THE MAIN COMPONENT OF THE TORIC HILBERT SCHEME

O. V. Chuvashova*

Abstract

Let X be an affine toric variety under a torus T and let T be a subtorus. The generic T-orbit closures in X and their flat limits are parametrized by the main component H_0 of the toric Hilbert scheme (whose existence follows from work of Haiman and Sturmfels). Further, the quotient torus T/T acts on H_0 with a dense orbit. We describe the fan of this toric variety; this leads us to an integral analogue of the fiber polytope of Billera and Sturmfels. We also describe the relation of H_0 to the toric Chow quotient of Craw and Maclagan.

1 Introduction

The multigraded Hilbert scheme parametrizes, in a technical sense specified below, all homogeneous ideals in a polynomial algebra (or, more generally, in an arbitrary finitely generated algebra) having a fixed Hilbert function with respect to a grading by an abelian group. In [7] it was shown that the multigraded Hilbert scheme always exists as a quasiprojective scheme.

Let \mathbb{X} be an affine algebraic variety over an algebraically closed field k with an action of an algebraic torus T, so its algebra of regular functions $S := k[\mathbb{X}]$ is graded by the group $\Lambda(T)$ of characters of T:

$$S = \bigoplus_{\lambda \in \Lambda(T)} S_{\lambda},$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 14C05; Secondary 52B20, 14M25.

Key words and phrases. Toric Hilbert scheme, fiber polytope, toric Chow quotient.

^{*} The work was carried out while the author was visiting at the Institute Fourier (Grenoble) and supported by grant of the Research Training Network LIEGRITS.

where S_{λ} is the subspace of T-semiinvariant functions of weight λ . Let

$$\Sigma := \{ \lambda \in \Lambda(T) : S_{\lambda} \neq 0 \}.$$

This is a finitely generated monoid. Conversely, if S is a finitely generated algebra without nilpotent elements graded by $\Lambda(T)$, then we have a T-action on the affine algebraic variety $\mathbb{X} = \operatorname{Spec} S$.

The following definition was introduced in [7].

DEFINITION 1.1. Given a function $h: \Lambda(T) \to \mathbb{N}$, the *Hilbert functor* is the covariant functor $\underline{H}^h_{\mathbb{X},T}$ from the category of k-algebras to the category of sets assigning to any k-algebra R the set of all T-invariant ideals $I \subseteq R \otimes_k S$ such that $(R \otimes_k S_{\lambda})/I_{\lambda}$ is a locally free R-module of rank $h(\lambda)$ for any $\lambda \in \Lambda(T)$.

In [7, Th. 1.1] it was proved that there exists a quasiprojective scheme $H^h_{\mathbb{X},T}$ which represents this functor in the case when \mathbb{X} is a finite-dimensional T-module V. If the grading is positive (i.e., $k[V]_0 = k$), then $H^h_{V,T}$ is projective (see [7, Cor. 1.2]). In the case of an arbitrary \mathbb{X} there exists a T-equivariant closed immersion $\mathbb{X} \hookrightarrow V$, where V is a finite-dimensional T-module. Then the Hilbert functor $\underline{H^h_{\mathbb{X},T}}$ is represented by a closed subscheme of $H^h_{V,T}$ (see [1, Lemma 1.6]).

We consider the following case. Let X be an affine toric (not necessarily normal) variety under a torus T. We have

$$S = k[\mathbb{X}] = \bigoplus_{\chi \in \Omega} S_{\chi},$$

where $\Omega \subset \Lambda(\mathbb{T})$ is a finitely generated monoid and S_{χ} is the subspace of \mathbb{T} -semiinvariant functions of weight χ (dim $S_{\chi} = 1$). Let $T \subset \mathbb{T}$ be a subtorus. We have a surjective linear map $\pi : \Lambda(\mathbb{T}) \to \Lambda(T)$ given by the restriction. The action of T on \mathbb{X} arising from the action of \mathbb{T} gives a grading

$$S = \bigoplus_{\lambda \in \Sigma} S_{\lambda},$$

where $\Sigma = \pi(\Omega)$. In this paper we consider the following Hilbert function:

$$h(\lambda) := \begin{cases} 1 & \text{if } \lambda \in \Sigma, \\ 0 & \text{otherwise.} \end{cases}$$

Let $H_{\mathbb{X},T}$ be the corresponding Hilbert scheme (we shall also denote it by $H_{S,T}$). It is the *toric Hilbert scheme* in the sense that it parametrizes all ideals in S with the same Hilbert function as the ideal I_X corresponding to the toric T-variety $X = \overline{T \cdot x}$, where $x \in \mathbb{X}$ is a point in the open \mathbb{T} -orbit (see [10]). We have a natural action of \mathbb{T} on $H_{\mathbb{X},T}$. There is a canonical irreducible component H_0 of $H_{\mathbb{X},T}$ which is the \mathbb{T}/T -orbit closure of I_X (see Prop. 3.1(2)). This component is called the *main component* of the toric Hilbert scheme $H_{\mathbb{X},T}$. The scheme H_0 parametrizes generic T-orbit closures in \mathbb{X} and their flat limits. In fact, H_0 is a toric (not necessarily normal) \mathbb{T}/T -variety (see Prop. 3.1(1)). We describe its fan in terms of the fiber polyhedron for the map of monoids $\Omega \to \Sigma$ given by π (Theorem 3.8).

In the last section we consider the toric Chow morphism from the Hilbert scheme to the inverse limit $\mathbb{X}/_{C}T$ of GIT quotients $\mathbb{X}/_{A}T$. This morphism was constructed in [7, Sect. 5] in the case when $\mathbb{X} = \mathbb{A}^n$ and $\mathbb{T} = \mathbb{G}^n_m$ acts by rescaling of coordinates. We generalize this to the case of a normal affine toric \mathbb{T} -variety \mathbb{X} (Theorem 4.5). The toric Chow quotient is a toric \mathbb{T}/T -variety arising as an irreducible component of $\mathbb{X}/_{C}T$. The notion of the toric Chow quotient of a quasiprojective toric variety by a subtorus was introduced in [3]; this is a generalization of the toric Chow quotient of a projective variety studied by Kapranov-Sturmfels-Zelevinsky [9]. In [3] it was shown that the fan of the toric Chow quotient is the fiber fan, that is the normal fan to the fiber polytope of Billera-Sturmfels (see [2]) generalized to the case of a linear map of polyhedra. We show that the fan of H_0 is an integral analogue of the fiber fan. If $\mathbb{X} = \mathbb{A}^n$, $\mathbb{T} = \mathbb{G}^n_m$ acts by rescaling of coordinates, and the grading of $S = k[x_1, \ldots, x_n]$ by the weights of T is positive, then the fan of H_0 coincides with the normal fan to the state polytope of Sturmfels (see [11, Th. 2.5]).

The author is indebted to Michel Brion for posing the problem, numerous ideas and important comments. Thanks are also due to Ivan V. Arzhantsev for permanent support and useful discussions.

2 Terminology and notations

We consider the category of schemes over an algebraically closed field k. An algebraic variety is a separated integral scheme of finite type. Any scheme Z is characterized by its functor of points from the category of k-algebras to the category of sets:

$$\underline{Z}: \underline{k-Alg} \to \underline{Set}, \quad \underline{Z}(R) := \operatorname{Mor}(\operatorname{Spec} R, Z),$$

where Mor(Spec R, Z) is the set of morphisms of schemes over k from Spec R to Z (we denote the functor of points of a scheme by the corresponding underlined letter). Our main reference on schemes is [4]. If $\phi: Y \to Z$ is a morphism of schemes, then $\underline{\phi}(R)$ denotes the corresponding map of sets $\underline{Y}(R) \to \underline{Z}(R)$. We denote by \mathcal{O}_Z the structure sheaf of Z, and if Z is affine, then k[Z] denotes the algebra of sections of \mathcal{O}_Z over Z. We denote by \mathbb{A}^n the affine space Spec $k[x_1, \ldots, x_n]$.

