\mathbb{A}^{3}$ where \mathbb{G}_{m}^{3} and $T=\mathbb{G}_{m}$ act as in Example 4.3, and let $\mathbb{T}=\mathbb{G}_{m}^{2}$ be embedded in \mathbb{G}_{m}^{3} by $\left(t_{1}, t_{2}\right) \rightarrow\left(t_{1}, t_{1}, t_{2}\right)$. Consider the variety $\mathbb{X}=$ $\overline{\mathbb{T} \cdot(1,1,1)}=\operatorname{Spec} S$, where $S=k\left[x_{1}, x_{2}, x_{3}\right] / I_{\mathbb{X}}$ and $I_{\mathbb{X}}=\left(x_{1}-x_{2}\right)$. So $H_{\mathbb{X}, T}$ is defined in $H_{\mathbb{A}^{3}, T}$ by the equation $z_{1}=z_{2}$. We have the homomorphisms of groups of characters

$$
\mathbb{Z}^{3}=\Lambda\left(\mathbb{G}_{m}^{3}\right) \xrightarrow{\pi^{\prime}} \mathbb{Z}^{2}=\Lambda(\mathbb{T}) \xrightarrow{\pi} \mathbb{Z}=\Lambda(T)
$$

and of monoids

$$
\Omega_{\mathbb{A}^{3}} \rightarrow \Omega \rightarrow \Sigma,
$$

where $\Omega_{\mathbb{A}^{3}}$ is the monoid in $\Lambda\left(\mathbb{G}_{m}^{3}\right)$ generated by characters with negative coordinates.

Note that $\sum_{\mathbb{X}}^{i n t}=\Sigma_{\mathbb{A}^{3}}^{i n t}$ is the set of even numbers. The scheme $H_{\mathbb{A}^{3}, T}^{i n t}$ is the closed subscheme in \mathbb{P}^{3} defined by the equation $w_{3}^{2}=w_{1} w_{2}$, and $H_{\mathbb{X}, T}^{i n t}$ is defined by the equations $w_{1}=w_{2}=w_{3}$. The isomorphism

$$
\phi_{\mathbb{X}}^{i n t}: H_{\mathbb{X}, T}^{i n t} \rightarrow \mathbb{X} / C T=\operatorname{Proj} S
$$

is the restriction of the isomorphism

$$
\phi_{\mathbb{A}^{3}}^{i n t}: H_{\mathbb{A}^{3}, T}^{i n t} \rightarrow \mathbb{A}^{3} / C T=\operatorname{Proj} k\left[x_{1}, x_{2}, x_{3}\right],
$$

where the inverse isomorphism is given by

$$
\left(\phi_{\mathbb{A}^{3}}^{i n t}\right)^{-1}\left(x_{1}: x_{2}: x_{3}\right)=\left(x_{1}^{2}: x_{2}^{2}: x_{1} x_{2}: x_{3}\right) .
$$

Concerning the morphism $\phi_{\mathbb{A}^{3}}: H_{\mathbb{A}^{3}, T} \rightarrow \mathbb{A}^{3} / C T$, note that $\phi_{\mathbb{A}^{3}}^{-1}(\mathbb{X} / C T)$ is not contained in $H_{\mathbb{X}, T}$. Indeed, consider the ideal $I=\left(x_{1}, x_{2}^{2}\right) \in \underline{H_{\mathbb{A}^{3}, T}}(k)$. We have $\left(I_{\mathbb{X}}\right)_{r} \subset I_{r}$ for any even r, so $\phi_{\mathbb{A}^{3}}(I) \in \underline{\mathbb{X} / C T}(k)$, but $I \notin \underline{H_{\mathbb{X}, T}}(k)$.

References

[1] V. Alexeev and M. Brion, Moduli of affine schemes with reductive group action, J. Alg. Geom. 14 (2005), 83-117.
[2] L. J. Billera and B. Sturmfels, Fiber polytopes, Ann. of Math. 135 (1992), 527-549.
[3] A. Craw and D. Maclagan, Fiber fans and toric quotients, arXiv : math.AG/0510128.
[4] D. Eisenbud and J. Harris, The Geometry of Schemes, Springer, 2000.
[5] D. Eisenbud and B. Sturmfels, Binomial ideals, Duke Math. J. 84 (1996), 1-45.
[6] W. Fulton, Introduction to Toric Varieties. Univ. Press, Princeton, 1993.
[7] M. Haiman and B. Sturmfels, Multigraded Hilbert schemes, J. Alg. Geom. 13 (2004), 725-769.
[8] R. Hartshorne, Algebraic Geometry, Springer, 1977.
[9] M. Kapranov, B. Sturmfels, and A. Zelevinsky, Quotients of toric varieties, Math. Ann. 290 (1991), 644-655.
[10] I. Peeva and M. Stillman, Toric Hilbert schemes, Duke Math. J. 111 (2002), 419-449.
[11] B. Sturmfels, Gröbner Bases and Convex Polytopes. University Lecture Series 8, 1995.

Department of Higher Algebra
Faculty of Mechanics and Mathematics
Moscow State University
119992 Moscow
Russia
E-mail address: chuvasho@mccme.ru

[^0]: 2000 Mathematics Subject Classification. Primary 14C05; Secondary 52B20, 14M25.
 Key words and phrases. Toric Hilbert scheme, fiber polytope, toric Chow quotient.

 * The work was carried out while the author was visiting at the Institute Fourier (Grenoble) and supported by grant of the Research Training Network LIEGRITS.