An n-dimensional algebraic torus T is an algebraic group isomorphic to the direct product of n copies of the multiplicative group \mathbb{G}_m of the field k. For the lattices of characters and one-parameter subgroups of T, we use the notations $\Lambda(T) = \operatorname{Hom}(T, \mathbb{G}_m)$ and $\Gamma(T) = \operatorname{Hom}(\mathbb{G}_m, T)$. We denote by $\langle \cdot, \cdot \rangle$ the natural pairing between $\Lambda(T)$ and $\Gamma(T)$. For a lattice Λ , let $\Lambda_{\mathbb{R}} = \Lambda \otimes_{\mathbb{Z}} \mathbb{R}$. If $\Sigma \subset \Lambda$ is a monoid, then $\Sigma_{\mathbb{R}}$ denotes the subspace in $\Lambda_{\mathbb{R}}$ generated by Σ , and $\Sigma_{\mathbb{R}_+}$ denotes the cone in $\Lambda_{\mathbb{R}}$ generated by Σ . For subsets D_1, D_2 of a vector space, we denote by $D_1 + D_2$ the Minkovski sum.

By a *toric variety* under an algebraic torus T we mean an algebraic variety X such that T is embedded as an open subset into X and the action of T on itself by multiplication extends to an action on X. We do not require X to be normal.

We denote by \mathcal{C}_X the associated fan of a toric variety X, so $\mathcal{C}_X \subset \Gamma(T)_{\mathbb{R}}$ (see [6, Sec. 1.4]). The T-orbits on X are in order-reversing one-to-one correspondence with the cones of \mathcal{C}_X . If X_{σ} is the T-orbit corresponding to a cone σ in \mathcal{C}_X , then a one-parameter subgroup $\lambda \in \Gamma(T)$ lies in σ if and only if $\lim_{s\to 0} \lambda(s)$ exists and lies in the closure of the orbit X_{σ} in X. A toric variety is determined by its fan up to normalization.

3 Fan of a toric Hilbert scheme

Fix a \mathbb{T} -equivariant closed embedding $\mathbb{X} \hookrightarrow V$, where V is a finite-dimensional \mathbb{T} -module such that \mathbb{X} is not contained in a proper \mathbb{T} -submodule, and fix a basis of V consisting of \mathbb{T} -semiinvariant vectors. Let x_1, \ldots, x_n be the coordinates in this basis and let \mathbb{T} act on V by $t \cdot (x_1, \ldots, x_n) = (\chi_1(t)x_1, \ldots, \chi_n(t)x_n)$, $\chi_i \in \Lambda(\mathbb{T})$ (so T acts on V by $t \cdot (x_1, \ldots, x_n) = (\lambda_1(t)x_1, \ldots, \lambda_n(t)x_n)$, where $\lambda_i = \pi(\chi_i)$). Up to rescaling of the basis vectors we can assume that $\mathbb{X} = \overline{\mathbb{T} \cdot x}$, where $x = (1, \ldots, 1)$. We denote by X the T-orbit closure $\overline{T \cdot x}$ and $I_X \subset k[V]$ denotes the corresponding ideal. The characters $-\chi_1, \ldots, -\chi_n$ generate the monoid Ω (and the characters $-\lambda_1, \ldots, -\lambda_n$ generate the monoid Σ). We have

$$S = k[X] = k[x_1, \dots, x_n]/I_X,$$

where $I_{\mathbb{X}}$ is generated by all the binomials of the form $x_1^{c_1} \dots x_n^{c_n} - x_1^{b_1} \dots x_n^{b_n}$ such that $\sum c_i \chi_i = \sum b_i \chi_i$ (see [11, Lemma 4.1]). Note that the $\Lambda(T)$ -grading is positive if and only if the cone $\Sigma_{\mathbb{R}_+}$ is strictly convex and $\lambda_i \neq 0$ for all $i = 1, \dots, n$. Notice also that in the case of a positive grading there exists a unique minimal system of generators of Σ .

We consider the Hilbert scheme $H_{\mathbb{X},T}$ as a closed subscheme of $H_{V,T}$. For an algebra R the subset $\underline{H}_{\mathbb{X},T}(R) \subset \underline{H}_{V,T}(R)$ consists of those ideals $I \subset R \otimes_k k[V]$ that $I \in \underline{H}_{V,T}(R)$ and $R \otimes_k I_{\mathbb{X}} \subset I$. We can also view $\underline{H}_{\mathbb{X},T}(R)$ as a set of closed subschemes $Y \subset \operatorname{Spec} R \times \mathbb{X}$ such that the projection $Y \to \operatorname{Spec} R$ is flat. All the ideals $I \in \underline{H}_{V,T}(k)$ are binomial (see [5, Prop. 1.11]), and we have a special point $X \in H_{\mathbb{X},T}(k)$.

Recall that the universal family is the closed subscheme $\mathbb{W}_{\mathbb{X},T}$ of $H_{\mathbb{X},T} \times \mathbb{X}$ corresponding to the identity map $\{ \mathrm{Id} : H_{\mathbb{X},T} \to H_{\mathbb{X},T} \} \in \underline{H_{\mathbb{X},T}}(H_{\mathbb{X},T})$. For any $Y \in \underline{H_{\mathbb{X},T}}(R)$ (so Y is a closed subscheme in $\mathrm{Spec}(R \otimes_k S)$) we have $Y = \mathbb{W}_{\mathbb{X},T} \times_{H_{\mathbb{X},T}} \mathrm{Spec}(R)$. In fact, the k-rational points of \mathbb{W} are those pairs (y,Y), where $Y \in H_{\mathbb{X},T}(k)$ and $y \in \underline{Y}(k)$.

The group $\underline{\mathbb{T}}(R)$ acts on $\underline{H}_{\mathbb{X},T}(R)$ in the natural way. Namely, we have an action of $\underline{\mathbb{T}}(R)$ on $R \otimes_k S$: for $f \in R \otimes_k S_{\chi}$, where $\chi \in \Omega$, and $t \in \underline{\mathbb{T}}(R)$ let $t \cdot f = \chi(t)f$. Hence for $I \in \underline{H}_{\mathbb{X},T}(R)$ let $t \cdot I = \{t \cdot f : f \in I\}$. These actions commute with base extensions, thus we have an action of \mathbb{T} on $H_{\mathbb{X},T}$. Since T acts trivially, this yields an action of the torus \mathbb{T}/T . The universal family $\mathbb{W}_{\mathbb{X},T}$ is invariant under the diagonal action of \mathbb{T} on $\mathbb{X} \times H_{\mathbb{X},T}$.

Let H_0 be the toric orbit closure $\overline{\mathbb{T} \cdot X} \subset H_{\mathbb{X},T}$, and denote by \mathbb{W}_0 its preimage under the projection

$$p: \mathbb{W}_{\mathbb{X},T} \to H_{\mathbb{X},T}$$

(we consider H_0 and W_0 with their structure of reduced schemes).

PROPOSITION 3.1. (1) The stabilizer of X under the action of \mathbb{T} on H_0 is T, so H_0 is a toric variety under the torus \mathbb{T}/T .

- (2) The orbit $\mathbb{T} \cdot X$ is open in $H_{\mathbb{X},T}$. Consequently, H_0 is an irreducible component of $H_{\mathbb{X},T}$.
- (3) \mathbb{W}_0 is a toric variety under the torus \mathbb{T} (and, consequently, \mathbb{W}_0 is an irreducible component of $\mathbb{W}_{\mathbb{X},T}$).

PROOF. (1) If $t \cdot X = X$ for $t \in \mathbb{T}$, then $t \cdot x \in T \cdot x$ and $t \in T$.

(2) We shall prove that $\mathbb{T} \cdot X$ is open in $H_{\mathbb{X},T}$. Since the stabilizer of X in \mathbb{T} is T, it suffices to prove that $\dim T_X H_{\mathbb{X},T} \leq \dim \mathbb{T} \cdot X = \dim \mathbb{T} - \dim T$, where $T_X H_{\mathbb{X},T}$ denotes the tangent space to $H_{\mathbb{X},T}$ at X. By [7, Prop. 1.6], we have

$$T_X H_{\mathbb{X},T} = \operatorname{Hom}_{k[\mathbb{X}]}(I_X, k[X])_0 =$$

$$\operatorname{Hom}_{k[\mathbb{T}]}(I_T, k[T])_0 = \operatorname{Hom}_{k[\mathbb{T}]}(I_T/I_T^2, k[T])_0,$$

where I_T is the ideal of functions in $k[\mathbb{T}]$ vanishing on T. We can choose coordinates on \mathbb{T} such that

$$k[\mathbb{T}] = k[t_1, t_1^{-1}, \dots, t_m, t_m^{-1}, s_1, s_1^{-1}, \dots, s_r, s_r^{-1}],$$

where $r = \dim \mathbb{T} - \dim T$, and the ideal I_T is generated by $s_i - 1$ for $i = 1, \ldots, r$. The linear space I_T is spanned by the elements $t_1^{a_1} \ldots t_n^{a_n} s_1^{b_1} \ldots s_m^{b_m} (s_i - 1)$, where $a_i, b_j \in \mathbb{Z}$, and the projections of the elements $t_1^{a_1} \ldots t_n^{a_n} (s_i - 1)$ span the linear space I_T/I_T^2 (since $s_i(s_j - 1) = (s_j - 1) + (s_i - 1)(s_j - 1)$ and $s_i^{-1}(s_j - 1) = (s_j - 1) - s_i^{-1}(s_i - 1)(s_j - 1)$). Hence a homomorphism of $k[\mathbb{T}]$ -modules from I_T to k[T] is uniquely determined by the images of $s_i - 1$. Thus the dimension of the vector space of such homomorphisms of degree zero is not greater then r.

(3) Consider the restriction p_0 of p to \mathbb{W}_0 :

$$p_0: \mathbb{W}_0 \to H_0.$$

This is a flat morphism. By Lemma 3.2 below and [8, Cor. 9.6], the dimension of any irreducible component Z of \mathbb{W}_0 is equal to dim \mathbb{T} . This implies that $p_0(Z) = H_0$ and $Z \subset \overline{p^{-1}(\mathbb{T} \cdot X)}$. Thus $\mathbb{W}_0 = \overline{p^{-1}(\mathbb{T} \cdot X)} = \overline{\mathbb{T} \cdot (x, X)}$ is irreducible and $\mathbb{T} \cdot (x, X) \subset \mathbb{W}_0$ is dense and, consequently, open.

LEMMA 3.2. For any point $Y \in H_{X,T}$, the dimension of any irreducible component of its fibre $p^{-1}(Y)$ equals dim T.

PROOF. We denote by k(Y) the residue field of $Y \in H_{X,T}$. Then we have

$$p^{-1}(Y) = \operatorname{Spec} k(Y) \times_{H_{X,T}} W_{X,T} = \operatorname{Spec} L,$$

where L is a coherent sheaf of Σ -graded k(Y)-algebras:

$$L = \bigoplus_{\lambda \in \Sigma} L_{\lambda},$$

and $L_{\lambda} := k(Y) \otimes_{\mathcal{O}_{H_{\mathbb{X},T}}} (\mathcal{O}_{\mathbb{W}_{\mathbb{X},T}})_{\lambda}$ is isomorphic to k(Y).

Every point $Y \in H_{\mathbb{X},T}$ gives us a subdivision of $\Sigma_{\mathbb{R}_+}$ into subcones, namely two points $\lambda, \lambda' \in \Sigma$ lie in the same cone if and only if $L_{\lambda}L_{\lambda'} \neq 0$. The irreducible components Z of $p^{-1}(Y)$ correspond to the maximal cones C of this subdivision:

$$Z = \operatorname{Spec} \left(\bigoplus_{\lambda \in \Sigma \cap C} L_{\lambda} \right).$$

Let $\Sigma_C := \{\lambda \in \Sigma \cap C : L_\lambda \text{ is not nilpotent}\}$. Note that Σ_C is a monoid and $(\Sigma_C)_{\mathbb{R}_+} = C$. It suffices to prove that the dimension of $Z_{red} = \operatorname{Spec}(\bigoplus_{\lambda \in \Sigma_C} L_\lambda)$ is equal to $\dim T$. We can extend the action of T on Z_{red} to an action of the torus $T \times \operatorname{Spec} k(Y)$ (over the field k(Y)). Thus Z_{red} is a toric variety under the torus $T \times \operatorname{Spec} k(Y)$ and $\dim Z = \dim C = \dim T$.

Our aim is to describe the fans of the toric varieties H_0 and \mathbb{W}_0 . Let

$$\gamma: \mathbb{G}_m \to \mathbb{T}$$

be a one-parameter subgroup. Consider the closed embedding

$$\mathbb{G}_m \times X \subset \mathbb{G}_m \times \mathbb{X}$$
,

$$(s,x) \to (s,\gamma(s) \cdot x).$$

Let Ξ be the closure of the image of this embedding in $\mathbb{A}^1 \times \mathbb{X}$ (so Ξ is an algebraic variety). Since the projection $\Xi \to \mathbb{A}^1$ is a flat morphism, we have a morphism $\mathbb{A}^1 \to H_{\mathbb{X},T}$ such that $\Xi = \mathbb{W}_{\mathbb{X},T} \times_{H_{\mathbb{X},T}} \mathbb{A}^1$. Thus the limit of X under γ is the fiber of Ξ over 0 (we denote it by Ξ_0). This limit exists if and only if Ξ_0 is non-empty. Consider the commutative diagram:

$$\Xi \qquad \supset \quad \mathbb{G}_m \times X$$

$$\cap \qquad \qquad \cap$$

$$\mathbb{A}^1 \times \mathbb{X} \quad \supset \quad \mathbb{G}_m \times \mathbb{X}.$$

We have the corresponding homomorphisms of algebras:

$$k[\Xi] \qquad \hookrightarrow \quad k[\mathbb{G}_m \times X]$$

$$\uparrow \qquad \qquad \uparrow$$

$$k[\mathbb{A}^1 \times \mathbb{X}] \quad \hookrightarrow \quad k[\mathbb{G}_m \times \mathbb{X}],$$

where the vertical maps are surjective.

Denote by s the coordinate in \mathbb{A}^1 , let $\gamma_i := \langle \gamma, \chi_i \rangle$, and let I_X' denote the ideal generated by $I_X \subset k[x_1, \dots, x_n]$ in $k[x_1, \dots, x_n, s, s^{-1}]$. Thus we obtain

$$\Xi = \operatorname{Spec} k[s^{\gamma_1}x_1, \dots, s^{\gamma_n}x_n, s]/I_{\Xi},$$

where $I_{\Xi} = I_X' \cap k[s^{\gamma_1}x_1, \dots, s^{\gamma_n}x_n, s]$. Hence

$$k[\Xi_0] = k[s^{\gamma_1}x_1, \dots, s^{\gamma_n}x_n, s]/(I_\Xi, s) \simeq k[x_1, \dots, x_n]/I_\gamma,$$

where I_{γ} denotes the following ideal: for $f \in k[x_1, \ldots, x_n]$ let $in_{\gamma}(f)$ be the sum of all terms $cx_1^{a_1} \ldots x_n^{a_n}$ of f such that $\sum a_i \gamma_i$ is maximal, then I_{γ} is the ideal generated by the polynomials $in_{\gamma}(f)$, where $f \in I_X$.

EXAMPLE 3.3. Let $\mathbb{X} = \mathbb{A}^n$, $\mathbb{T} = \mathbb{G}_m^n$ act on \mathbb{A}^n by rescaling of coordinates, $T = \mathbb{G}_m$, and let the $\Lambda(T)$ -grading of $k[x_1, \ldots, x_n]$ be positive.

- (1) Consider the case n=3. It was proved by Arnold, Korkina, Post, Roelfols (see, for example, [11, Th. 10.2]), that any ideal $I \in \underline{H_{\mathbb{A}^n,T}}(k)$ is of the form $t \cdot I_{\gamma}$ for some $t \in \mathbb{G}_m^n$ and $\gamma \in \Gamma(\mathbb{G}_m^n)$. This means that in this case the toric Hilbert scheme is irreducible.
- (2) Let n=4 and $\lambda_1=1, \lambda_2=3, \lambda_3=4, \lambda_4=7$. Then the toric Hilbert scheme is reducible. Moreover, in $H_{\mathbb{A}^n,T}$ there are infinitely many orbits of \mathbb{G}_m^n (see [11, Th. 10.4]).

We can also write

$$k[\Xi_0] = \bigoplus_{\lambda \in \Sigma} k s^{n_{\gamma}(\lambda)} t^{\lambda},$$

where

$$n_{\gamma}(\lambda) := \min_{\chi \in \pi^{-1}(\lambda) \cap \Omega} \langle \gamma, \chi \rangle.$$

Here $s^{n_{\gamma}(\lambda)}t^{\lambda}$ denotes the image in $k[\Xi_0]$ of the monomial $p(x_1,\ldots,x_n) \in k[\mathbb{A}^1 \times \mathbb{X}]$ of weight $\chi_{\lambda} \in \Omega$, where $\chi_{\lambda} \in \pi^{-1}(\lambda) \cap \Omega$ is such that $\langle \gamma, \chi_{\lambda} \rangle$ is minimal. This image is a T-semiinvariant function of weight λ . The product $s^{n_{\gamma}(\lambda_1)}t^{\lambda_1}s^{n_{\gamma}(\lambda_2)}t^{\lambda_2} = s^{n_{\gamma}(\lambda_1)+n_{\gamma}(\lambda_2)}t^{\lambda_1+\lambda_2}$ equals zero if and only if $n_{\gamma}(\lambda_1) + n_{\gamma}(\lambda_2) > n_{\gamma}(\lambda_1 + \lambda_2)$. Consider the convex hull

$$P_{\lambda} := \operatorname{conv}(\pi^{-1}(\lambda) \cap \Omega) \subset \Lambda(\mathbb{T})_{\mathbb{R}}.$$

This is a convex polyhedron.

DEFINITION 3.4. Let P be a convex polyhedron. For any face F of P the normal cone $N_F(P)$ is the cone in the dual vector space consisting of those linear functions w that F is the face of P minimizing w. The normal fan N(P) of P is the fan whose cones are normal cones to the faces of P. (This definition is taken from [11], which we shall use as a general reference on convex polyhedra.)

Let $\mathcal{C}_{\lambda} \subset \Gamma(\mathbb{T})_{\mathbb{R}}$ denote the normal fan of P_{λ} . Note that any cone of \mathcal{C}_{λ} contains $\Gamma(T)_{\mathbb{R}} \subset \Gamma(\mathbb{T})_{\mathbb{R}}$.

REMARK 3.5. We can consider fans in $\Gamma(\mathbb{T}/T)_{\mathbb{R}}$ as fans in $\Gamma(\mathbb{T})_{\mathbb{R}}$ whose cones contain $\Gamma(T)_{\mathbb{R}}$. In particular, we view the fan of the toric \mathbb{T}/T -variety H_0 as a fan in $\Gamma(\mathbb{T})_{\mathbb{R}}$.

DEFINITION 3.6. A fan C_1 is a refinement of a fan C_2 if any cone of C_1 is contained in some cone of C_2 .

DEFINITION 3.7. We say that two polyhedra $P_1, P_2 \subset \Lambda(\mathbb{T})_{\mathbb{R}}$ are equivalent if they have the same normal fan.

THEOREM 3.8. (1) The fan $\mathcal{C}_{H_0} \subset \Gamma(\mathbb{T})_{\mathbb{R}}$ of the toric \mathbb{T}/T -variety H_0 is the maximal common refinement of the fans \mathcal{C}_{λ} , where $\lambda \in \Sigma$.

- (2) The support of any C_{λ} is the cone generated by those one-parameter subgroups γ that $\langle \gamma, \chi \rangle \geq 0$ for any $\chi \in \pi^{-1}(0) \cap \Omega$. In particular, the grading of S by $\Lambda(T)$ is positive if and only if this support is the whole space $\Gamma(\mathbb{T})_{\mathbb{R}}$, i.e., any polyhedron P_{λ} is a polytope. This holds if and only if H_0 is projective.
- (3) There are only finitely many non-equivalent polyhedra P_{λ} for $\lambda \in \Sigma$. Hence C_{H_0} is the normal fan of the Minkovski sum of representatives of the equivalence classes (we denote this sum by P_{H_0}).

PROOF. Statement (1) immediately follows from the description of limits under oneparameter subgroups given above.

(2) First note that P_0 is a cone and its normal cone C_0 is generated by those oneparameter subgroups γ that $\langle \gamma, \chi \rangle \geq \langle \gamma, 0 \rangle = 0$ for any $\chi \in \pi^{-1}(0) \cap \Omega$. Further note that the recession cone of any P_{λ} is P_0 (the recession cone of a polyhedron P is the set of those vectors v such that $u + v \in P$ for any $u \in P$). Indeed, S_{λ} is a finitely generated S_0 -module. Let $\mu_1, \ldots, \mu_d \in \Lambda(\mathbb{T})$ be the weights of a set of \mathbb{T} -semiinvariant generators. Then

$$P_{\lambda} = \operatorname{conv}(\bigcup_{i=1}^{d} (\mu_i + P_0)) = \operatorname{conv}(\mu_1, \dots, \mu_d) + P_0.$$

It follows that the support of \mathcal{C}_{λ} is \mathcal{C}_{0} .

If the support of \mathcal{C}_{H_0} is not $\Gamma(\mathbb{T})_{\mathbb{R}}$, then H_0 is not complete and, consequently, is not projective. Conversely, if the grading is positive, then the Hilbert scheme $H_{\mathbb{X},T}$ is projective, and H_0 is projective.

(3) There are only finitely many fans \mathcal{C} such that \mathcal{C}_{H_0} is a refinement of \mathcal{C} and the supports of \mathcal{C} and \mathcal{C}_{H_0} coincide.

Since $\mathbb{W}_0 \subset H_0 \times \mathbb{X}$, it follows that the fan of \mathbb{W}_0 is the maximal common refinement of the fans \mathcal{C}_{H_0} and $N(\Omega_{\mathbb{R}_+})$. This is the normal fan of the Minkovski sum $P_{H_0} + \Omega_{\mathbb{R}_+}$.

REMARK 3.9. By [11, Th. 7.15], it follows that in the case when $\mathbb{X} = \mathbb{A}^n$, $\mathbb{T} = \mathbb{G}_m^n$ acts by rescaling of coordinates, and the $\Lambda(T)$ -grading of $k[\mathbb{X}]$ is positive, the polytope P_{H_0} is equivalent to the Minkovski sum of P_{λ} corresponding to the weights λ of the elements of the universal Gröbner basis of $I_{\mathbb{X}}$.

Let \mathbb{X} be normal. Now we are going to give a precise description of those characters $\lambda \in \Sigma$ having equivalent polyhedra P_{λ} . Recall that we have a homomorphism of lattices $\pi : \Lambda(\mathbb{T}) \to \Lambda(T)$, a finitely generated monoid $\Omega \subset \Lambda(\mathbb{T})$ such that $\Omega = \Omega_{\mathbb{R}_+} \cap \Lambda(\mathbb{T})$, and we put $\Sigma = \pi(\Omega)$. To any point $\lambda \in \Sigma$ we associate the polyhedron $P_{\lambda} = \text{conv}(\pi^{-1}(\lambda) \cap \Omega) \subset \Lambda(\mathbb{T})_{\mathbb{R}}$. Two points $\lambda, \lambda' \in \Sigma$ are said to be *equivalent* if the corresponding polyhedra P_{λ} and $P_{\lambda'}$ are equivalent. The question is to describe equivalence classes constructively.

First consider $\pi_{\mathbb{R}}: \Lambda(\mathbb{T})_{\mathbb{R}} \to \Lambda(T)_{\mathbb{R}}$, the linear map induced by π . Let $\mathcal{C}^{\mathbb{R}}_{\lambda}$ denote the normal fan to the polyhedron

$$P_{\lambda}^{\mathbb{R}} := \pi_{\mathbb{R}}^{-1}(\lambda) \cap \Omega_{\mathbb{R}_{+}}.$$

Consider the cell decomposition of $\Sigma_{\mathbb{R}_+}$ induced by π (see [3]). Namely, the characters λ and λ' lie in the interior of the same cone of this decomposition if and only if the set of those faces of $\Omega_{\mathbb{R}_+}$ whose images under $\pi_{\mathbb{R}}$ contain λ coincides with the set of such faces for λ' .

Fix a cone σ of this decomposition. Note that if λ lies in the interior of σ and $\lambda' \in \sigma$, then $\mathcal{C}_{\lambda}^{\mathbb{R}}$ refines $\mathcal{C}_{\lambda'}^{\mathbb{R}}$. In particular, the polyhedra $P_{\lambda}^{\mathbb{R}}$ corresponding to interior points λ of σ are equivalent. Let $P_{\mathbb{R}}$ denote the Minkovski sum of $P_{\lambda}^{\mathbb{R}}$ for representatives of interior points for all cones of the cell decomposition and let $\mathcal{C}_{\mathbb{R}}$ denote the normal fan to $P_{\mathbb{R}}$ (note that in the Minkovski sum it suffices to take representatives of interior points for the maximal cones of the cell decomposition).

REMARK 3.10. In [3] the fan $\mathcal{C}_{\mathbb{R}}$ is called the *fiber fan* by analogy with the normal fan of the fiber polytope for a linear projection of polytopes (see [2]).

Consider a point λ lying in the interior of σ and the corresponding polyhedron $P_{\lambda}^{\mathbb{R}}$. For any vertex v of $P_{\lambda}^{\mathbb{R}}$ there exists a unique minimal face F of $\Omega_{\mathbb{R}_{+}}$ such that $F \cap P_{\lambda}^{\mathbb{R}} = \{v\}$ (indeed, since $P_{\lambda}^{\mathbb{R}}$ is the intersection of the cone Ω with the affine subspace $\pi_{\mathbb{R}}^{-1}(\lambda)$, it follows that any face of $P_{\lambda}^{\mathbb{R}}$ is the intersection of $\pi_{\mathbb{R}}^{-1}(\lambda)$ with some face of Ω). Let $v_{1}^{\lambda}, \ldots, v_{l(\sigma)}^{\lambda} \in \Lambda(\mathbb{T})_{\mathbb{R}}$ be the vertices of $P_{\lambda}^{\mathbb{R}}$ and let $F_{1}^{\sigma}, \ldots, F_{l(\sigma)}^{\sigma}$ be the corresponding faces (the set of such faces does not depend on a point λ in the interior of σ). For two vectors $\chi, \chi' \in \Lambda(\mathbb{T})_{\mathbb{R}}$ we say $\chi \prec \chi'$ if $\chi' - \chi \in \Omega_{\mathbb{R}_{+}}$.

DEFINITION 3.11. (See [7, Def 5.4].) A character $\lambda \in \Sigma$ is *integral* if the inclusion of the convex polyhedra $P_{\lambda} \subseteq P_{\lambda}^{\mathbb{R}}$ is an equality.

We shall denote by $\Sigma_{\mathbb{X}}^{int}$ the set of integral characters. Note that $\Sigma_{V}^{int} \subset \Sigma_{\mathbb{X}}^{int}$, where V is considered as a toric variety under the torus \mathbb{G}_{m}^{n} acting by rescaling of coordinates.

LEMMA 3.12. Let $\lambda_0 \in \sigma$ be integral, $\lambda \in \sigma$, and let $v_i^{\lambda} \succ (l(\sigma) - 1)v_i^{\lambda_0}$ for any $i = 1, \ldots, l(\sigma)$. Then $P_{\lambda + \lambda_0} = P_{\lambda} + P_{\lambda_0}$.

PROOF. The inclusion $P_{\lambda} + P_{\lambda_0} \subseteq P_{\lambda + \lambda_0}$ is evident. Denote by D_{μ} the convex hull of the v_i^{μ} , $i = 1, \ldots, l(\sigma)$, where μ is a point in the interior of σ . By Theorem 3.8 (2), $P_{\mu} = D_{\mu} + P_0$. Thus it suffices to prove that $D_{\lambda + \lambda_0} \subseteq P_{\lambda} + P_{\lambda_0}$. Let χ lie in $D_{\lambda + \lambda_0}$, i.e., $\chi = \sum_{i=1}^{l(\sigma)} q_i v_i^{\lambda + \lambda_0}$, where $q_i \geq 0$ and $\sum_{i=1}^{l(\sigma)} q_i = 1$. There exists i such that $q_i \geq 1/l$. Hence $\chi \succ q_i v_i^{\lambda + \lambda_0} = q_i (v_i^{\lambda} + v_i^{\lambda_0}) \succ v_i^{\lambda_0}$. Thus $\chi - v_i^{\lambda_0} \in \Omega_{\mathbb{R}_+} \cap \Lambda(\mathbb{T}) = \Omega$.

Let μ_1, \ldots, μ_r be generators of the monoid $\sigma \cap \Sigma$ and let $c_1, \ldots, c_r \in \mathbb{N}$ be such that $c_i \mu_i$ are integral, $i = 1, \ldots, r$. By Lemma 3.12, it follows that taking P_{λ} for $\lambda = \sum_{i=1}^r d_i \mu_i$, where $0 < d_i < lc_i$, we obtain representatives of all equivalence classes of points in σ up to the Minkovski sum with $P_{\lambda}^{\mathbb{R}}$. Hence P_{H_0} is the Minkovski sum of such representatives for all (maximal) cones σ of the subdivision of $\Sigma_{\mathbb{R}_+}$ induced by $\pi_{\mathbb{R}}$.

EXAMPLE 3.13. Let $\mathbb{X} = \mathbb{A}^n$, $\mathbb{T} = \mathbb{G}_m^n$ act be rescaling of coordinates, and let $T = \mathbb{G}_m$ act on \mathbb{A}^n with characters $\lambda_1, \ldots, \lambda_n \in \mathbb{Z}$. Then $\Omega \subset \mathbb{Z}^n$ is the set of vectors with integral non-positive coordinates, and $\Sigma \subset \mathbb{Z}$ is the monoid generated by $-\lambda_i$. Moreover, $\Sigma = (\Sigma \cap \mathbb{Z}_+) \cup (\Sigma \cap \mathbb{Z}_-)$ is the subdivision of Σ induced by π . Let n_+ and n_- be the numbers of positive and negative λ_i respectively. A number $\lambda \in \mathbb{Z}_+$ (resp. \mathbb{Z}_-) is integral (in the sense of Definition 3.11) if and only if λ is divisible by any $\lambda_i < 0$ (resp. > 0). Let λ_+ (resp. λ_-) be the least common (positive) multiple of all positive (resp. negative) λ_i . Then P_{H_0} is the Minkovski sum of polyhedra P_{λ} for $-n_+\lambda_+ < \lambda < n_-\lambda_-$.

4 Toric Chow morphism

We are going to describe the toric Chow morphism from the Hilbert scheme to the inverse limit of GIT quotients $\mathbb{X}/_{\lambda}T$. In [7, Sect. 5] the toric Chow morphism was constructed in the case when $\mathbb{X} = \mathbb{A}^n$ is a T-module. We generalize this to the case of a normal affine toric \mathbb{T} -variety \mathbb{X} .

We use the notations of the previous sections. Let

$$S^{(\lambda)} := \bigoplus_{r=0}^{\infty} S_{r\lambda},$$

and let

$$\mathbb{X}/_{\lambda}T := \operatorname{Proj} S^{(\lambda)}$$

be the GIT quotient. In particular, $\mathbb{X}/T = \mathbb{X}/T = \operatorname{Spec}(S_0)$. Notice also that $\mathbb{X}/T = \mathbb{X}_{\lambda}^{ss}/T$, where

$$\mathbb{X}_{\lambda}^{ss} := \{ x \in \mathbb{X} : f(x) \neq 0 \text{ for some homogeneous } f \in S^{(\lambda)} \}.$$

If λ lies in the interior of $\Sigma_{\mathbb{R}_+}$, then \mathbb{X}/T is a normal toric \mathbb{T}/T -variety whose fan is $\mathcal{C}^{\mathbb{R}}_{\lambda}$, the normal fan to the polyhedron $P^{\mathbb{R}}_{\lambda}$.

We are going to define the toric Chow quotient of a toric variety \mathbb{X} by a subtorus T (see [3, Sect. 3.2]). If a fan C_1 is a refinement of C_2 , then we have a projective morphism $Y_{C_1} \to Y_{C_2}$ between the corresponding normal toric varieties (see [6, Th. 2.4]), so the varieties \mathbb{X}/T , where $\lambda \in \Sigma$, form an inverse system. Consider the inverse limit

Note that \mathbb{X}/CT is a closed subscheme in V/CT. By [3, Prop. 3.8], it follows that \mathbb{X}/CT has an irreducible component that is a toric variety under the torus \mathbb{T}/T . Moreover, this component is the toric Chow quotient in the sense of the following definition.

DEFINITION 4.1. (See [3, Def. 3.9].) The toric Chow quotient of a toric \mathbb{T} -variety \mathbb{X} by a subtorus T is the irreducible component $\operatorname{Chow}(\mathbb{X},T)$ of $\mathbb{X}/_{\!\!C}T$ such that

- (1) Chow(\mathbb{X}, T) is a toric \mathbb{T}/T -variety;

REMARK 4.2. By [3, Prop. 3.10], it follows that the fan of $\operatorname{Chow}(X,T)$ is $\mathcal{C}_{\mathbb{R}}$, the maximal common refinement of all the normal fans to the polyhedra $P_{\lambda}^{\mathbb{R}}$, $\lambda \in \Sigma$. Since every character $\lambda \in \Sigma$ has some integral positive multiple $c\lambda \in \Sigma_{\mathbb{X}}^{int}$ $(c \in \mathbb{N})$, the fan \mathcal{C}_{H_0} is a refinement of the fan $\mathcal{C}_{\mathbb{R}}$.

The following example shows that \mathcal{C}_{H_0} and $\mathcal{C}_{\mathbb{R}}$ do not always coincide.

EXAMPLE 4.3. Let $\mathbb{X} = \mathbb{A}^3$, $\mathbb{T} = \mathbb{G}_m^3$ act by rescaling of coordinates, and let $T = \mathbb{G}_m$ act by $t(x_1, x_2, x_3) = (tx_1, tx_2, t^2x_3)$.

The Hilbert scheme $H_{\mathbb{A}^3,T}$ is the closed subscheme in $\mathbb{P}^1 \times \mathbb{P}^3$ defined by the equations $z_1w_3 - z_2w_1 = 0$ and $z_1w_2 - z_2w_3 = 0$ (where z_1, z_2 and w_1, w_2, w_3, w_4 are homogeneous coordinates in \mathbb{P}^1 and \mathbb{P}^3 respectively). The integral (in the sense of Definition 3.11) degrees are even. The fan \mathcal{C}_{H_0} consists of the following cones:

$$\mathbb{R}_{+}(e_{1} + e_{2}) + \mathbb{R}_{+}e_{2},$$

$$\mathbb{R}_{+}(e_{1} + e_{2}) + \mathbb{R}_{+}(-e_{2}),$$

$$\mathbb{R}_{+}(e_{2} - e_{1}) + \mathbb{R}_{+}e_{2},$$

$$\mathbb{R}_{+}(e_{2} - e_{1}) + \mathbb{R}_{+}(-e_{2}),$$

where $e_1 = \chi_1^* + \chi_3^*$, $e_2 = -\chi_3^*$ is a basis of $\Gamma(\mathbb{T}/T)$. The toric Chow quotient is $\mathbb{A}^3/_{\mathbb{C}}T = \text{Proj } k[x_1, x_2, x_3]$ (where $k[x_1, x_2, x_3]$ is graded by the weights of T), and its fan $\mathcal{C}_{\mathbb{R}}$ consists of the following cones:

$$\mathbb{R}_{+}(e_{1} + e_{2}) + \mathbb{R}_{+}(-e_{2}),$$

$$\mathbb{R}_{+}(e_{2} - e_{1}) + \mathbb{R}_{+}(-e_{2}),$$

$$\mathbb{R}_{+}(e_{1} + e_{2}) + \mathbb{R}_{+}(e_{2} - e_{1}).$$

$$C_{\mathbb{R}}$$

$$c_{H_{0}}$$

$$e_{2} - e_{1}$$

$$e_{2} - e_{1}$$

$$e_{2} - e_{1} + e_{2}$$

By Lemma 3.12, it follows that if a character $\lambda \in \Sigma$ is integral, then there exists r_0 such that $S_{(r+1)\lambda} = S_{\lambda}S_{r\lambda}$ for all $r \geq r_0$. The statement of the following lemma was given in [7, Sect. 5] with a proof for algebras generated by elements of degree 1. For the convenience of the reader we give a complete proof here.

LEMMA 4.4. Let P be an N-graded algebra: $P = \bigoplus_{r \geq 0} P_r$, and

(*) there exists r_0 such that $P_{r+1} = P_1 P_r$ for any $r \ge r_0$.

Then the Hilbert scheme H_P of the graded algebra P for the Hilbert function

$$h(r) := \begin{cases} 1 & if \ r \ge 0, \\ 0 & otherwise \end{cases}$$

is isomorphic to Proj P.

PROOF. We shall show that $\operatorname{Proj} P$ represents the Hilbert functor $\underline{H_P}$. For this we prove that the tautological bundle over $\operatorname{Proj} P$ is the universal family.

(1) Consider the open subscheme in Spec P that is the complement to the subscheme defined by the ideal $\bigoplus_{r>0} P_r$:

$$(\operatorname{Spec} P)_0 = \{ p \in \operatorname{Spec} P : p \not\supseteq (\bigoplus_{r>0} P_r) \}$$

and the natural morphism

$$\psi: (\operatorname{Spec} P)_0 \to \operatorname{Proj} P.$$

Locally ψ is given by the embeddings of algebras $(P_f)_0 \subset P_f$, where $f \in P$ is homogeneous, deg f > 0 (it is clear that the corresponding morphisms of affine schemes satisfy the compatibility conditions). Note that ψ is a locally trivial bundle with fiber \mathbb{G}_m . Indeed, by the condition (*), it follows that Proj P is covered by open affine subschemes Spec $(P_h)_0$, where $h \in P_1$, and for any $h \in P_1$ we have $P_h = (P_h)_0[h, h^{-1}]$.

(2) The grading of P defines an action of \mathbb{G}_m on $\operatorname{Spec} P$ and on $(\operatorname{Spec} P)_0$. Consider

$$E := (\operatorname{Spec} P)_0 \times_{\mathbb{G}_m} \mathbb{A}^1.$$

Here $(\operatorname{Spec} P)_0 \times_{\mathbb{G}_m} \mathbb{A}^1$ denotes the categorical quotient $((\operatorname{Spec} P)_0 \times \mathbb{A}^1) / / \mathbb{G}_m$, where \mathbb{G}_m acts on \mathbb{A}^1 as follows: $t \cdot s = t^{-1}s$, $t \in \mathbb{G}_m$, $s \in \mathbb{A}^1$ (locally we have $E_f = \operatorname{Spec} \bigoplus_{r \geq 0} (P_f)_r$, where $f \in P$ is homogeneous of positive degree). Then ψ gives a morphism

$$E \to \operatorname{Proj} P$$

which is a locally trivial bundle with fiber \mathbb{A}^1 .

(3) Now we are going to prove the universal property for E. Let $Z = \operatorname{Spec} R$ be an affine scheme and $Y = \operatorname{Spec} (R \otimes_k P/I) \in \underline{H_P}(R)$. Consider $Y_0 = Y \cap (Z \times (\operatorname{Spec} P)_0)$. We have the morphisms

$$Y_0 \xrightarrow{\rho} \operatorname{Proj} (R \otimes_k P/I) \xrightarrow{\delta} Z.$$

Since $R \otimes_k P/I$ satisfies the condition (*), by (1), it follows that ρ is a locally trivial bundle with fiber \mathbb{G}_m . So δ is an isomorphism. Consider the following morphism from Z to Proj P:

$$Z \cong \operatorname{Proj}(R \otimes_k P/I) \subset Z \times \operatorname{Proj} P \xrightarrow{p} \operatorname{Proj} P$$

where p is the projection. We shall show that $Y = E \times_{\text{Proj } P} Z$.

(a) Note that $Y_0 = (\operatorname{Spec} P)_0 \times_{\operatorname{Proj} P} Z$. Indeed, locally we have

$$R \otimes_k P_f/I_f \simeq P_f \otimes_{(P_f)_0} (R \otimes_k (P_f)_0/(I_f)_0),$$

where $f \in P$ is homogeneous of positive degree.

(b) As in (2), consider $Y' = Y_0 \times_{\mathbb{G}_m} \mathbb{A}^1$ and the natural morphism $\eta: Y' \to Y$, which is locally given by the homomorphisms

$$R \otimes_k P/I \to \bigoplus_{r>0} (R \otimes_k P_f/I_f)_r,$$

where $f \in P$ is homogeneous of positive degree. So we have a commutative diagram:

$$Y_0 \times_{\mathbb{G}_m} \mathbb{A}^1 \xrightarrow{\eta} Y$$

$$Z.$$

Since $Y, Y' \in \underline{H_P}(R)$, likewise, η is an isomorphism.

(c) Thus we have
$$Y = Y_0 \times_{\mathbb{G}_m} \mathbb{A}^1 = ((\operatorname{Spec} P)_0 \times_{\operatorname{Proj} P} Z) \times_{\mathbb{G}_m} \mathbb{A}^1 = E \times_{\operatorname{Proj} P} Z.$$

This lemma implies that

$$H_{S^{(\lambda)},T} = \operatorname{Proj} S^{(\lambda)} = \mathbb{X}/_{\lambda} T,$$

for any $\lambda \in \Sigma_{\mathbb{X}}^{int}$.

For any subset $D \subset \Sigma$ we can consider the restriction of the Hilbert scheme $H_{\mathbb{X},T}$ on degrees D, that is, the quasiprojective scheme $H_{\mathbb{X},T}^D$ representing the covariant functor

$$H_{\mathbb{X},T}^D: \underline{k-Alg} \to \underline{Set}$$

such that $\underline{H_{\mathbb{X},T}^D}(R)$ is the set of families $\{L_{\lambda}\}_{{\lambda}\in D}$, where $L_{\lambda}\subset R\otimes_k S_{\lambda}$ is an R-submodule, such that $\overline{(R\otimes_k S_{\lambda})}/L_{\lambda}$ is a locally free R-module of rank 1 and $fL_{\lambda_2}\subset L_{\lambda_1}$ for any $\lambda_1,\lambda_2\in D$ and any $f\in S_{\lambda_1-\lambda_2}$ (see [7]). In particular, $H_{\mathbb{X},T}^{\Sigma}=H_{\mathbb{X},T}$ and $H_{S^{(\lambda)},T}=H_{\mathbb{X},T}^{D^{\lambda}}$,

where $D^{\lambda} := \{c\lambda : c \in \mathbb{Z}_+\}$. Note also that $H^D_{\mathbb{X},T}$ is a closed subscheme of $H^D_{V,T}$. For any $D \subset \Sigma$ we have a degree restriction morphism $H_{\mathbb{X},T} \to H^D_{\mathbb{X},T}$. In particular, we have canonical morphisms

$$\phi_{\mathbb{X}}^{\lambda}: H_{\mathbb{X},T} \to \mathbb{X}/_{\lambda}T.$$

The following theorem was proved in [7, Th. 5.6] for the case when $\mathbb{X} = \mathbb{A}^n$ and $\mathbb{T} = \mathbb{G}_m^n$ acts by rescaling of coordinates.

Theorem 4.5. Let $H_{\mathbb{X},T}^{int} := H_{\mathbb{X},T}^{\Sigma_{\mathbb{X}}^{int}}$ be the toric Hilbert scheme restricted to the set of integral degrees. Then there is a canonical morphism

$$\phi_{\mathbb{X}}^{int}: H_{\mathbb{X}.T}^{int} \to \mathbb{X}/_{\!C}T$$

which induces an isomorphism of the corresponding reduced schemes. In particular, composing $\phi_{\mathbb{X}}^{int}$ with the degree restriction morphism, we obtain a canonical Chow morphism from the toric Hilbert scheme to the inverse limit of the GIT quotients

$$\phi_{\mathbb{X}}: H_{\mathbb{X},T} \to \mathbb{X}/\!\!\!/_{\!C}T.$$

PROOF. As in [7, Lemma 5.7], we see that the morphisms $\phi_{\mathbb{X}}^{\lambda}$ satisfy the compatibility conditions for $\lambda \in \Sigma_{\mathbb{X}}^{int}$ and, consequently, give a canonical morphism

$$H_{\mathbb{X},T} \to H_{\mathbb{X},T}^{int} \xrightarrow{\phi_{\mathbb{X}}^{int}} \mathbb{X}/_{C}T.$$

Futher, note that for any algebra R the morphism

$$\underline{\phi_{\mathbb{X}}^{int}}(R): \underline{H_{\mathbb{X},T}^{int}}(R) \to \underline{\mathbb{X}_{E}}T(R)$$

is injective (since $H_{S^{(\lambda)},T} = \mathbb{X}/T$, we view any element of $\underline{\mathbb{X}/C}T(R)$ as a family of ideals $\{I^{(\lambda)} \in \underline{H_{S^{(\lambda)},T}}(R)\}_{\lambda \in \Sigma_{\mathbb{X}}^{int}}$ satisfying the compatibility conditions of the direct system). Hence to prove that $\phi_{\mathbb{X}}^{int}$ induces an isomorphism of the reduced schemes, it suffices to show that $\underline{\phi_{\mathbb{X}}^{int}}(R)$ is surjective for any reduced R.

Note that $\phi_{\mathbb{X}}^{\lambda}$ coincides with the restriction of ϕ_{V}^{λ} to $H_{\mathbb{X},T} \subset H_{V,T}$ for any $\lambda \in \Sigma_{V}^{int} \subset \Sigma_{\mathbb{X}}^{int}$. By [7, Th. 5.6], the map $\phi_{V}^{int}(R)$ is surjective for any reduced R, and it follows that any element $\{I^{(\lambda)} \in \underline{H_{S^{(\lambda)},T}(R)}\}_{\lambda \in \Sigma_{\mathbb{X}}^{int}}$ in $\underline{\mathbb{X}}_{C}^{k}T(R) \subset \underline{V}_{C}^{k}T(R)$ gives an element $\{I^{(\lambda)} \in \underline{H_{S^{(\lambda)},T}(R)}\}_{\lambda \in \Sigma_{V}^{int}}$ in $\underline{H_{V,T}^{int}(R)}$, i.e., $fI^{(\lambda_{2})} \subset I^{(\lambda_{1})}$ for any $\lambda_{1}, \lambda_{2} \in \Sigma_{V}^{int}$ and any $f \in S_{\lambda_{1}-\lambda_{2}}$. We have to prove that this condition holds for any $\lambda_{1}, \lambda_{2} \in \Sigma_{\mathbb{X}}^{int}$. There exists $c \in \mathbb{N}$ such that $c\lambda_{1}, c\lambda_{2} \in \Sigma_{V}^{int}$. For any $f' \in I^{(\lambda_{2})}$ we have $f^{c}(f')^{c} \in I^{(\lambda_{1})}$. Applying paragraph (3) of the proof of Lemma 4.4 to the algebra $P = (R \otimes_{k} S^{(\lambda_{1})})/I^{(\lambda_{1})}$, we see that the projection of Spec $((R \otimes_{k} S^{(\lambda_{1})})/I^{(\lambda_{1})})$ to Spec R is a locally trivial bundle with fiber \mathbb{A}^{1} . Consequently, $(R \otimes_{k} S^{(\lambda_{1})})/I^{(\lambda_{1})}$ is reduced and $ff' \in I^{(\lambda_{1})}$.

REMARK 4.6. Note that restricting $\phi_{\mathbb{X}}$ to the main component H_0 , we obtain a birational morphism of toric \mathbb{T}/T -varieties from H_0 to the toric Chow quotient Chow(\mathbb{X}, T).

EXAMPLE 4.7. Let $V = \mathbb{A}^3$ where \mathbb{G}_m^3 and $T = \mathbb{G}_m$ act as in Example 4.3, and let $\mathbb{T} = \mathbb{G}_m^2$ be embedded in \mathbb{G}_m^3 by $(t_1, t_2) \to (t_1, t_1, t_2)$. Consider the variety $\mathbb{X} = \mathbb{T} \cdot (1, 1, 1) = \operatorname{Spec} S$, where $S = k[x_1, x_2, x_3]/I_{\mathbb{X}}$ and $I_{\mathbb{X}} = (x_1 - x_2)$. So $H_{\mathbb{X},T}$ is defined in $H_{\mathbb{A}^3,T}$ by the equation $z_1 = z_2$. We have the homomorphisms of groups of characters

$$\mathbb{Z}^3 = \Lambda(\mathbb{G}_m^3) \xrightarrow{\pi'} \mathbb{Z}^2 = \Lambda(\mathbb{T}) \xrightarrow{\pi} \mathbb{Z} = \Lambda(T)$$

and of monoids

$$\Omega_{\mathbb{A}^3} \to \Omega \to \Sigma$$

where $\Omega_{\mathbb{A}^3}$ is the monoid in $\Lambda(\mathbb{G}_m^3)$ generated by characters with negative coordinates.

Note that $\Sigma_{\mathbb{X}}^{int} = \Sigma_{\mathbb{A}^3}^{int}$ is the set of even numbers. The scheme $H_{\mathbb{A}^3,T}^{int}$ is the closed subscheme in \mathbb{P}^3 defined by the equation $w_3^2 = w_1 w_2$, and $H_{\mathbb{X},T}^{int}$ is defined by the equations $w_1 = w_2 = w_3$. The isomorphism

$$\phi^{int}_{\mathbb{X}}:H^{int}_{\mathbb{X},T}\to\mathbb{X}/\!\!_{\!\!C}T=\operatorname{Proj}S$$

is the restriction of the isomorphism

$$\phi^{int}_{\mathbb{A}^3}: H^{int}_{\mathbb{A}^3,T} \to \mathbb{A}^3/_{\!\!C}T = \operatorname{Proj} k[x_1,x_2,x_3],$$

where the inverse isomorphism is given by

$$(\phi_{A3}^{int})^{-1}(x_1:x_2:x_3) = (x_1^2:x_2^2:x_1x_2:x_3).$$

Concerning the morphism $\phi_{\mathbb{A}^3}: H_{\mathbb{A}^3,T} \to \mathbb{A}^3/_{\!\!C}T$, note that $\phi_{\mathbb{A}^3}^{-1}(\mathbb{X}/_{\!\!C}T)$ is not contained in $H_{\mathbb{X},T}$. Indeed, consider the ideal $I=(x_1,x_2^2)\in \underline{H_{\mathbb{A}^3,T}}(k)$. We have $(I_{\mathbb{X}})_r\subset I_r$ for any even r, so $\phi_{\mathbb{A}^3}(I)\in \underline{\mathbb{X}/_{\!\!C}T}(k)$, but $I\notin \underline{H_{\mathbb{X},T}}(k)$.

References

[1] V. ALEXEEV AND M. BRION, Moduli of affine schemes with reductive group action, J. Alg. Geom. 14 (2005), 83–117.

- [2] L. J. BILLERA AND B. STURMFELS, Fiber polytopes, Ann. of Math. 135 (1992), 527–549.
- [3] A. Craw and D. Maclagan, Fiber fans and toric quotients, arXiv: math.AG/0510128.
- [4] D. EISENBUD AND J. HARRIS, The Geometry of Schemes, Springer, 2000.
- [5] D. EISENBUD AND B. STURMFELS, Binomial ideals, Duke Math. J. 84 (1996), 1–45.
- [6] W. Fulton, Introduction to Toric Varieties. Univ. Press, Princeton, 1993.
- [7] M. HAIMAN AND B. STURMFELS, Multigraded Hilbert schemes, J. Alg. Geom. 13 (2004), 725–769.
- [8] R. Hartshorne, Algebraic Geometry, Springer, 1977.
- [9] M. Kapranov, B. Sturmfels, and A. Zelevinsky, Quotients of toric varieties, Math. Ann. 290 (1991), 644–655.
- [10] I. Peeva and M. Stillman, Toric Hilbert schemes, Duke Math. J. 111 (2002), 419–449.
- [11] B. Sturmfels, Gröbner Bases and Convex Polytopes. University Lecture Series 8, 1995.

DEPARTMENT OF HIGHER ALGEBRA
FACULTY OF MECHANICS AND MATHEMATICS
MOSCOW STATE UNIVERSITY
119992 MOSCOW
RUSSIA

E-mail address: chuvasho@mccme.ru